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Abstract: This paper investigates an intelligent reflecting surface (IRS)-aided integrated sensing and
communication (ISAC) framework to cope with the problem of spectrum scarcity and poor wireless
environment. The main goal of the proposed framework in this work is to optimize the overall
performance of the system, including sensing, communication, and computational offloading. We
aim to achieve the trade-off between system performance and overhead by optimizing spectrum
and computing resource allocation. On the one hand, the joint design of transmit beamforming
and phase shift matrices can enhance the radar sensing quality and increase the communication
data rate. On the other hand, task offloading and computation resource allocation optimize energy
consumption and delay. Due to the coupled and high dimension optimization variables, the op-
timization problem is non-convex and NP-hard. Meanwhile, given the dynamic wireless channel
condition, we formulate the optimization design as a Markov decision process. To tackle this com-
plex optimization problem, we proposed two innovative deep reinforcement learning (DRL)-based
schemes. Specifically, a deep deterministic policy gradient (DDPG) method is proposed to address
the continuous high-dimensional action space, and the prioritized experience replay is adopted to
speed up the convergence process. Then, a twin delayed DDPG algorithm is designed based on this
DRL framework. Numerical results confirm the effectiveness of proposed schemes compared with
the benchmark methods.

Keywords: integrated sensing and communication; intelligent reflecting surface; deep reinforcement
learning; resource allocation

1. Introduction

The integrated sensing and communication (ISAC) framework has been proposed
as one of the critical technologies in the six-generation (6G) networks, enabling many
emerging applications such as virtual reality, smart city, autonomous driving, etc. [1].
The application scenarios mentioned above require a high data transmission rate while
ensuring target sensing performance. In recent works [2–5], a tight combination of sensing
and communication functions in ISAC systems has been achieved through a series of
designs, including integrated architecture, waveforms designing, etc. By achieving the
sharing of spectrum and wireless infrastructure, the ISAC technology improves resource
efficiency and utilization, and reduces signal interference and hardware overhead [6].

However, despite the enormous benefits of ISAC technology, its applications face
considerable challenges in practice due to the obstacles of dense buildings or landscape
trees in urban environments [7]. Unlike communication systems in which both line-of-sight

Sensors 2023, 23, 9896. https://doi.org/10.3390/s23249896 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23249896
https://doi.org/10.3390/s23249896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4674-7711
https://doi.org/10.3390/s23249896
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23249896?type=check_update&version=1


Sensors 2023, 23, 9896 2 of 18

(LoS) and non-LoS (NLoS) links can be leveraged for data transmission, the radar sensing
function relies on the LoS link between the transmitter and the target area, while the NLoS
link is considered to be an interference [8]. Therefore, exploring the target sensing problem
for the ISAC system without an LoS link is necessary [9].

The intelligent reflecting surface (IRS) is a promising technology in next-generation
wireless systems due to its excellent ability to reconstruct wireless environments [10]. By
manipulating the phase shifts and amplitude of reflecting elements, the IRS creates the
virtual LoS link in NLoS areas. Motivated by the advantages of IRS in reconstructing the
wireless propagation environment, it is natural to exploit IRS to assist ISAC systems to
improve communication data rate and enhance sensing accuracy and resolution [11]. In the
IRS-assisted ISAC system, multiple beams can be synthesized for the user and the desired
signal can be enhanced by the joint design of phase shift and transmit beamforming [9,12].
Moreover, the IRS reduces hardware and energy overhead using low-cost passive compo-
nents without needing a radio frequency (RF) unit [13]. Hence, high spectrum efficiency
and low cost advantages prompt us to research IRS-assisted ISAC systems.

Although the IRS-assisted ISAC system shows significant potential, its implementation
still faces challenges, such as the joint design of phase shift and beamforming matrices. The
ISAC system’s data calculation and signal processing are generally complex and require
more resources. Due to the constrained computation and energy resources of the user
terminal, the heavy sensory data processing load of user equipment (UE) is solved by mobile
edge computing (MEC) technology. MEC works by offloading the computational task from
UE to the edge network and achieving better time efficiency and performance [14]. This
work investigates the joint resource allocation and task offloading optimization problem in
the multi-user IRS-assisted ISAC scenario. In particular, power and spectrum resources are
allocated by beamforming and phase shift design, while computing resources are allocated
by task offloading.

1.1. Related Works

Adopting the IRS to improve communication quality has provided certain benefits;
inspired by this, researchers have conducted extensive studies to explore the potential
of employing IRS in ISAC systems [8,13,15–21]. In [8], the virtual LoS channel was cre-
ated with the IRS’s assistance to enhance the communication and sensing performance
in an ISAC system, and the semi-definite relaxation (SDR) was adopted for the beam-
pattern gain maximization problem. The authors in [13] exploited the IRS to strengthen
the radar detection function in the dual-function radar and communication system, in
which a joint optimization of precoding and IRS phase shift matrices was proposed, and
a majorization—minimization (MM) method was used to solve it. A hybrid IRS model
was investigated in [15], which comprised active and passive elements for enhancing
ISAC systems and realizing worst-case target illumination power maximization through
an alternating optimization (AO) algorithm. In [16], the authors proposed an IRS-aided
radar system architecture and studied the benefits of IRSs and the deployment location
issues. Through a joint beamforming design, the authors in [17] optimized the total transmit
power while meeting signal-to-interference-plus-noise (SINR) requirements for commu-
nication and radar signal cross-correlation pattern constraint for sensing in IRS-assisted
ISAC systems. The authors in [18] proposed penalty dual decomposition (PDD) and block
coordinated descent (BCD) methods for the joint optimization problem in the IRS-aided
communication radar coexistence system. In [19], the authors studied the joint waveform
and discrete phase design in the IRS-aided ISAC system to mitigate the multi-user interfer-
ence. In [20], an alternative direction method of multipliers (ADMMs) and MM approaches
were proposed to optimize the sensing performance while satisfying the communication
requirements. The authors in [22] developed an ISAC-assisted MEC and employed IRS to
reduce the mutual interference between MEC offloading transmission and radar sensing,
and a BCD algorithm was employed. Inspired by the above-mentioned work, we investi-
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gate the joint computation offloading and resource allocation problems in the IRS-aided
ISAC system.

Recently, the excellent performance of artificial intelligence (AI) algorithms in dealing
with nonlinear and high computational complexity problems has triggered a revolution in
the industry and academia [23–26]. Considering that there are numerous elements in the
IRS-assisted ISAC system, the high-dimensional optimization problems in this system are
difficult to solve using traditional mathematical methods. However, it is very suitable for
AI technology. Meanwhile, deep reinforcement learning (DRL) takes advantage of deep
learning in neural network training and the extraordinary ability of reinforcement learning
on large-scale non-convex problems [25]. Therefore, DRL finds a broad array of applications
within the domain of wireless communications, including computing offloading [27], power
allocation [28], task scheduling [29], etc. The authors in [30] designed a DRL approach
to address a joint transmit precoding and phase shift matrix design with the maximizing
data rate optimization goal. An adaptive DRL framework twin delayed deep deterministic
policy gradient was developed in [31] to deal with the joint beamformer design problem
in IRS-aided wireless systems. The authors in [6] designed a distributed reinforcement
learning scheme for the joint optimization problem in the terahertz band IRS-aided ISAC
system. Therefore, given the time-varying channel conditions and dynamic resources,
we reformulated the proposed optimization problem in our work as a Markov decision
process (MDP). Then, an innovative DRL-based framework is developed for solving the
joint resource optimization and computation offloading problem. Table 1 lists the main
closely-related existing efforts and compares them with our work.

Table 1. Comparison with the state of the art.

Ref. Phases Users Targets Radar Paths Method

[13] Continuous Single Single LoS, NLoS MM
[8] Continuous Single Multiple NLoS SDR
[15] Continuous Multiple Multiple LoS AO
[18] Continuous Single Single LoS, NLoS PDD, BCD
[19] Discrete Multiple Multiple LoS AO
[20] Continuous Multiple Single LoS, NLoS ADMM, AO
[21] Discrete Multiple Multiple NLoS SDR
[22] Continuous Single Multiple LoS, NLoS BCD

This paper Continuous Multiple Multiple NLoS DRL

1.2. Contributions

We investigate the joint optimization problem in the multi-user IRS-assisted ISAC
system. Specifically, the design of transmit beamforming and IRS phase shift matrices
for communication and radar sensing, as well as the computation offloading for local
data processing, are studied in this context. Our aim is to optimize the system’s data
transmission and energy efficiency while meeting the radar sensing requirement and power
constraints. Considering the dynamic environment and high-dimensional solution space of
the optimization problem, we develop a DRL scheme for solving it. We can summarize the
contributions as follows:

• We propose the IRS-assisted ISAC framework, exploiting the IRS to assist and enhance
sensing and communication functions in NLoS coverage areas. We construct a compre-
hensive optimization goal, covering the sensing, communication, and computation
offloading. The main goal is to maximize the data sum-rate while minimizing energy
consumption under the radar performance, transmit power budget, and offloading
time delay constraints through the joint design of transmit beamforming and IRS
phase shift.

• Considering the coupled relationship between optimization variables, the joint opti-
mization problem is NP-hard and non-convex, making it challenging to use traditional
mathematical methods. Therefore, the optimization problem is formulated as an MDP
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problem, and two innovative DRL schemes are designed to solve it. Due to the con-
tinuous and large-dimension action space, we develop a deep deterministic policy
gradient (DDPG) scheme, which combines prior experience replay technology to
enhance training efficiency. Furthermore, a twin delayed DDPG (TD3) scheme is
designed based on the DDPG framework.

• Simulation results confirm the effectiveness and convergence of our proposed scheme.
In contrast with benchmarks, our proposed DRL scheme achieves a better balance
between communication and sensing performance. Moreover, system’s energy con-
sumption and latency are optimized by proper computation offloading. Finally, the
benefits and feasibility of the IRS-assisted ISAC framework are verified.

Notation: Bold uppercase and lowercase letters represent matrices and vectors, respec-
tively. (·)T and (·)H denote the transpose and Hermitian transpose operators. Tr(·) is the
rank operation. diag(·) expresses the diagonal elements. ∥·∥F and |·| are the Frobenius
norm and absolute operators.

2. System Model

A multi-user, single-input, single-output (MISO) IRS-aided ISAC system is presented
in Figure 1, with K single-antenna users and a base station (BS) equipped with M antennas.
Specifically, the BS deployed the uniform linear array (ULA) antennas, and the IRS em-
ployed the uniform planar antenna (UPA). Our work considers a case wherein direct links
of BS users are obstructed by dense obstacles. Therefore, the IRS with N × N reflecting
elements is employed to aid the user’s wireless data transmission and to provide target
sensing service in NLoS areas. We can denote the set of users, BS antennas, and IRS elements
as K = {1, 2, . . . , K},M = {1, 2, . . . , M}, and N = {1, 2, . . . , N}, respectively. The trans-
mitted information-bearing symbol vector is denoted as s(t) = [s1(t), · · · , sK(t)]

T ∈ CK×1.
The signal transmitted by BS is given by

x(t) = Ws(t), (1)

where W = [w1, w2, · · · , wK] ∈ CM×K represents the transmit beamforming matrix, with
wm ∈ CM×1 denoting the transmit beamforming vector for user k.

The covariance matrix of the transmit signal is computed by

RX = E
[
xxH

]
= WWH . (2)

Therefore, the transmit power budget can be obtained by

Tr[RX] ≤ Pmax, (3)

where Pmax is the transmit power budget.

BlockageBase station

ISAC signal

Radar echo signal

1H

IRS

2,kh

User 1

User K

User 2

Offloading signal

Local 
computing

Figure 1. System model.
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2.1. Communication Model

Let H1 ∈ CN×M denote the channel matrix from BS to IRS. hk,2 ∈ CN×1 represents the
channel vector from IRS to user k with ∀k ∈ K. The transmitted signal received by the user
k is given by

yc,k(t) =hT
k,2ΦH1x + nk

=hT
k,2ΦH1wksk +

K

∑
i=1,i ̸=k

hT
k,2ΦH1wisi + nk,

(4)

where Φ ≜ diag
{

χ1ejϕ1 , χ2ejϕ2 , · · · , χNejϕN
}
∈ CN×N is the diagonal phase shift matrix

of the IRS, χn ∈ [0, 1] and ϕn ∈ [0, 2π) indicate the amplitude and phase of element n
with ∀n ∈ N , respectively, due to the high overhead of simultaneous implementing of
independent control of phase shift and amplitude [13].Therefore, we assume the ideal
reflection amplitude of the passive IRS with χn = 1, ∀n ∈ N [32]. nk ∼ CN

(
0, σ2

c
)

is the
additive white Gaussian noise (AWGN).

We take the Rician fading channel model in this work, and channel H1 can be formu-
lated as

H1 =

√
γ1

1 + γ1
HLoS +

√
1

1 + γ1
HNLoS, (5)

where γ1 denotes the Rician factor. HLoS ∈ CN×M and HNLoS ∈ CN×M are LoS compo-
nent and NLoS component, respectively. The LoS channel matrix can be expanded as
HLoS =

√
αejφar(θr)bH

t (θt), where α and φ are the large-scale channel gain and a ran-
dom phase uniformly distributed in the range from 0 to 2π, respectively. Meanwhile,
ar(θr) ∈ CN×1 represents the receive steering vector at IRS with the angle of arrival θr,
bt(θt) ∈ CM×1 indicates the transmit steering vector of BS with the angle of departure θt.
The steering vector of BS b(θ) can be formulated as

b(θ) =
1√
M

[
1, e−j 2π

λ d0 cos θ , · · · , e−j 2π
λ (M−1)d0 cos θ

]T
, (6)

where d0 and λ denote the antennas’ spacing and signal wavelength. Similarly, the steering
vector of IRS a(υ, θ) can be formulated as

a(υ, θ) =
1
N

[
1, ej 2πd0

λ (n cos υ cos θ+n sin υ sin θ), · · · , ej 2πd0
λ ((

√
N−1) cos υ cos θ+(

√
N−1) sin υ sin θ)

]T
. (7)

We leverage the SINR ratio as the performance indicator of communication. Let ρk
denote the SINR of user k, which is given by

ρc,k =

∣∣∣hT
k,2ΦH1wk

∣∣∣2
∑K

i=1,i ̸=k

∣∣∣hT
k,2ΦH1wi

∣∣∣2 + σ2
c

. (8)

2.2. Radar Sensing Model

At time slot t, the received radar echo signal at BS can be expressed as

yr(t) = HH
1 ΦAΦHH1 × (t− τk) + nr(t) (9)

where A ∈ CN×N represents the target response matrix of IRS. τk denotes the propagation delay
between the transmitter and the target. The nr(t) is AWGN with nr(t) ∼ CN

(
0, σ2

r IM
)
. The

specific formulas are listed as
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A =
K

∑
k=1

βka(υk, θk)a
H(υk, θk). (10)

The received sensing echo signal from the k-th target yr,k ∈ CM×1 can be formulated as

yr,k = HH
1 ΦAΦHH1wksk(t− τk) + ∑k′∈K\{k}H

H
1 ΦAΦHH1wk′ sk′(t− τk′) + n(t). (11)

We use the SINR as the sensing performance indicator [33]. Therefore, the SINR of the
radar can be given by

ρr,k =

∥∥HH
1 ΦAΦHH1wk

∥∥2
F

∑k′∈K\{k}
∥∥HH

1 ΦAΦHH1wk′
∥∥2

F + Mσ2
r

, (12)

2.3. Computation Offloading Model

The UE generates a series of data processing tasks that need to be executed in a timely
manner for the low latency requirement. Due to the constrained energy and computation
resources of UE, the task can be offloaded to the BS. The computation task generated by
UE k(k ∈ K) at time slot t is denoted by a tuple Dk(t) = {dk(t), ck(t), ξk(t)}, where dk(t)
denotes the input data size (bits), ck(t) represents the required computation cost (e.g.,
the number of CPU cycles for processing one-bit data), and ξk(t) indicates the maximum
tolerable latency of UE k, respectively. We assume that tasks are bitwise separable and
can be partially executed locally, while the remaining parts directly send the raw data to
the BS for processing. The processing delay of the BS server executing task Dk(t) can be
calculated by

To,k =
dk(t)ck(t)

fo,k(t)
, (13)

where the fo,k(t) represents the CPU frequency of the BS server. The processing delay of
UE k to execute the task Dk(t) locally can be written as

Tl,k =
dk(t)ck(t)

fl,k(t)
, (14)

where fl,k is the CPU frequency of UE k (cycles/s). The overall latency for processing the
task Dk(t) is depicted as

Ttol
k = wk(To,k + Tu,k + Td,k) + (1− wk)Tl,k, (15)

where wk ∈ [0, 1] represents the offloading ratio. Under two extremes, wk = 1 when
the task is offloaded to BS and wk = 0 when the task is processed locally at the UE k.
Tu,k = dk(t)/rk(t) is the uplink transmission delay with the uplink data rate rk, which is
listed as

rk(t) = Bk log2

1 +
pk

∣∣∣hT
m,1Φhk,2

∣∣∣2
∑K

i=1,i ̸=k pi

∣∣∣hT
m,1Φhi,2

∣∣∣2 + σ2
c

, (16)

where Bk and pk are the uplink transmit bandwidth and power for UE k, respectively. Due
to the small size of the processing result, the latency of receiving the result Td,k can be
ignored [34,35].

Meanwhile, the energy consumption of executing task offloading by the UE k can be
denoted by

Eo,k = κo f 2
o,k(t)dk(t)ck(t), (17)
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where κo denotes the effective capacitance coefficients related to the chip architecture [36,37].
The energy consumption for UE k executing the task locally can be formulated as

El,k = κl f 2
l,k(t)dk(t)ck(t). (18)

Similarly, κl is the effective capacitance coefficient. Therefore, the overall energy
consumption can be given by

Etol
k = wk(Eo,k + Eu,k + Ed,k) + (1− wk)El,k, (19)

where Eu,k represents the offloading energy consumption with Eu,k = pkdk/rk. The energy
consumption for result receiving can also be ignored.

3. Problem Formulation

This section studies the performance optimization and trade-offs of sensing, data
transmission, and computation offloading. The overall system performance is optimized
through joint beamforming, phase shifting design, and resource allocation.

3.1. Transmission Performance Optimization

The optimization goal of the IRS-assisted ISAC system is to maximize the data rate
while satisfying the sensing performance requirement. Then, the objective of data transmis-
sion optimization can be formulated as follows:

max
W,Φ

Ψ1 =
K

∑
k=1

log2(1 + ρc,k), (20)

subject to

Tr[RX] ≤ Pmax, (21)

RX ⪰ 0, (22)

ρr,k ≥ ρthr, ∀k ∈ K, (23)

where ρthr is a threshold value for the radar SINR. Constraint (21) depicts the transmit
power limit for deploying the ISAC. Constraint (23) ensures the sensing performance while
optimizing the communication performance.

3.2. System Energy Consumption Optimization

Due to the strained resources of UE, it is necessary to optimize UE energy consump-
tion. The optimization objective for computation offloading is to minimize system energy
consumption for the system while satisfying the latency constraints, which is written as

min
fo,k , fl,k

Ψ2 =
K

∑
k=1

Etol
k , (24)

subject to
K

∑
k=1

fo,k ≤ Ftol
o , (25)

fl,k ≤ f tol
l,k , ∀k ∈ K, (26)

Ttol
k ≤ ξk(t), ∀k ∈ K, (27)

wk ∈ [0, 1], ∀k ∈ K, (28)

where Ftol
o and f tol

l,k indicate the total computing resource of BS server and local computing
resource of UE k, respectively. Constraints (25)–(27) represent the computing resource limi-
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tation of BS, maximum local computation resource, and latency constraint for processing
the task Dk(t). Constraint (28) represents the offloading decision.

3.3. System-Comprehensive Performance Optimization

In this work, we aim to optimize the system’s transmission performance and energy
consumption through joint beamforming, phase design, and power allocation. Considering
that there is a coupling relationship between optimization objects (21) and (23), we can
reformulate the optimization problem as

max
W,Φ, fo,k , fl,k

(Ψ1,−Ψ2), (29)

subject to (21)–(23), (25)–(28).
The downlink sum data rate is related to the number of users, transmit power, and

sensing requirement of quality, which can be maximized through reasonable beamforming
and phase shift design. Meanwhile, the total energy consumption of the system can be
optimized by appropriate computation offloading decisions. The optimization problem
(29) is NP-hard and non-convex; thus, using mathematical methods to solve it will bring
substantial computational complexity. Moreover, considering the time-varying wireless
channel environment, a model-free DRL approach is adopted to obtain the optimal solution.

4. DRL-Based Joint Task Offloading and Resource Allocation Scheme

In this section, we formulate the optimization goal as an MDP. Then, we propose two
improved DRL-based schemes to solve the joint precoding and computation offloading
problem in the IRS-aided ISAC system.

4.1. MDP Formulation

We use a four-elements tuple (S,A,P,R) to denote the MDP, where S andA denote the
set of system state and actions, respectively. P is the state transition probability andR represents
the reward function. We can outline the process of RL interacting with the environment as
follows. The agent adopts action at under environment state st, and receives the instant reward
rt as the response for the action at. Then, the environment state st turns to new st according
to the transition function P(st, at, st+1). The reinforcement learning aims to obtain the optimal
policy π∗(a | s) from a given MDP, which is the mapping from state to action that can obtain
the maximum long-term cumulative reward Rt = ∑∞

i=0 γiR(st+i+1, at+i+1). γ ∈ [0, 1) is the
discount factor. We can define state, action, and reward in our model as follows.

State: The environmental state at the t-th time step consists of channel matrices, BS
transmit power, the size of the computation task, and the action adopted by the agent in
(t− 1)-th time step. Thus, the state of agent st ∈ S is given by

st = {H̄1(t), H̄2(t), p(t), d(t), a(t− 1)}, (30)

where

• H̄1(t) = [Re{H1(t)}, Im{H1(t)}]: the channel matrix H1(t) is divided into the real
part and imaginary part, due to the fact that the neural network cannot deal with the
complex value.

• H̄2(t) = [Re{H2(t)}, Im{H2(t)}]: as the same way, H2(t) is separated into two inde-
pendent parts, and H2(t) = {hk,2(t)|k ∈ K}.

• p(t) = {[Re{pk(t)}, Im{pk(t)}] | ∀k ∈ K}: the transmit power for each UE and di-
vided into two ports inputting the training network with pk(t) = Tr

(
wkwH

k
)
.

• d(t) = [dk(t) | ∀k ∈ K]: the size of the computation task generated at UE.
• a(t− 1): denotes the action selected by the agent at the previous time step.
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Action: The action of the agent comprises the transmit beamforming matrix at BS,
phase shift of IRS, and computation offloading decision. We can formulated the action
at ∈ A as

at = {W̄(t), Φ(t), wk(t)}, (31)

where W̄(t) = [Re{W(t)}, Im{W(t)}] and Φ̄(t) = [Re{Φ(t)}, Im{Φ(t)}] indicate the real
and imaginary parts of transmit beamforming and phase shift matrices. wk ∈ [0, 1] for
∀k ∈ K is the computation offloading action.

Reward: The agent, through the feedback of reward, evaluates the action and makes
improvements. This work aims to optimize the communication data rate while minimizing
the system energy consumption. Thus, the reward rt at the t-th time step is defined by

rt = ω1Ψ1(t)−ω2Ψ2(t), (32)

where ω1 and ω2 are the weighting factors with ω1 + ω2 = 1. The weighting factor can be
used for control optimization preferences.

4.2. An Improved DDPG-Based Joint Optimization Algorithm

Considering that the transmit power, phase shift, and the offloading scale factor are
continuous variables, we are resorting to the policy-based scheme. The DDPG algorithm
has been proven as an effective solution for the continuous control problem [23]. Thus, the
DDPG-based scheme is developed in this work. Figure 2 depicts the developed framework.
The proposed DRL model adopted the evaluate network and target network with identical
structures but differing parameters. Both evaluate and target networks contain a set of
actor-critic neural networks.

Target Actor 
Network

Target Critic 
Network

Primary Actor 
Network

Primary Critic 
Network

Target Networks Primary Networks

Agent

Environment
Prioritized 
sampling

… …… … …… … …… … ……

( )( )' '
1 1' , ' | | Q

t tQ s s µµ ω ω+ +

( ), | Q
t tQ s a ω

( )'1' |ts µµ ω+

Loss function

( )1, , ,t t t ts a r s +
Relay Buffer

taAction

1ts +

Policy gradient

Update

Mini-batch

( )1, , ,t t t ts a r s +

ts ts
ta

tr

Update

1ts +

( )|ts µµ ω

Soft update

Figure 2. Proposed task offloading and resource allocation framework based on DDPG.

At each time slot, the evaluate network obtains environmental state st and then outputs
the action at. The Q value is adopted to describe the long-term reward of executing at,
which can be calculated by the Bellman equation [38]

Qµ(st, at) = E[rt(st, at) + γQµ(st+1, at+1)], (33)
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where µ : S ← A is the deterministic policy function, and the actor function µ(s|ωµ) works
by mapping a state to an action to specific current policy. The DRL agent interacts with the
environment to find the optimal action corresponding to the maximum Q value

Q∗(st, at) = E
[

rt(st, at) + γmax
at+1

Q∗(st+1, at+1)

]
. (34)

The experience replay mechanism is leveraged to break the correlation between expe-
rience tuples [39]. Applying J tuples sampled from the experience buffer, the critic network
is trained by minimizing the loss function

L
(

ωQ
)
=

1
J ∑

i∈J

(
yi −Q

(
si, ai|ωQ

))2
, (35)

where
yi = r(si, ai) + γQ′

(
si+1, ai+1|ωQ′

)
, (36)

denotes the target value. ωQ′ represents the parameters of the function approximator.
The actor network updating following the policy gradient rule and the loss function

can be expressed as

∇ωµ J =
1
J ∑

i∈J

[
∇aQ

(
s, a|ωQ

)
|s = si, a = µ(si)∇ωµ µ(s|ωµ)|s = si

]
. (37)

To address the unstable issue in the learning process, the soft target is leveraged for
the updating of target actor-critic networks, which can be formulated by

ωµ′ ← τωµ + (1− τ)ωµ′ , (38)

ωQ′ ← τωQ + (1− τ)ωµ′ , (39)

with the soft update factor τ ≪ 0.
The experience replay mechanism overcomes the problem prone to divergence in

the training process. Since the conventional experience replay mechanism replayed the
transition tuples uniformly, the importance of different experiences is ignored. The priori-
tized experience replay (PER) assigns priorities based on the importance of the experience
samples, which is adopted to speed up the training convergence [39]. The internal logic
of the PER mechanism is to replay extremely good or bad experiences more frequently.
The temporal difference error (TD-error) is usually leveraged as the measurement of the
experiences’ value [40]. The absolute TD-error is proportional to the correction to the
expected action value. The TD-error of transition tuple i can be formulated by

δi = yi −Q
(

si, ai|ωQ
)

. (40)

The probability of the transition i is given by

P(i) =
pϱ

i

∑k pϱ
k

, (41)

where 1
rank(i) , rank(i) represents the ranking of transition i when sorted according to the

absolute TD-error. ϱ is the degree of priority adopted. However, PER changes the state
access frequency, introduces the bias, and may cause oscillation and divergence. Thus, the
importance-sampling weights are employed to handle the bias with Wi = 1/[B · P(i)]β, B
denotes replay buffer size, and β is the factor that controls the degree of correction. The
proposed DRL-based joint task offloading and resource allocation algorithm is summarized
in Algorithm 1.
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Algorithm 1 PER DDPG-based Joint Task Offloading and Resource Allocation Algorithm.

Input: H1, hk,2, µ(s|ωµ), Q
(
s, a|ωQ), learning rates αµ and αQ, τ, γ

Output: W, Φ, wk
1: Initialize actor parameter ωµ, critic network parameter ωQ, target actor network
parameter with ωµ′ ← ωµ , critic network parameter with ωQ′ ← ωQ , replay buffer
with size B, minibatch J
2: Initialize transmit beamforming matrix W, phase shift matrix Φ
3: For episode = 0, 1, 2, . . . , E− 1 do
4: Initialize random noise ne for the action exploration
5: Initialize environment state s0
6: For time step t = 0, 1, 2, . . . , T − 1 do
7: Select action at based on (31) and noise ne
8: Execute action at, calculate instant reward rt and turn to next state st+1
9: Record the tuple (st, at, rt, st+1) into the replay buffer
10: If t > B then
11: For i = 0, 1, 2, . . . , J − 1 do
12: Sample tuple i according to probability P(i)
13: Compute the importance-sampling weights Wi and TD-error δi
14: Update the priority of tuple i
15: End for
16: Update the critic network parameter by minimize the loss (35)
17: Update the actor network parameter with policy gradient (37)
18: Update target actor and critic parameters according to (38) and (39)
19: End if
20: End for
21: End for

4.3. Twin Delayed DDPG (TD3)-Based Joint Optimization Algorithm

The TD3 algorithm is considered as an improver of DDPG, which solves a series of
issues caused by overestimation in the process of the Q value estimate in DDPG [41]. We
depicts the TD3-based joint optimization framework in Figure 3. Although the overesti-
mated values are small in each update, they may accumulate after every update, creating a
significant bias. Furthermore, the inaccurate Q value leads to the deterioration of the policy
network. This process forms a feedback loop in which suboptimal behavior is continuously
reinforced. The TD3 algorithm addresses the above-mentioned challenge through the
following technologies.

Target Critic 
Network 1

Primary Critic 
Network 2

Agent

Environment
Sample( )1, , ,t t t ts a r s +

Relay Buffer

( )tsµ ε+

Mini-batch

( )1, , ,t t t ts a r s +

Primary Critic 
Network 1

Target Actor 
Network

Primary Actor 
Network

Target Critic 
Network 2

Soft updatey y
Soft update

{ }' '
1 2' min ,Q Q Q=

Loss function
UpdateUpdate

Policy gradient

Soft update

Update

( )'1' |ts µµ ω+

( )tsµ

( ),t tQ s a

Figure 3. Proposed task offloading and resource allocation framework based on TD3.
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Firstly, clipped double Q learning. The TD3 leverages twin critic networks to estimate
two Q function, and choose the smaller one as the target Q value to compute loss in
the Bellman equation. The target update in the double critic networks framework is
formulated as

yi = r(si, ai) + γ min
n=1,2

Q′n
(

si+1, ai+1|ωQ′n
)

, (42)

where ωQ′n(n = 1, 2) denote weight parameters of two target critic networks, respectively.
Critic networks are updated by using the loss function, which are given by

L
(

ωQ1
)
=

1
J ∑

i∈J

(
yi −Q1

(
si, ai|ωQ1

))2
, (43)

L
(

ωQ2
)
=

1
J ∑

i∈J

(
yi −Q2

(
si, ai|ωQ2

))2
, (44)

where ωQ1 and ωQ2 indicate weight parameters of two estimate critic networks, respectively.
The smaller value is adopted for the Bellman error function. Secondly, delayed policy
updates. The actor and its target network reduce the update frequency compared to critic
networks, to avoid the divergent behavior caused by the policy updates under inaccurate
value estimate. Thirdly, target policy smoothing. A regularization strategy is leveraged
in TD3 to address the overfit at high peaks and Q value error. In practice, a random noise
is added in the action selection process to enforce the generalization of similar actions as
given by

ãt+1 ← µ(st+1|ωµ) + ϵ, (45)

where the added noise ϵ ∼ clip(N (0, σa),−c, c) is clipped by the constant c to ensure the
proximity between the target action and the original. The TD3-based joint optimization
algorithm is similar to the processing process of Algorithm 1, with improvements in the
following aspects:
• In the Input Step, input two pairs of critic networks Q1

(
s, a|ωQ1

)
and Q2

(
s, a|ωQ2

)
,

respectively. In Step 1, initialize parameters of two estimate critics and two target
critics with ωQ1 , ωQ2 , ωQ′1 , and ωQ′2 .

• Target policy smoothing is realized by (45). Then, the agent updates the target value
using (42). In Step 16, the loss is computed by (43) and (44).

• Before turning to Step 17, the agent adopts a delayed update strategy to keep policy
networks updated less frequently than value networks.

5. Numerical Results

In this section, the simulation results are presented to assess the proposed DRL-based
task offloading and resource allocation schemes in the IRS-assisted ISAC system. The
simulation is based on Python 3.8 and PyTorch 1.8.0. We assume that the BS and the IRS
are located at [−10, 0, 0] m and [90, 0, 2] m. UEs are randomly distributed in a radius of
1 m below the IRS [21]. The channel matrix H1 and hk,2 with k ∈ K follow the Rician
distribution with the Rician factor γ1 = 3 dB [42]. According to [43], the carrier frequency
is set to 30 GHz, and the shadowing standard deviation is 7.8 dB. The path-loss exponent
of BS-IRS and IRS-UE are set to 2.8 and 2.5 [44]. The noise power σ2 = −174 dBm/Hz.
Meanwhile, we set noise power σ2 = −85 dBm and the bandwidth Bk = 2 MHz [43]. The
input data size of task dk, required computation cost ck, and CPU frequency of BS server fl,k
are randomly generated in the interval [1, 2] Mbits, [1, 3] Kcycles/bit, and [1, 2] Gcycles/s,
respectively [45]. CPU frequency of BS server Ftol

o , effective capacitance coefficients κo, and
κl are set to 10 Gcycles/s, 10−26, and 3× 10−26 [45]. The default simulation parameter is
listed in Table 2.
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Table 2. Parameter values.

Parameter Description Value

M Number of antennas at BS 8
N × N Number of IRS elements 64

K Number of UEs 8
Pmax Power budget of BS 10 dB

pk Transmit power of the UE 30 dBm
σ2 Noise variance −85 dBm
Bk Bandwidth allocated to UE k 2 MHz
dk Input data size of task U[1, 2] Mbits
ck Required computation cost U[1, 2] Kcycles/bit

Ftol
o CPU frequency of BS server 10 Gcycles/s

fl,k CPU frequency of UE U[1, 2] Gcycles/s
ξk Maximum tolerable latency 100 ms

κo, κl Effective capacitance coefficient 10−26, 3× 10−26

αµ, αQ Learning rate for actor and critic networks 0.001, 0.001
γ Discount factor 0.7
ϵ Soft update factor 0.01
M Capacity of experience buffer 10,000
J Capacity of minibatch 16

5.1. Convergence Performance

Considering the relationship between the DDPG-based algorithm’s performance and
the parameters in the system, we first conducted several experiments to find the appropriate
learning rate and discount factor. Meanwhile, as shown in Figures 4 and 5, the proposed
DDPG-based algorithm’s convergence performance is displayed. Figure 4 depicts the
average rewards under different learning rates. The average reward is obtained by
∑Ti

t=1
rt
Ni
(Ni = 1, 2, · · · , Tmax), where Tmax denotes the maximum time steps. It can be

obtained from the figure that the maximum average reward can be achieved when the
learning rate is 0.01. Figure 5 is the convergence performance under different discount
factors. The figure shows that the algorithm performs better than others when the discount
value is 0.7. Therefore, we set the learning rate and discount value as 0.01 and 0.7 in the
following experiments for the DDPG-based framework. Moreover, it can be obtained that
average rewards increase with the number of training time steps and finally converge at
about 104 rounds.
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Figure 4. Convergence performance under different learning rates.
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Figure 5. Convergence performance under different discount factors.

5.2. Performance Comparison

We compare the performance of the PER-DDPG-based scheme, TD3-based scheme,
and random IRS phase scheme under different transmit power budgets and different
numbers of IRS elements. We set the number of IRS elements N × N as 100, 256, and 400,
and the number of users K as 10, 16, and 20, respectively. Figure 6 illustrates that the
achievable weighted communication data rate is directly proportional to the maximum
transmit power budget and the number of IRS elements. It can be seen from the figure that
the TD3-based algorithm achieves the best communication performance, the PER-DDPG-
based algorithm is slightly inferior to the TD3 scheme, and the random phase shift-based
one has the worst performance.
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Figure 6. The weighted achievable data rate versus the transmit power budget.

Figure 7 plots the sensing SINR versus the transmit power budget, where the num-
ber of users K and IRS’s elements N × N are set to 10 and 100, respectively. The radar
sensing SINR consistently increases with the expansion of transmit power budget, but the
growth speed gradually slows down. Our proposed DRL-based algorithms show a better
performance than the baseline.
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Figure 7. Sensing SINR versus the transmit power budget.

Figure 8 depicts the correlation between the number of users and the system energy
consumption. We set the number of IRS elements N × N as 100. As depicted in the plot, it
is evident that the system energy consumption increases with the growing number of users.
With the rising number of users, the amount of tasks offloaded to the base station rises,
resulting in a growth in energy consumption. The proposed two schemes dramatically
reduce the overall execution energy consumption compared with local execution methods,
and the TD3-based scheme is slightly better than the PER-DDPG-based scheme.

Figure 9 describes the relationship between the number of users and the offloading
delay, and the number of IRS elements N × N is set to 100. The figure demonstrates that
an increase in the number of users leads to a rise in data processing time due to resource
competition among the users. Compared with the local execution method, the proposed
DRL methods greatly reduce the overall average execution delay of the task, and the TD3
algorithm has the lowest total delay.
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Figure 8. The total energy consumption versus the number of users.
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Figure 9. The total average execution latency versus the number of users.

6. Conclusions

In this paper, we studied the IRS-assisted ISAC framework, wherein the IRS is exploited
to establish virtual links in NLoS areas for enhancing radar sensing performance and com-
munication data rate. We aim to improve the system’s transmission and energy efficiency
through joint task offloading and resource allocation under constraints of transmit power
budget, sensing quality, and tolerable latency of offloading. Specifically, transmit beamform-
ing, IRS phase shift, and task offloading are jointly designed, and the weight coefficient is
leveraged to control the balance between performance and overhead. The PER DDPG-based
and TD3-based algorithms are developed for the complex optimization problem. Numerical
results demonstrate that the proposed algorithms have better performance than the baseline
scheme. In addition, the simulation shows that the system performance is related to the trans-
mit power, the number of IRS components, and the number of users. In practical applications,
we can optimize system performance by setting parameters reasonably. In future work, we
will combine the distributed DRL algorithm and federated learning framework to improve the
efficiency and scalability of the joint optimization scheme in large-scale networks. Meanwhile,
extended to multi-IRS scenarios, our proposed method suffers from the action space explosion
problem caused by the exponential increase in intermediate channel coefficients. Therefore,
the meta-reinforcement learning can be adopted to decompose the cascaded channel, and
reduce the solution complexity and computational overhead. Moreover, future experiments
will focus on implementing and testing the proposed strategies in real environments, striving
to translate the theoretical potential into practical gains.
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