
Citation: Bueno, F.A.D.; Yamamura,

C.F.; Scalassara, P.R.; Abrão, T.;

Marinello, J.C. A Neural

Network-Based Random Access

Protocol for Crowded Massive

MIMO Systems. Sensors 2023, 23,

9805. https://doi.org/10.3390/

s23249805

Academic Editor: Peter Han Joo

Chong

Received: 24 October 2023

Revised: 30 November 2023

Accepted: 8 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Neural Network-Based Random Access Protocol for Crowded
Massive MIMO Systems
Felipe Augusto Dutra Bueno 1,† , Cézar Fumio Yamamura 1 , Paulo Rogério Scalassara 1 , Taufik Abrão 2

and José Carlos Marinello 1,†,*

1 Electrical Engineering Department, Federal University of Technology PR, Av. Alberto Carazzai, 1640,
Cornélio Procópio 86300 000, PR, Brazil; felipeaugustodutrabueno@gmail.com (F.A.D.B.);
cezaryamamura@gmail.com (C.F.Y.)

2 Electrical Engineering Department, State University of Londrina, Rod. Celso Garcia Cid-PR445,
Londrina 86057 970, PR, Brazil; taufik@uel.br

* Correspondence: jcmarinello@utfpr.edu.br
† These authors contributed equally to this work.

Abstract: Fifth-generation (5G) and beyond networks are expected to serve large numbers of user
equipments (UEs). Grant-based random access (RA) protocols are efficient when serving human
users, typically with large data volumes to transmit. The strongest user collision resolution (SUCRe)
is the first protocol that effectively uses the many antennas at the 5G base station (BS) to improve
connectivity performance. In this paper, our proposal involves substituting the retransmission rule
of the SUCRe protocol with a neural network (NN) to enhance the identification of the strongest
user and resolve collisions in a decentralized manner on the UEs’ side. The proposed NN-based
procedure is trained offline, admitting different congestion levels of the system, aiming to obtain a
single setup able to operate with different numbers of UEs. The numerical results indicate that our
method attains substantial connectivity performance improvements compared to other protocols
without requiring additional complexity or overhead. In addition, the proposed approach is robust
regarding variations in the number of BS antennas and transmission power while improving energy
efficiency by requiring fewer attempts on the RA stage.

Keywords: 6G wireless communication; access protocols; cellular networks; artificial intelligence;
energy-efficient wireless systems

1. Introduction

Fifth-generation (5G) and beyond (B5G) mobile communication networks should be
ready to provide reliable and enhanced mobile broadband (eMBB) communications to
an ever-increasing number of devices [1]. The limited availability of time and frequency
resources makes pilot collisions prone to happen during the random access (RA) stage,
particularly when the number of connected devices exceeds the number of available
pilots. This, in turn, can adversely affect the network’s functionality. This problem is
an important and challenging issue that future wireless networks must solve to provide
reliable connections with the expected quality. Therefore, ensuring the implementation of
reliable and effective RA protocols is crucial for the development of B5G networks.

Since its inception [2], massive multiple-input multiple-output (M-MIMO) systems
have been evolving from a theoretical concept to a practical technology, becoming a key
component of the current 5G standard [3]. Due to user mobility and channel delay spread,
the limited channel coherence blocks make the reuse of pilots necessary, which, with a
large number of BS antennas, gives rise to a beamformed interference known as pilot
contamination [2,4–9]. Several different approaches have been proposed with the objective
of mitigating this critical impairment of M-MIMO systems, including time-shifted pilots
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and data transmission between different users [10,11], power allocation [12,13], pilot assign-
ment [13,14], and cell-free (CF)-based schemes [15]. In an RA context, pilot contamination
also degrades the performance of crowded M-MIMO systems whenever two or more
connected user equipments (UEs) choose the same pilot sequence, which is known as pilot
collision [16].

There are multiple possible solutions for pilot collision in M-MIMO systems, such
as the adoption of grant-free (GF) or grant-based (GB) protocols. One prominent GB
approach is the strongest-user collision resolution (SUCRe) protocol [16], which is a four-
step procedure that allows only the strongest contender to access the network resources.
The motivation for the strongest-user retransmission criterion is that it will always have
only one strongest user in a pilot collision, and it is possible to evaluate a decentralized test
to let the user know if it is the strongest contender without additional signaling overhead.
Despite being able to address up to 90% of all collisions, the SUCRe protocol still suffers
from a significant number of false-negative cases, as highlighted in [17]. This is due to its
inability to resolve pilot collisions where the strongest UE’s signal strength is lower than
50% of the sum of the signal strengths of contending UEs.

Some works propose variations on the SUCRe protocol, showing relatively good
results. In [18], the UE receives a precoded downlink (DL) response from the BS. This
response helps the UEs estimate the sum of the signal strengths of all the competing signals
and provides information on idle pilots after the first RA round. Additionally, the response
includes an access class barrier (ACB) factor to regulate access control. Hence, some UEs
that failed to be granted access on the first attempt can try to access the network resources
through previously unused pilot signals. A similar protocol is proposed in [19] in which
the BS broadcasts no ACB factor to UEs; instead, a graph-based interference cancellation
scheme is applied to maximize the number of UEs that can be admitted to the network.
Although both works show better results than the SUCRe protocol, they introduce extra
signaling overhead by informing idle pilots to the UEs, which increases latency and harms
the system’s spectral efficiency.

Another variation of the SUCRe protocol is the access class barring with power con-
trol (ACBPC) RA protocol [20]. The proposed ACBPC protocol suggests implementing
decentralized UL pilot transmit power control on the UEs’ end, resulting in a notable perfor-
mance improvement compared to the SUCRe protocol. Additionally, the ACBPC protocol
offers fair access to the UEs, regardless of their distance from the BS. A variation of the
SUCRe protocol, known as softSUCRe and introduced in [21], incorporates a soft decision
retransmission rule. The softSUCRe rule differs from the SUCRe protocol in that the UE
decides to retransmit its pilot based on the probability of being the strongest user. While the
softSUCRe protocol yields superior results to the original SUCRe protocol, it also requires
additional information for the UE to make decision. Various studies, including [22,23], sug-
gest different approaches to collision resolution protocols. However, Refs. [22,23] introduce
additional overhead to the RA phase, increasing system complexity. In addition, other
approaches for RA in extra-large MIMO (XL-MIMO) systems are proposed in [24,25].

Finally, the authors of [17] propose a GB RA protocol that employs statistical tech-
niques to address collisions in a decentralized manner at the UE level. This protocol uses a
Bayesian classifier (BC) to identify the strongest user and replaces the retransmission rule
of the SUCRe protocol. This protocol also shows results superior to the SUCRe protocol
without the need for extra overhead. However, as a statistical approach, the BC method
has a maximum accuracy limited by the distribution of the considered classes.

With the development of artificial intelligence, a new approach to solving problems in
communication systems has emerged, especially using neural networks (NNs) for pattern
recognition [26,27]. In this work, we propose a decision-making methodology based
on a multilayer perceptron (MLP) NN, which is applied to empirical simulation data
of the SUCRe protocol. The proposed approach suggests replacing the retransmission
rule of the original SUCRe protocol with an MLP, which can determine if the UE is the
strongest contender or not, resolving pilot collisions in a decentralized manner. Our
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choice for employing offline training instead of online is because the method is evaluated
on the UEs’ side since the RA scheme should run in a distributed way for scalability
purposes. Thus, the online training should be carried out by the users and would incur
additional latency, for they establish a connection to the network, making the approach less
attractive. The performance results, which include the fraction of failed access attempts
(FFAAs), average number of access attempts (ANAAs), throughput, latency, and energy
consumption, indicate a significant improvement in the proposed method compared to
other protocols available in the literature.

Thus, the contribution of this paper is threefold:

(i) We propose a GB RA protocol for crowded M-MIMO systems applying an NN at the
UEs’ side to assist in self-classification as the strongest competitor or not, allowing the
UEs to resolve pilot collisions in a decentralized and uncoordinated manner;

(ii) The offline training procedure of the NN to the RA problem is entirely characterized,
including data collection, preprocessing, training, and validation steps. In addition,
to avoid excessively complex processing at the devices’ side, we show that a simple
MLP with only one hidden layer with five neurons is able to remarkably improve the
connectivity performance;

(iii) Extensive numerical results are provided corroborating the performance of the pro-
posed approach, including the performance influence of certain key NN parameters
and the robustness against the variation of some network parameters, like the number
of BS antennas and transmit power.

The remainder of this paper is organized as follows. The materials and methods are
provided in Section 2, which describes the adopted crowded M-MIMO system model in
Section 2.1 and proposes the NN-based RA protocol in Section 2.2. In Section 3, the numer-
ical results of the proposed NN GB-RA protocol are presented. The main conclusions are
offered in Section 4.

2. Materials and Methods

We present in this section our adopted system model for the crowded M-MIMO
network under investigation. Then, we present in detail the proposed NN-based RA
protocol, carefully describing the methodology for applying the NN to improve the random
access performance of the system. In addition, we also evaluate the performance influence
of certain key NN parameters, like the number of neurons in the hidden layer and learning
rate. Then, in the next section, we numerically evaluate the robustness of the obtained NN
regarding the variation of some network parameters, like transmit power and number of
BS antennas.

2.1. System Model

Similar to the work presented in [16], our M-MIMO system model focus on a center
hexagonal cell C0, surrounded by 6 neighboring cells Cj with j ∈ {1, 2, . . . 6}. All cells
present a BS located at their centers and equipped with M antennas to serve a set of UEs,
through a time-division duplex (TDD) scheme, with time and frequency resources divided
into coherence blocks of T channel uses. Furthermore, we represent the set of all UEs
inside cell j by Uj, and the subset of Uj of all active UEs by Aj ⊂ Uj. Also, we consider that
inactive UEs will try to become active with probability Pa ≤ 1. Therefore, even in cells with
|Uj| � T, it is possible to consider a scenario where |Aj| < T. This scenario allows the BS
to temporarily make orthogonal payload data pilot (PDP) signals available to all active UEs
during payload data transmission by employing a grant-based RA protocol.

Let K0 = U0\A0 denote the set of inactive UEs with cardinality K0 = |K0| in cell
C0. The channel vector between BS and UE k is denoted by hk ∈ CM×1. The channel
follows a complex Gaussian distribution hk ∼ CN (0, βkIM), where βk is the large-scale
fading coefficient, obtained as in [16]. The BS makes available a number τp of orthogonal
RA pilot signals {ψ1, ψ2, . . . ψτp}, where ψt ∈ Cτp satisfies ||ψt||2 = τp, t ∈ {1, 2, . . . , τp}.
The available pilots τp are then shared by the K0 inactive UEs. A particular UE that
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wants to become active firstly randomly chooses one pilot ψc(k) out of the τp RA pilot
signals available and then makes an access attempt by transmitting ψc(k) with power
ρk > 0, with c(k) ∈ {1, 2, . . . , τp}. The UEs choosing the pilot ψt are represented in the
set St = {k : c(k) = t, ρk > 0}, whose cardinality corresponds to the number of UEs
contending for such a pilot, and follows a binomial distribution [16]:

|St| ∼ B
(

K0,
Pa

τp

)
. (1)

Given this system model, in order to employ the SUCRe protocol, four steps are necessary,
as illustrated in Figure 1.

1. Random pilot sequence 1. Random pilot sequence 1. Random Pilot Sequence 

1. Random pilot sequence 1. Random pilot sequence 2. Precoded Random Access Response

1. Random pilot sequence 1. Random pilot sequence 
3. Distributed Contention Resolution and 
Pilot Repetition

1. Random pilot sequence 1. Random pilot sequence 1. Random Pilot Sequence 1. Random pilot sequence 1. Random pilot sequence 4. Allocation of Dedicated Data Pilots

UE BS

Figure 1. SUCRe protocol diagram for crowded M-MIMO networks.

(i) Random pilot sequence: The first step of the SUCRe protocol consists of the UEs
sending pilot sequences to the BS, which receives the signal Y ∈ CM×τp from the sent pilots:

Y = ∑
k∈K0

√
ρkhkψT

c(k) + W + N, (2)

where N ∈ CM×τp is the noise matrix at the BS’s side. Each element of the noise matrix
follows CN (0, σ2), with σ2 being the noise variance. W ∈ CM×τp represents the interference
signals received by the BS from the adjacent cells, and (·)T is the transpose operation.
The signal Y is then correlated with ψt at the BS:

yt = Y ψ∗t
||ψt || = ∑i∈St

√
ρi||ψt||hi + W ψ∗t

||ψt || + nt

= ∑i∈St

√
ρiτphi + W ψ∗t

||ψt || + nt,
(3)

where nt = N ψ∗t
||ψt || represents the effective noise and has the distribution CN (0, σ2IM),

with (·)∗ representing the conjugate operation.
(ii) Precoded random access: The second step involves the BS responding to all UEs that

transmitted pilot signals by sending a precoded signal V ∈ CM×τp :
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V =
√

q
τp

∑
t=1

y∗t
||yt||

ψT
t , (4)

in which q is the BS transmit power per pilot. The k-th UE then receives the signal zk ∈ Cτp :

zT
k = hT

k V + νT
k + ηT

k , (5)

where νT
k ∈ Cτp is the inter-cell interference (ICI), and ηT

k is noise, which follows CN (0, σ2Iτp).
Next, the UE correlates zk with its chosen pilot ψt, resulting in

zk = zT
k

ψ∗t
||ψt||

=
√

qτphT
k

y∗t
||yt||

+ νT
k

ψ∗t
||ψt||

+ ηk, (6)

where ηk ∼ CN (0, σ2). We define αt as the sum of the signal strengths and inter-cell
interference ωt received by the BS during the first step of the protocol for each pilot t in
(3) as

αt = ∑
i∈St

ρiβiτp + ωt. (7)

Then, as proposed in [16], the value of αt can be estimated at the k-th UE by α̂t,k:

α̂t,k = max

[Γ(M + 1
2 )

Γ(M)

]2 qρkβ2
kτ2

p

[<(zk)]2
− σ2, ρkβkτp

, (8)

where Γ(·) is the gamma function, and <(·) returns the real part of a complex number.
(iii) Distributed contention resolution and pilot repetition: In the third step, it is assumed

that the k-th UE is aware of its average channel gain βk. Using this information along
with the estimated value α̂t,k, the UE decides whether to retransmit the pilot signal or
not. The primary aim of the SUCRe protocol is to allow only one UE (the strongest one)
to retransmit the pilot signal at this step and establish a connection with the network to
transmit payload data. Retransmission of the pilot signal occurs when the hypothesis test
Rk is true [16], and the pilot signal is not retransmitted when Ik is true:

Rk : ρkβkτp >
α̂t,k

2
+ εk, (9)

Ik : ρkβkτp ≤
α̂t,k

2
+ εk, (10)

where εk ∈ R is a bias parameter. It is worth noting that (9) and (10) mean that the UE
only retransmits when its own signal strength is larger than half of the contending UEs’
signal strengths, which is a sufficient but not necessary condition for being the strongest
contender [17]. In addition, the bias parameter can be calibrated to adjust the system
behavior; for instance, to maximize the average number of resolved collisions, to minimize
the occurrence of false positives (or negatives), or to ensure that at most one UE will
transmit the pilot in the third step of the SUCRe protocol when εk > 0 for all k [16]. A
suitable value of εk is proposed as εk =

δβk√
M

+ ω̄
2 in [16], where the factor δ multiplies the

standard deviations of ‖hk‖2

M centered around its mean value βk and ω̄ is the average UL

interference, assumed to be known at the UE [16,17]. It is given by ω̄ = E
{
‖W ψ∗t

‖ψt‖
‖2

M

}
,

where the expectation is computed with respect to user locations and shadow-fading
realizations. The bias term’s influence on performance is also further investigated in [16].

(iv) Allocation of dedicated data pilots: In the fourth step, all UEs that successfully
retransmitted their pilots (without collision in the third step) are granted access to exclusive
network resources to become active and transmit payload data [28].
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2.2. Neural Network Classifier

One of the most relevant features of artificial NNs is their capability to learn from the
input data samples that express the system’s behavior. Hence, after the network has learned
the relationship between inputs and outputs in a supervised way, it can generalize solutions,
meaning that the network can produce an output close to the expected (or desired) output
of any given input value.

This section presents a new approach to tackle the random access problem in crowded
M-MIMO networks using an NN classifier specifically designed to resolve pilot collisions
under the “strongest-user criterion”. To accomplish this, users are classified into two
classes: Z0 for those who are not the strongest contenders for their selected pilots, and Z1
for the strongest users. The set of classes Z is defined as Z0, Z1. Each user’s state k is
denoted as Ωk and belongs to Z . To approximate the true class of each user, an MLP NN
estimates a function Ωk = f (x1, x2) that maps input values x′k = ρkβkτp and x′′k = α̂t,k to
the state Ωk of the k-th UE. In essence, the objective is to obtain an approximation Ω̂k that
accurately represents the UE’s true class. Furthermore, as the NN algorithm is evaluated
on the devices’ side, we seek here the simplest NN topology able to achieve the desired
performance improvements.

The steps to implement this method are the following: (a) database acquisition, (b) pre-
processing, (c) neural network training, and (d) validation.

2.2.1. Database Acquisition

The first step is to acquire the NN’s training data. The database is generated from the
simulation setup publicly shared by the authors of [16], where the values of α̂t,k, βk and
their respective actual states Ωk, which serve as labels, are collected.

The numerical parameters for data collection in the SUCRe protocol simulation are
shown in Table 1. In this work, we collected nearly 5× 106 labeled training data from the
numerical simulation setup with different channel and system scenarios.

Table 1. Numerical parameters for data collection in SUCRe protocol simulation.

Parameter Value Description

M 100 Number of BS antennas in the
center and neighboring cells

Pa 0.001 Transmission probability

Pr 0.5 Probability of trying again
in the next RA block

τp 10 Number of available RA pilot
sequences

ρ 27 dBm Transmit power of the UEs

q 27 dBm Transmit power of the BS per pilot

σ2 −98.65 dBm Noise variance

δ −1 Number of standard deviations
in the bias term

Kici 10 Number of active users
in each neighboring cell
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Table 1. Cont.

Parameter Value Description

K0 [100, 40,000]

Indicates that K0 ∈ [100, 40,000]
in the center cell, evenly distributed
in steps of 100 UEs in [100, 1000],
and steps of 500 in [1000, 40,000]

Edge SNR 0 dB Edge SNR in the center cell

6 Number of neighboring cells

R 250 m Radius of the cells

27 dBm Transmit power of UEs
in adjacent cells

10 dB Shadow-fading standard deviation

10,000 Number of Monte Carlo realizations

10 Maximum number of connection
attempts before the UE gives up

2.2.2. Preprocessing

In the preprocessing step, the data are prepared for being used as input for the NN.
This step, which includes data shuffling and normalization, is essential for ensuring the
proper functioning of an NN. The data shuffling prevents overfitting, and normalization
is important to ensure all input data have the same scale and fall within the range of the
chosen activation function.

Given the skewed nature (the skewed nature of the data comes from the fact that the
dataset has a number of data items labeled Z0 much larger than the ones labeled Z1) of
the collected dataset (primary dataset), the input values are randomly shuffled using the
MATLAB function randperm to ensure that a subset of the primary dataset with a sufficiently
large number of elements will have members of both classes in a proportion near or equal
to the one of the primary dataset. Next, 10× 105 data samples are taken from the shuffled
dataset, from which 80% are separated for the training set T and 20% for the validation set
V . Then, the input values x′k and x′′k of both the training and validation data are normalized
according to

x̄′k =
ln(x′k)−minj∈T (ln(x′j))

maxj∈T (ln(x′j))−minj∈T (ln(x′j))
, (11)

and

x̄′′k =
ln(x′′k )−minj∈T (ln(x′′j ))

maxj∈T (ln(x′′j ))−minj∈T (ln(x′′j ))
. (12)

The normalization procedures mathematically described above are divided into two
steps. First, the natural logarithm of the input data is taken to smooth large numerical
discrepancies (above six orders of magnitude) among the input data, improving the data
resolution. Next, the resulting values are normalized to fit within the closed interval [0, 1],
matching the output range of the activation function in (16). Finally, both input values are
grouped into a vector x̄k, where an input bias b is also appended:

x̄k = [b x̄′k x̄′′k ]
T . (13)

2.2.3. Neural Network Training

The training process of an NN consists of applying the required ordinate steps for
tuning the synaptic weights and thresholds of its neurons to generalize the solutions
produced by its outputs. In the proposed method, the normalized data, x̄k, and the desired
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output value Ωk associated with each training sample are used as training data for an MLP
NN with one hidden layer, as illustrated in Figure 2. It is noteworthy that our choice for a
simple MLP NN with only one hidden layer is motivated by the fact that such an algorithm
is carried out at the devices. Therefore, it is interesting to use the less complex scheme able
to achieve the desired performance improvements.

Input Layer Hidden Layer Output Layer

b

Output

Figure 2. MLP NN with one hidden layer, where wl
ij is the synaptic weight between the i-th neuron

of layer l and j-th neuron of layer l + 1.

The MLP NN consists of a set of linear combiners, called neurons, that control scalar
product operations between input vectors, and sometimes an input bias b, with synaptic
weights to generate a result by applying a given activation function. The input bias b counts
as an additional input term for the hidden layer’s neurons. The training is carried out
through the well-known backpropagation algorithm [29], which updates the set of weight
matrices W1 ∈ R(LI+1)×LH , the weight matrix between the input layer with LI neurons
and the hidden layer with LH neurons, and W2 ∈ RLH×LO , the weight matrix between the
hidden layer with length LH neurons and output layer with LO neurons. Given a learning
rate κ, the backpropagation algorithm proceeds iteratively by minimizing the mean square
error (MSE) function between the desired outputs r̂k and the actual output rk at each i-th
training epoch:

MSEi =
1

2 |T | ∑
k∈T

(rk − r̂k)
2, (14)

where MSEi is the MSE value at the i-th training epoch. The training is considered complete
when a given precision value in consecutive training epochs, ξ = MSEi −MSEi−1 is
achieved. Once trained, the MLP NN can be used to estimate the function f (·) as:

rk = s(W2
T · s(W1

T x̄k)), (15)

where s(·) is the activation sigmoid function:

s(x) =
1

1 + e−x . (16)

Finally, the output rk is associated to one of the output classes in Z . Thus, forming the
estimator Ω̂k:

Ω̂k =

{
Z0 if rk ≤ 0.5,
Z1 if rk > 0.5.

(17)
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2.2.4. Validation

Validation is a crucial step in demonstrating the ability of an NN to generalize its
results over data that were not used during the training process. The validation in this work
aims to support the choice of the architecture, topology, and the adopted hyperparameter
values of the proposed NN binary classifier. The performance metrics recall, precision,
F-measure, and accuracy are evaluated using the set of data reserved for testing.

The recall metric measures the proportion of actual instances of Z1 that were correctly
classified as Z1. Precision indicates the ratio of Z1 predictions that were actually Z1 to the
total number of Z1 predictions. The F-measure is the harmonic mean of precision and recall,
calculated as 2× (Precision× Recall)/(Precision + Recall). Finally, accuracy represents the
proportion of correct predictions made by the MLP NN over all predictions. The results in
Tables 2 and 3 are based on the classification of data generated from a simulation scenario
with ICI. These tables show the NN binary classifier performance for different numbers of
neurons in the hidden layer LH and different learning rates κ.

Table 2. Number of neurons test.

LH Recall Precision F-Measure Accuracy

3 0.7414 0.8380 0.7867 0.9719

4 0.7414 0.8380 0.7867 0.9718

5 0.7485 0.8355 0.7896 0.9721

6 0.7567 0.8192 0.7867 0.9713

7 0.7079 0.8532 0.7738 0.9713

8 0.7941 0.7925 0.7933 0.9713

9 0.7763 0.8079 0.7918 0.9718

10 0.7689 0.8081 0.7918 0.9713

In Table 2, the number of neurons in the hidden layer LH increases from 3 to 10 while
the learning rate κ is fixed as 0.2 and the precision ξ is set to 10−7. The bias term is set to
b = −1. It is noteworthy from Table 2 that there is no significant change in performance
when varying LH from 3 to 10. Also, there is no indication of an increase in the overall
accuracy metric. Nonetheless, there is a slight performance increase in the recall and the
F-measure metrics. The F-measure is an important metric of performance for skewed data
classification since it indicates that the precision and recall metrics are balanced out.

The learning rate in Table 3 ranges from 0.01 to 0.2, with the hyperparameter LH
fixed at 5, ξ at 10−7 and b = −1. As κ increases, the recall drops from 0.7738 to 0.7485,
but precision improves slightly from 0.8113 to 0.8355. Despite these changes, the accuracy
and F-measure do not present significant changes.

Table 3. Learning rate test.

κ Recall Precision F-Measure Accuracy

0.01 0.7738 0.8113 0.7921 0.9718

0.05 0.7556 0.8225 0.7876 0.9716

0.1 0.7280 0.8567 0.7871 0.9720

0.15 0.7617 0.8355 0.7880 0.9714

0.2 0.7485 0.8355 0.7896 0.9721

Figure 3 shows the convergence of the MSE function to its minimum value with the
training parameters set to LH = 5, κ = 0.2, ξ = 10−7, and b = −1. The training is set up to
stop when one of the two conditions occurs. The first stopping criterion is reached when
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the required precision value attains ξ = 10−7, and the second one is completed when a
predetermined number of training epochs is attained, which is set to 1000. In Figure 3,
the maximum number of epochs is achieved first, which stops the training at 1000 epochs
of training. The MSE value achieved is 0.010263, with a precision below ξ = 10−6.

0 100 200 300 400 500 600 700 800 900 1000

epochs

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017
M

S
E

MSE with ICI

Figure 3. MSE convergence with ICI.

In the following section, we evaluate the performance of our proposed NN-based RA
protocol employing an MLP NN binary classifier with LO = 1 neuron in the output layer,
LI = 2 neurons in the input layer, and LH = 5 neurons in the hidden layer. The NN is
trained with the backpropagation algorithm with a learning rate κ = 0.2. Two main training
runs are carried out, the first with data collected in a scenario with ICI and the second with
data collected in a scenario without ICI, yielding as the final result of the training process
four weight matrices, two of them for the NN trained in the scenario with ICI and two
of them for the NN trained in the scenario without ICI. The LH and κ values are chosen
empirically among the tested values since their performance metrics do not show any
significant difference. The value of LH is also kept relatively low, at 5, because adding more
neurons to the NN introduces more complexity, making the algorithm computationally
costly. For the same reason, a second hidden layer is not introduced. The bias term, b, is set
to −1, similar to in [29].

3. Results and Discussion

In this section, we report the results of our proposed NN-based RA method applied
in an overcrowded M-MIMO scenario, similar to that of [16,17,20,21]. Our outcomes are
presented in terms of confusion matrices, ANAAs, FFAAs, latencies, and throughputs. Our
study focuses on a system that operates in the 5G sub-6 GHz band, where we consider
a center cell named C0 with a radius of 250 m [16–22,24,30]. To create a crowded access
scenario, we vary the number of inactive UEs K0 in C0 from 100 to 30,000 in increments
of 500. Although a broad range of K0 values is evaluated, our main focus is on the
overcrowded scenario because of the very high number of connections expected for B5G
networks [1], and since it is a performance bottleneck of the investigated system. Moreover,
we add six neighboring cells, Cj where j ∈ {1, 2, . . . 6}, each having a radius of 250 m
and 10 active UEs. Unless specified otherwise, we adopt the parameters from Table 1 in
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the simulations. We first present the strongest-user classification accuracy of the schemes
and then compare the RA performance of the protocols. Our motivation for the strongest-
user retransmission criterion is that it will always have only one strongest user in a pilot
collision, and our proposed method lets the user itself know if it is the strongest contender
in a decentralized way without additional signaling overhead. In addition, since power
control is not the focus of this paper, we assume for simplicity the same transmit power for
all UEs, similar to in [16–18,21,24]. It is worth noting that this is a simple but challenging
scenario, since a further elaborated power control mechanism can be employed to improve
performance. For example, in [20], a power control mechanism is employed in the RA
protocol to provide the same performance for all UEs independent of their distance to
the BS at the expense of decreasing the performance of the closest UEs and enhancing the
transmit power of the farthest ones to compensate for their severe path loss. Furthermore,
we have assumed a transmit power per UE of 27 dBm, which is equal to the BS transmit
power per pilot, i.e., ρ = q, as in [16–22,24].

3.1. Classification Performance

Tables 4 and 5 display the proposed MLP NN-based protocol classification perfor-
mance. The tables depict the confusion matrices for scenarios with and without ICI.
The successful classification rates for each state are shown in the bottom row of the matrix.
Additionally, the third column on the far right of the matrix indicates the precision of the
predictions for Ω̂k. This represents the classifier’s accuracy for each output class Ω̂k = Z0
or Ω̂k = Z1. The overall accuracy of the classifier is shown in the bottom right square of
the matrix.

Table 4. NN classifier without ICI.

Pr
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d
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ss Z0

184,560
92.3%

3226
1.6%

98.3%
1.7%

Z1
1729
0.9%

10,485
5.2%

85.8%
14.2%

total 99.1%
0.9%

76.5%
23.5%

97.5%
2.5%

Z0 Z1 total

Actual Class

Table 5. NN classifier with ICI.
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1.1%

74.2%
25.8%

97.2%
2.8%

Z0 Z1 total

Actual Class
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Table 4 presents the results of the proposed MLP NN-based classifier for a scenario
without ICI. The table reveals that the successful classification rate of UEs belonging to class
Z0 is 99.1%, while the successful classification rate among Z1 UEs is 76.5%. It is noteworthy
that successful classification rates for Z0 are usually higher than for Z1. This occurs because
when the UE looks at the sum of the contending UEs’ signal strengths and its own signal
strength, its decision is usually negatively biased. For example, with SUCRe, the UE only
decides positively if its own signal gain is higher than half of the sum of the contending
UEs’ signal strengths, which is a sufficient but not necessary condition, leading to high false
negative rates. Our proposed NN classifier, on the other hand, improves the classification
performance even for the Z1 UEs. These rates are higher than those achieved by the SUCRe
protocol, 41.7%, and the BC method, 74.8%, as shown in [17]. Moreover, the precision of
the Z0 and Z1 classifications are 98.3% and 85.8%, respectively. The overall accuracy of
successful classifications is 97.5%, which is also higher than the values achieved by the
SUCRe protocol and the BC method, which are 96% and 97.3%, respectively, in a scenario
without ICI [17].

Table 5 presents the results for a scenario with ICI. The reported results indicate that
the classification precision is 98.1% for Z0 and 84.1% for Z1 outputs. Furthermore, in the
scenario with ICI, our method achieves a correct prediction rate of 98.9% for class Z0 UEs
and 74.2% for class Z1 UEs. Overall, our method achieves an accuracy of 97.2% in the
scenario with ICI, superior to the SUCRe protocol and the BC method.

3.2. Connectivity Performance

Figures 4 and 5 depict the numerical results of the ANAAs and FFAAs metrics, respec-
tively, for the following algorithms: (a) The baseline, an ALOHA-based protocol described
in [16], is represented by a black line and uses a technique where pilot collisions are ex-
clusively addressed by retransmitting them in later RA blocks. (b) The results obtained
from the original SUCRe protocol, as demonstrated in [16], are represented by red lines
marked with “ ◦”. (c) The results of the ACBPC protocol [20] are represented by the cyan
lines marked with the symbol “.”. (d) The green lines marked with “x” indicate the results
obtained with the softSUCRe protocol [21]. (e) The outcomes obtained from the BC method
presented in [17] are indicated by the magenta lines marked with “�”. (f) Finally, the blue
lines with the “�” marker indicate the MLP NN-based methodology proposed in this paper.
The dotted lines show the results obtained for the cases without ICI, while the continuous
lines refer to the results with ICI.

The superiority of the proposed method is noteworthy. Comparing the FFAAs results
with those of the BC method, for example, the proposed MLP NN-based method achieves
better performance when K0 ≥ 25,000 inactive UEs in the cases with ICI, as highlighted
in Figure 6, where K0 varies from 25,000 up to 40,000 inactive users with probability of
activation Pa = 0.001 in a grant-based network operating under τp = 10 pilot sequences.
For example, the proposed NN RA protocol reduces the FFAAs ≈ 5% in comparison with
the BC method with 30,000 UEs in the ICI scenario. The proposed NN-based RA protocol
also outperforms the BC method in the scenario without ICI, although with a less visible
performance gain.
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Figure 4. ANAAs ×K0, for M = 100, τp = 10, Kici = 10, and 0 dB of edge signal-to-noise ratio (SNR).
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Figure 5. FFAAs ×K0, for M = 100, τp = 10, Kici = 10, and 0 dB of edge SNR.
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Figure 6. FFAAs ×K0, for M = 100, τp = 10, Kici = 10, 0 dB of edge SNR, and K0 ∈ [25,000, 40,000].

Figure 7 shows the FFAAs results when the number of BS antennas varies from M = 1
to M = 100 in steps of 2. Even though the NN-based method is trained with M = 100
antennas, the proposed method shows robustness under the variation in the number of BS
antennas M, where a number of M ≈ 50 antennas is revealed to be sufficient to provide
superior results than the SUCRe and BC methods in the scenarios with or without ICI.
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Figure 7. FFAAs performance with M variation, considering τp = 10, Kici = 10, K0 = 28,000,
and 0 dB of edge SNR.
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In Figure 8, we present the performance results with edge SNR variations in dB
(SNRdB), defined as ρ · βe/σ2 and q · βe/σ2, with βe being the large-scale fading of a UE at
the cell edge without shadowing and ρ = q, varying from −8 dB to +8 dB. The The FFAAs
results are taken for a fixed number of M = 100 antennas and K0 = 28,000 UEs. One can
see that the performance of the NN-based method, in both scenarios with and without ICI,
is superior to the performance of the SUCRe protocol in the whole considered edge SNR
range. Compared to the BC method, the proposed NN-based method presents a superior
performance in the ICI scenario from ≈−6 dB to ≈+6 dB, and in the cases without ICI,
from 0 dB to 8 dB. In addition, although FFAAs results are shown in Figures 7 and 8, it
is worth noting that the ANAAs results present a similar behavior, as can be seen from
Figures 4 and 5.
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Figure 8. FFAAs performance with edge SNR variation in dB, considering M = 100 and K0 = 28,000.

In Figure 9, we evaluate the performance of the investigated schemes in terms of
average throughput, defined as the number of UEs succeeding in a given RA opportunity
divided by the number of RA pilots, τp. As one can see, the proposed NN RA protocol
achieves the highest average throughput in the case without ICI, achieving a throughput
of 0.8171 with K0 ≈ τp/Pa = 10,000 UEs. On the other hand, in the case of ICI, the pro-
posed method achieves the best average throughput with a high number of UEs, i.e., with
K0 > 17,000 UEs. One can see that the throughput performance of the NN RA protocol in
this scenario saturates with ≈0.577, indicating that this ratio of pilot sequences is effectively
used in the RA stage independent of the number of UEs. In addition, the proposed method
outperforms the state-of-the-art BC protocol in most parts of the K0 values.

Figure 10 depicts the average latency performance of the investigated methods, defined
as the average time that a UE stays in the RA procedure, i.e., between wanting to become
active until succeeding or failing in the RA stage. For this simulation, we have assumed that
each RA opportunity takes 1 ms, in the same way as in [24], and that after the first attempt,
the UEs decide to try again in each RA opportunity with probability 0.5 [16,17,20,21].
In general, the curves maintain the same shapes as the ones in Figure 4, but scaled by two
since, on average, the UEs make an attempt at each two RA opportunities. One can see that
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the proposed NN RA protocol usually achieves the lowest latencies, allowing the UEs to
carry out the RA stage in 12 ms for K0 = 3× τp/Pa = 30,000 UEs in the ICI scenario.
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Figure 9. Throughput ×K0, for M = 100, τp = 10, Kici = 10, and 0 dB of edge SNR.
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Figure 10. Latency ×K0, for M = 100, τp = 10, Kici = 10, and 0 dB of edge SNR.

In addition, to evaluate how the users’ performance depends on their distance to the
BS, Figure 11 presents the FFAAs according to the users’ distance to the BS. As one can
see, the proposed NN-based RA protocol remarkably improves the performance of the
closest UEs, while the performance of the users farther than ≈152 m from the BS becomes
nearly the same as the softSUCRe and BC methods and slightly better than the SUCRe
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performance. On the other hand, the ACBPC protocol of [20] applies UL power control to
provide an equal performance for all users, independent of their distance from the BS, and
thus provides slightly better performance to the users close to the cell edge. The price to
pay for this is significantly decreasing the performance of the closest UEs and increasing
the transmit power of the farthest ones to compensate for the severe path loss. It is worth
noting that we do not exploit UL power control in the proposed protocol, while assuming a
constant UL transmit power for all UEs for simplicity purposes. Nevertheless, if improving
the performance of the farthest UEs is an important objective, one can combine a UL power
control policy with the proposed protocol, similar to in [20]. However, this is outside the
scope of this paper but is suggested as a promising topic for future works.
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Figure 11. FFAAs according to the users’ distance to the BS, for K0 = 28, 000, M = 100, τp = 10,
Kici = 10, and 0 dB of edge SNR.

Finally, it is worth highlighting some insights about the energy consumption during
the RA stage. Since the transmit powers are the same for all the investigated schemes,
as well as the intervals of each protocol step, we can assume the same energy expenditure
per RA attempt for all RA protocols. Therefore, the overall energy expenditure in the RA
stage is proportional to the ANAAs, as depicted in Figure 4. One can thus see that the
proposed NN RA protocol is the most energy efficient in the scenario without ICI, and in
the ICI scenario with K0 > 17,000 UEs. In the latter scenario, the proposed method achieves
a ≈24% energy reduction compared with SUCRe, and ≈7% compared to the BC protocol
with K0 = 3× τp/Pa = 30,000 UEs. Consequently, the proposed approach demonstrates
itself as a viable GB RA protocol option for B5G systems, outperforming the state-of-the-art
BC protocol in the most relevant investigated scenarios.

4. Conclusions

In this work, we have proposed a GB RA protocol for crowded M-MIMO systems by
implementing an NN on the UEs side to allow their classification under the strongest-user
criterion, thus resolving pilot collisions in a non-centralized manner. Based on extensive
numerical results, it is possible to conclude that the proposed NN-based method achieves
significantly superior performance in comparison with the SUCRe protocol for both sce-
narios with or without inter-cell interference and without the necessity of extra overhead.
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We have shown how the proposed method is superior to other state-of-the-art protocols,
especially in an overcrowded scenario, i.e., K0 > 25,000 (in scenarios with Pa = 0.1%
and τp = 10). Finally, we have also evaluated the robustness of our proposed approach
concerning the number of BS antennas and transmit power levels, as well as throughput,
latency, and energy efficiency performances. Our results demonstrate that our method is a
promising solution for implementing a GB RA protocol in crowded B5G systems.
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