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Abstract: This paper proposes a novel phase-resolved partial discharge (PRPD) sensor embedded in
a MV-class bushing for high-accuracy insulation analysis. The design, fabrication, and evaluation of
a PRPD sensor embedded in a MV-class bushing aimed to achieve the detection of partial discharge
(PD) pulses that are phase-synchronized with the applied primary HV signal. A prototype PRPD
sensor was composed of a flexible printed circuit board (PCB) with dual-sensing electrodes, utilizing
a capacitive voltage divider (CVD) for voltage measurement, the D-dot principle for PD detection,
and a signal transducer with passive elements. A PD simulator was prepared to emulate typical PD
defects, i.e., a metal protrusion. The voltage measurement precision of the prototype PRPD sensor was
satisfied with the accuracy class of 0.2 specified in IEC 61869-11, as the maximum corrected voltage
error ratios and corrected phase errors in 80%, 100%, and 120% of the rated voltage (13.2 kilovolts
(kV)) were less than 0.2% and 10 min, respectively. In addition, the prototype PRPD sensor had good
linearity and high sensitivity for PD detection compared with a conventional electrical detection
method. According to performance evaluation tests, the prototype PRPD sensor embedded in the
MV-class bushing can measure PRPD patterns phase-synchronized with the primary voltage without
any additional synchronization equipment or system. Therefore, the prototype PRPD sensor holds
potential as a substitute for conventional commercial PD sensors. Consequently, this advancement
could lead to the enhancement of power system monitoring and maintenance, contributing to the
digitalization and minimization of power apparatus.

Keywords: PRPD sensor; MV-class bushing; accuracy class; phase error; partial discharges

1. Introduction

Insulation degradation in power equipment can be predicted by detecting partial
discharge (PD) pulses in the early stages. Various PD sensors have been adapted to detect
PD pulses [1,2], including a coupling capacitor, employing the conventional method based
on IEC 60270 [3], and a high-frequency current transformer (HFCT), ultra-high-frequency
(UHF) sensor, and an acoustic emission (AE) sensor, based the non-conventional method.
The conventional detection method produces high-precision PD measurements and shows
the output in picocoulomb (pC) by applying external voltage sources. However, it has
the disadvantages of requiring the installation of a coupling capacitor for quantitative
measurements, being unusable during operation, and limits on-site PD measurements
to a maximum measurement frequency of 1 megahertz (MHz) [4–7]. On the other hand,
UHF sensors have several advantages, including high sensitivity, good signal-to-noise ratio
(S/N), high frequency range (300 kilohertz (kHz) to 3 gigahertz (GHz)), ability to estimate
fault location, and continuous monitoring. Despite these advantages, UHF measurements
have the disadvantage of being unable to calibrate the output magnitude in a unit of
pC and are expensive [8–10]. AE sensors are widely used to detect internal defects in
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electrical power equipment owing to their cheap price and easy installation. The internal
fault location can be estimated by calculating the amplitudes and different arrival times of
several AE sensors. It cannot be measured in terms of pC, much like with UHF sensors,
and the effects of reflections, attenuations, and the scattering of acoustic waves due to the
internal structures of the equipment must be considered [11–15]. The above PD sensors
are selected based on installation conditions and purpose. The most suitable method for
insulation diagnosis is phase-resolved partial discharge (PRPD) analysis, which includes
the phase angle (∅), PD magnitude (q), and the number of PD pulses (n) over a period
within one cycle of the applied voltage source [16,17].

An accurate measurement of system voltage signals is critical to improve the safety
and reliability of power equipment. The voltage signals obtained with various instruments,
including iron-core-type potential transformers (PTs), capacitive potential transformers
(CPTs), and resistive potential transformers (RPTs), have a critical role in the operation
of protective relays to counter abnormal voltage surges. Iron-core-type PTs require a
significantly large installation space due to their iron core and copper wire components,
and can be susceptible to external transients when connected directly between primary and
secondary circuits [18]. Capacitive potential transformers must be connected to high-input
impedance instruments, typically exceeding several megohms. Alternatively, an impedance
transformer must be used to match the input and output impedance between the CPT and
the instrument. While these instruments can be used effectively within a narrow frequency
band corresponding to commercial frequencies, their accuracy can be compromised if the
voltage signal is contaminated with high-frequency noise components [19,20]. Therefore,
the development of high-precision voltage measurement instruments with broadband
frequency capability is essential. To address the challenges associated with ensuring an
adequate insulation distance for direct connections to primary high-voltage conductors,
as well as issues such as magnetic saturation, the deformation of internal cores, and the
need for significant installation space, a novel voltage measurement method for low-power
voltage transformers (LPVTs) has been the subject of recent research. This need prompted
the International Electrotechnical Commission (IEC) to publish IEC 61869-11 [21], relevant
to low-power voltage transformers (LPVTs) using passive elements, to replace IEC 60044-
7 [22], which is currently applied to electronic voltage transformers (EVTs). This is intended
for connection to stand-alone merging units (SAMUs) or metering devices according to IEC
61869-13 [23].

Wagoner et al. [24] diagnosed the current and voltage output signals in the vacuum
section of a 20-mega-ampere (MA) 3-megavolt (MV) pulsed-power accelerator using dif-
ferential D-dot and B-dot sensors with a common mode for noise rejection. Wang and
colleagues [25] developed voltage transformers using the basis of a differential D-dot sensor.
They experimented and simulated the designed D-dot probe sensor for the verification of
measurement accuracy. Kim et al. [26] developed an electronic voltage transformer (EVT)
with an accuracy class of 0.2 using a D-dot sensor. They showed that the prototype EVT
can accurately detect voltage signals up to the third, fifth, and seventh harmonics at a
commercial frequency of 60 hertz (Hz) upon employing a non-contact voltage measure-
ment method.

Wang and colleagues [27] investigated an electronic voltage transformer with a self-
integral D-dot sensor using the D-dot principle for high-voltage signal measurement. They
found that the D-dot sensor operates self-integrated modes with excellent phase frequency
characteristics by applying parallel and differential structures of multiple electrodes. Yao
and colleagues [28] proposed a compensation method that improves the accuracy of output
signals by minimizing the offset due to the integrated circuit of the D-dot electric field
sensor. A mathematical method from this study was proposed to reduce the offset value by
the integration circuit. However, in the view of condition monitoring, the proposed devices
and methods cannot detect abnormal pulses from internal defects because they are mainly
designed to measure system voltage signals.
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Hussain et al. [29] studied an online monitoring sensor, capturing abnormal electrical
fault signals generated from an internal arc for medium-voltage (MV) switchgears based
on the differential D-dot principle. Hussain and colleagues [30] compared the detection
characteristics of a Rogowski coil, loop antenna, HFCT, and D-dot sensor in air-insulated
switchgears, and discovered that a Rogowski coil sensor and D-dot sensor are more suitable
for PD measurements due to their high S/N. Rostaghi-Chalaki and colleagues [31] investi-
gated the output characteristics of a D-dot and B-dot measuring DC PD pulses propagating
through a transmission line (TL) using the electromagnetic (EM) field principle. They
found that the apparent discharge measured by the EM field sensors was almost identical
to the reference PD pulse measured with an oscilloscope. Jin and colleagues [32] studied
the measurement of a transient-pulsed electromagnetic field using a D-dot sensor and
outlined a compensation system for the recovery of the incident E-field to improve the
dynamic characteristics.

Information about the phase distribution of PD pulses is essential for the PD diagnosis
of high-voltage power equipment since the PRPD analysis method is typically used to
identify types of PD defects for on-site PD measurement. However, acquiring the reference
voltage signals directly from the power equipment in on-site operation is challenging
and inconvenient. In addition, sometimes, the reference voltage signal is measured at a
considerable distance from the expected PD defect location. In terms of PD fault iden-
tification, the diagnostic accuracy depends on the synchronization of the detected PD
pulse with the phase of the reference voltage signal. Therefore, many studies have been
conducted regarding how to obtain PD pulses phase-synchronized with the applied high
voltage or the zero-crossing point of the applied high voltage. Kim et al. [33] suggested
a possible diagnosis technique of unknown phase-shifted PD signals for GISs. The new
diagnosis method utilized the shapes, distribution ranges, density, and peak values of the
PD pulses and could classify internal defect types and noises without the phase distribution
information of the applied voltage. Lee and colleagues [34] developed a neural network
algorithm to discriminate phase-shifted PRPD patterns. They proposed a new method
which was able to convert the fundamental phase-shifted parameters, such as phase angle,
magnitude, and the number of PD pulses, to standardized parameters by applying the
neural network algorithm method. However, there are limitations to setting criteria for
determining internal defects, as their identification relies on the knowledge and experience
of the engineer. Therefore, the development of techniques for the acquisition of accurate
phase angles of applied voltage signals for insulation diagnosis remains necessary.

To address these limitations, this paper proposes a PRPD sensor embedded in a
MV-class bushing, capable of detecting phase-synchronized PD pulses through precise
measurements of the primary HV signal. The prototype PRPD sensor demonstrated a
voltage measurement accuracy that was satisfied with an accuracy class of 0.2 by analyzing
the error ratio and phase error according to the test guidelines in IEC 61869-11. Furthermore,
the PRPD sensor was found to have good linearity and sensitivity in PD detection by
comparing the output magnitude and PRPD pattern detected using the conventional
electrical detection method specified in IEC 60270. It is expected that the prototype PRPD
sensor can minimize the installation area of epoxy insulation and help to improve the
precision of insulation diagnosis for acquiring PD pulses phase-synchronized with the
applied signal.

2. Design and Fabrication

Detecting PD pulses phase-synchronized with the applied voltage signal is very
important to identify and distinguish insulation defects. The prototype PRPD sensor
embedded in a MV-class bushing consists of dual-sensing electrodes and signal transducers
for voltage signal measurement and PD detection.
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2.1. PRPD Sensor Embedded in a Bushing

Figure 1 shows a configuration and photograph of the prototype PRPD sensor embed-
ded in a MV-class bushing. The PRPD sensor was designed using a non-contact detection
method. The dual-sensing electrodes consisted of a voltage transformer (VT) for voltage
signals with a commercial frequency band (around 60 Hz) and a D-dot sensor for PD pulses
with high-frequency ranges, respectively. The electrodes were installed on a flexible PCB to
encircle the HV conductor and minimize external environmental impacts such as shock
or vibration. The main manufacturing process of PRPD sensors consists of the following
steps: Initially, the PRPD sensor is designed and fabricated on a flexible PCB by calculating
the geometric parameters and insulation distance. The PRPD sensor is then embedded
within an epoxy-insulated metal enclosure to minimize the influence of unexpected exter-
nal electric fields. Finally, the PRPD sensor, housed in a metal enclosure, is installed in a
MV-class bushing.
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Figure 1. The prototype PRPD sensor: (a) configuration and (b) photograph.

The capacitive divider principle was applied for the design and fabrication of the VT
sensor as this does not allow for derivative output signals according to IEC 61869-11. The
output voltage of the VT, VV(t), is proportional to the primary HV signal, UP(t), and it can
be calculated using Equation (1):

VV(t) =
CH

CH + CL + CV
× UP(t) (1)

where CH is a HV stray capacitor between the HV conductor and the sensing electrode
of the VT, CL is an LV capacitor between the sensing electrode and a grounded metal
sheath, and CV is a capacitor for controlling the transformation ratio in parallel with the
LV capacitor. For the study outlined in this paper, the rated transformation ratio of the
prototype PRPD sensor was set to 10,000:1.

Contrastingly, in accordance with the Gaussian law [20,21,34], the output voltage of
the D-dot sensor VPD(t) is proportional to the primary derivation value of the incident

electrical field,
→
E(t), and can be calculated using Equation (2):

VPD(t) = Rm × Seq × ε × d
→
E(t)
dt

(2)

where Rm is an output impedance of VPD, Seq is an equivalent area of the closed surface of

the D-dot electrode, ε is the permittivity of an epoxy insulation, and
→
E(t) is the magnitude

of the incident electrical field generated by the HV conductor. Since the duration time of
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PD pulses is less than the range of a few to several hundreds of nanoseconds, they do not
require the application of a restoration process.

Table 1 shows the geometric parameters of the prototype PRPD sensor outlined in this
paper. A high-glass-transition-temperature (Tg-type) PCB was used to prevent deformation
by heat generated during the epoxy-molding process. The PRPD sensor was housed within
an aluminum alloy metal sheath for protection from external electrical fields such as shocks,
vibration, or surges. The new application of the PRPD sensor was designed and fabricated
with advantages such as good linearity, high sensitivity, low manufacturing cost, and being
installation location-agnostic.

Table 1. Geometric parameters of the PRPD sensor.

Parameter Value

Diameter Φ 160 mm

Height 12 mm

Sensing electrodes (Voltage and PD)
Width 3 mm

Thickness 1 ounce (oz)

Insulation layer 0.2 mm

Dielectric constant (εs) 4.7

The geometric parameters of diameter, height, width, and thickness of the sensing
electrodes were calculated to ensure not only the output accuracy of the PRPD sensor but
also a sufficient insulation distance from the HV conductor.

2.2. Signal Transducer

The output signals from the VT and D-dot sensor of the PRPD sensor were connected
with each signal transducer, as shown in Figure 2. In a signal transducer for the VT,
CV as the transformation ratio control capacitor and Rm1 for impedance matching were
installed in parallel with CL, the LV capacitor of the VT. The magnitude of CL was fixed by
the insulation material and geometric parameters including thickness, length, and width.
Therefore, based on Equation (1), the magnitude of CV should be chosen carefully to satisfy
the high-accuracy measurement specified in IEC 61869-11. The output resistance, Rm1, was
set to 2 megaohm (MΩ) for impedance matching with the measuring instrument. A gas
discharge tube (GDT) was installed at the front of the transducer circuit to protect from
unexpected surges during the experiment.
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Figure 2. Configuration of the signal transducers: (a) voltage signals and (b) PD pulses.

On the other hand, in the signal transducer for the D-dot sensor, CPD and LPD were
installed for operating as high-pass filters (HPFs) to obtain PD pulses with a high frequency
range. The output resistor, Rm2, was set to 50 ohm (Ω) and was connected in parallel with
LPD for impedance matching with the measurement instrument.

Figure 3 shows the frequency response of the signal transducer for the PD pulses.
Due to the propagation characteristics of the distributed elements of a conductor, the UHF
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component of PD pulses is attenuated by dielectric loss (tan δ) [35,36]. Therefore, the low
cut-off frequency of the transducer was set about 63 kHz (−3 decibel (dB)). The gain was
set to 1 for frequencies above 200 kHz, considering the attenuation of UHF band signals
caused by the distributed element.
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3. Experiment and Method
3.1. PD Simulator

PD pulses are important indicators of insulation deterioration analysis because they
occur at an early stage inside electrical equipment. Therefore, internal defects can be
predicted by detecting PD pulses before their breakdown. Despite the scientific efforts of
manufacturers, installers, and operators to prevent the introduction of foreign objects and
contaminants during the manufacturing, installation, and operation phases, small defects
are still detected in electrical equipment. These defects can lead to insulation degradation.

Throughout the manufacturing process or during operation, the existence of imper-
fections or irregularities in materials, welding, or assembly can lead to the formation of
sharp metal protrusions. When the electrical field is concentrated at the apex of these metal
protrusions, it triggers a corona-type PD. Typically, PD pulses originate from a specific
location on the metal protrusion, where it may be on an enclosure of electrical equipment.

Figure 4 shows the PD simulator of a metal protrusion defect. The metal protrusion
was fabricated by using an Ogura needle with a curvature radius diameter of 5 micrometers
(µm) on a flat electrode with a diameter of 80 mm as the ground plate and a spherical
conductor with a diameter of 20 mm as the HV side. The Ogura needle represented a
micro-size metal protrusion on the enclosure of the power apparatus. The distance between
the spherical HV side electrode and the Ogura needle on the plate ground side electrode
was 3 mm. The PD simulator was filled with SF6 gas of the gas pressure at 0.5 megapascals
(MPa). The upper and bottom covers were made of aluminum alloy (AL-6061), and a gas
valve and gas pressure indicator were installed at the bottom cover. A spherical conductor
with a diameter of 25 mm was installed to prevent the electric field from concentrating on
the high-voltage connection.
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3.2. Experimental Setup

Figure 5 shows an experimental setup for evaluating the accuracy of voltage mea-
surement according to IEC 61869-11’s requirements and the PD detection of the prototype
PRPD sensor. A dry-type transformer with a maximum output of 100 kV was used to apply
a high voltage and was controlled by an induction-type automatic voltage regulator (IVR).
An HV divider with an accuracy class of 0.2 and a ratio of 1000:1 was connected to compare
the output of the PRPD sensor. A 50 Ω non-inductive resistor (NIR) was installed between
the PD simulator and the ground as a conventional electrical detection method according to
IEC 60270. All signals from the PRPD sensor, HV divider, and the 50 Ω NIR were recorded
using a digital storage oscilloscope (DL9140, YOKOGAWA, Tokyo, Japan), with a sampling
rate of 10 megasamples per second (MS/s).
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The HV Tr., IVR, HV divider, PD simulator, and measuring devices were grounded
to avoid an unexpected electrical potential difference. The level of background noise
was less than 3 millivolts (mV) (measured using the prototype PRPD sensor) and 2 mV
(measured using a 50 Ω NIR), respectively, in the experiment. To enhance reproducibility,
measurements of output accuracy and PD pulses were conducted through experiments re-
peated more than five times. All parameters were systematically analyzed under consistent
conditions to derive reliable results.

4. Performance Evaluation

Performance evaluation tests were conducted in two steps: the first was a voltage
measurement accuracy test according to the test guidelines in IEC 61869-11; the second was
a PD detection test comparing the conventional electrical detection method, according to
IEC 60270. Each test step was conducted separately. All performance tests were carried out
in a high-voltage laboratory at a room temperature (RT, 23 ◦C).
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4.1. Voltage Measurement

To assess the sensitivity and accuracy of the voltage measurement, 80%, 100%, and
120% of the rated voltage (13.2 kV) UP were applied according to the test guideline in IEC
61869-11. Figure 6 shows example waveforms and phase errors of the applied voltage and
the PRPD sensor at each voltage level. The voltage waveforms were captured for six cycles
to compare the average voltage levels. In addition, the phase errors were confirmed by
analyzing each zero-crossing (ZC) point of the waveforms of the applied voltage and the
PRPD sensor.
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The deviations of the output voltages and phase errors between the applied voltage
and the PRPD sensor can be adjusted by the correction factor CFU within a range of 0.900
to 1.100 and phase offset correction φo cor within a range of 300 min (5 degrees (◦) or 231 µs).
The correction factor CFU and phase offset correction φo cor of the prototype PRPD sensor
were set to 1.000 and 76 min, respectively. The corrected voltage ratio error εcor U and
corrected phase error φe cor were calculated using Equations (3) and (4), respectively:

εcor U(%) =
CFU × Kr × VL − VH

VH
× 100 (3)

φe cor = φS − φP − φcor φo (4)

where Kr is the rated transformation ratio of 10,000, VH is the applied voltage, VL is the
output voltage of the PRPD sensor, φS is the phase angle of the PRPD sensor, φP is the
phase angle of the applied voltage, and φcor φo is the corrected phase offset.

Table 2 shows the corrected error ratio εcor U and corrected phase error φe cor at each
applied voltage, i.e., 80%, 100%, and 120% of the rated voltage, calculated using Equations
(3) and (4). The maximum values of the voltage ratio error and the phase errors were 0.166%
and + 3.06 min, respectively. From the voltage measurement test, the PRPD sensor could
meet the accuracy class of 0.2, as specified in IEC 61869-11, because the voltage ratio error
and phase error at each applied voltage did not exceed 0.2% and 10 min.

Table 2. Accuracy test results of the PRPD sensor.

Voltage Level
Applied Voltage

VH [kV]
PRPD Sensor

VL [V]

Corrected Error Ratio
εcorU [%]

Corrected Phase Error
φecor [min]

Measured
Value

Accuracy Class
of 0.2

Measured
Value

Accuracy Class
of 0.2

0.8UP 10.561 1.056 0.001

0.2

−0.83

101.0UP 13.204 1.322 0.126 +3.06

1.2UP 15.803 1.583 0.166 −2.13

4.2. PD Detection

Before the PD detection experiment, a calibration test was conducted to evaluate
the linearity of the prototype PRPD sensor using the PD simulator. Artificial calibration
pulses of 10 pC, 20 pC, 50 pC, and 100 pC with a rising time of tens of nanoseconds were
injected into the PD simulator using a calibrator (CAL 1A, Power Diagnostix Systems
GmbH, Aachen, Germany). Figure 7 shows the average output voltage detected by the
PRPD sensor and the conventional electrical detection method in accordance with the
calibration pulses. Each output voltage of the 50 Ω NIR and PRPD sensor was recorded
five times to calculate their average values. The calibration test confirmed that the output
of the prototype PRPD sensor had linearity with respect to the calibration inputs and was
more sensitive than the conventional method.

Figure 8 shows examples of the single PD pulses from a metal protrusion defect
at 4 kV, measured simultaneously with the prototype PRPD sensor and the 50 Ω NIR,
and the fast Fourier transform (FFT) results. The rising time, falling time, and pulse
width were analyzed by calculating the average values of 10 single PD pulses. They were
47.2 ns, 52.9 ns, and 51.6 ns in the PRPD sensor and 15.8 ns, 13.3 ns, 16.3 ns in the 50 Ω
NIR, respectively. The rising and falling time and pulse width of the PRPD sensor were
approximately three times longer than those of 50 Ω NIR. The main frequency ranges
and maximum frequency with the highest magnitude were distributed from 2 MHz to 10
MHz and 3 MHz in the PRPD sensor, and 13 MHz to 24 MHz and 14 MHz in the 50 Ω
NIR, respectively. The frequency spectrums of the PRPD sensor are relatively lower than
those of 50 Ω NIR. This is because as the PD pulse flows through the conductor, the UHF
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component is attenuated by the distributed element. In this case, the frequency ranges
over 40 MHz were attenuated.
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Figure 8. Example waveform: (a) single pulse; (b) fast Fourier transform (FFT).

Figure 9 shows example PRPD patterns measured by the prototype PRPD sensor
and 50 Ω NIR at the same applied voltage of 4 kV. The PD pulses generated from the PD
simulator accumulated for 1 min. The applied voltage signal of the prototype PRPD sensor
and the 50 Ω NIR was measured by using the VT of the PRPD sensor and HV divider,
respectively. The PD pulses of the PRPD sensor were distributed at phase angles of 26◦ to
105◦ and 221◦ to 276◦. On the other hand, the PD pulses of the 50 Ω NIR were distributed
at phase angles of 25◦ to 106◦ and 220◦ to 269◦.

From the comparison of the phase distributions detected by each sensor, the PRPD
sensor and 50 Ω NIR, there were no differences between them. In addition, the shape
of the PRPD pattern detected by using the prototype PRPD sensor was similar to that of
the 50 Ω NIR. According to the PRPD measurement, the prototype PRPD sensor could
detect the PRPD patterns phase-synchronized with the applied voltage signals without any
additional devices.
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5. Conclusions

Many PD detection techniques have been extensively studied to diagnose insulation
degradation in power equipment, but conventional PD sensors are hampered by the
drawback of necessitating an independent device or system for the synchronous detection
of PD patterns alongside the applied high-voltage signal. Detecting the PD pulses phase-
synchronized with the applied voltage signals is a critical issue due to the PD pulses
depending on the magnitude and phase of the applied voltage. This study proposed
a novel PRPD sensor embedded in a MV-class bushing which could detect PD pulses
phase-synchronized with applied voltage signals for the insulation deterioration diagnosis
of electrical power equipment. The prototype PRPD sensor consisted of dual-sensing
plates fabricated on the insulated flexible PCB and the signal transducer for calibrating
the outputs of the voltage signals and PD pulses. The CVD and D-dot principles were
applied to the voltage measurement and PD detection, respectively. In order to assess
the efficacy of the suggested PRPD sensor, an experimental system was established. The
voltage measurement accuracy of the PRPD sensor was evaluated in accordance with the
testing standards specified in IEC 61869-11. Furthermore, the linearity and sensitivity of PD
detection were compared with conventional electrical sensing techniques. The experimental
results are summarized below:

A. Voltage measurement The evaluation of voltage measurement accuracy was focused
on the deviation of the output magnitude and phase among the applied voltage and
PRPD sensor. The designed rated transformation ratio was 10,000:1. The correction
factor and corrected phase offset were set to be 1.000 and 76 min. The maximum cor-
rected error ratio and corrected phase error were 0.126% and +3.06 min, respectively,
and they were commonly detected at 100% of the rated voltage.

B. PD detection The prototype PRPD sensor was linear to the artificial PD calibration
pulses. Alongside that, the outputs of the PRPD sensor were approximately 1.5 times
larger than those of the conventional electrical detection method via a 50 Ω NIR.
Regarding the time and frequency domains, the rising time of the PD pulse was
relatively longer than the falling time, and the maximum magnitude was analyzed in
the frequency range of about 24 MHz. The prototype PRPD sensor was able to detect
the PRPD patterns phase-synchronized with the applied voltage signal successfully.
The phase ranges of the PD pulses detected by the PRPD sensor were almost the same
as those detected using the conventional method.

From the experimental results, it is expected that the proposed PRPD sensor holds
potential as a viable alternative to conventional PD sensors due to its usefulness in diag-
nosing internal degradation. However, the PRPD sensor proposed in this paper has the
limitation that the PRPD sensor embedded in the MV-class bushing needs to be replaced in
terms of installation. Despite these difficulties, once applied, the PRPD sensor is expected
to contribute to the continuous PD diagnosis of high-voltage facilities. Furthermore, the
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PRPD sensor has the potential to be connected to digital interfaces with intelligent electrical
devices (IEDs) in line with the transition to digital substations.

Figure 10 shows a flowchart of the proposed PRPD measurement method phase-
synchronized with the applied voltage signal, as proposed in this study. Further research
is required as more PD characteristics need to be analyzed for the precise analysis of PD
defects. Based on these considerations, additional PD characteristics of various types of PD
defects, such as epoxy voids, delamination, cracks, metal suspension, and metal particles
in the enclosure, should be investigated, and further research should be conducted on
identifying PD defect types and identifying PD sources in the future.
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Abbreviations and Physical Quantities

The following abbreviations and symbols and expressions of physical quantities are used in this manuscript.

Abbreviations Full Name
PRPD Phase-resolved partial discharge
PD Partial discharge
PCB Printed circuit board
CVD Capacitive voltage divider
HFCT High-frequency current transformer
UHF Ultra-high frequency
AE Acoustic emission
S/N Signal-to-noise ratio
PT Potential transformer
CPT Capacitive potential transformer
RPT Resistive potential transformer
LPVT Low-power voltage transformer
IEC International Electrotechnical

Commission
SAMU Stand-alone merging unit
EVT Electronic voltage transformer
TL Transmission line
EM Electromagnetic
VT Voltage transformer
Tg-type High glass transition temperature
GDT Gas discharge tube
HPF High-pass filter
IVR Induction-type automatic

voltage regulator
NIR Non-inductive resistor
DSO Digital storage oscilloscope
HV Tr. High-voltage transformer
HV divider High-voltage divider
ZC Zero-crossing
FFT Fast Fourier transform
Physical quantities Symbols Definitions Units
Corrected ratio error εcor U Ratio error of an ±%

individual passive
LPVT corrected by the factor

Correction factor CFU Factor by which the rated -
transformation ratio evaluated
at rated burden and rated
frequency of an individual
passive LPVT is to be
multiplied to achieve the
specified accuracy class

Rated transformation ratio Kr Ratio of output voltage to the -
input voltage of the passive LPVT

Phase offset correction φo cor Value to be added to the ±Minutes±Centiradians
rated phase offset evaluated
at rated burden and rated
frequency of an individual passive
LPVT to achieve the
specified accuracy class

Corrected phase error φe cor Phase error of an individual ±Minutes±Centiradians
passive LPVT corrected by the value

Corrected phase offset φcor φo individual phase ±Minutes±Centiradians
offset of a passive LPVT
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