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1 Computer Engineering Department, İzmir Institute of Technology, Izmir 35430, Türkiye;
ibrahimarikan064@gmail.com (İ.A.); tolgaayav@iyte.edu.tr (T.A.)

2 Computer Engineering Department, Aydın Adnan Menderes University, Aydın 09100, Türkiye;
acseckin@adu.edu.tr

* Correspondence: fatih.soygazi@adu.edu.tr

Abstract: Accurate prediction of the estrus period is crucial for optimizing insemination efficiency and
reducing costs in animal husbandry, a vital sector for global food production. Precise estrus period
determination is essential to avoid economic losses, such as milk production reductions, delayed
calf births, and disqualification from government support. The proposed method integrates estrus
period detection with cow identification using augmented reality (AR). It initiates deep learning-
based mounting detection, followed by identifying the mounting region of interest (ROI) using
YOLOv5. The ROI is then cropped with padding, and cow ID detection is executed using YOLOv5
on the cropped ROI. The system subsequently records the identified cow IDs. The proposed system
accurately detects mounting behavior with 99% accuracy, identifies the ROI where mounting occurs
with 98% accuracy, and detects the mounting couple with 94% accuracy. The high success of all
operations with the proposed system demonstrates its potential contribution to AR and artificial
intelligence applications in livestock farming.

Keywords: artificial intelligence; augmented reality; dairy cow identification; deep learning; estrus
detection; image processing; livestock; precision livestock farming; transfer learning

1. Introduction

In today’s context, agricultural and livestock sectors make significant changes in
order to increase labor productivity and become more efficient [1–3]. Augmented reality
(AR) technology is gaining increasing importance for the success of precision agriculture.
Emerging technologies, such as data-driven farming and autonomous agricultural robots,
provide substantial advantages in terms of data visualization, animal monitoring, and
access to information, suggesting that this technology may find broader applications in
agriculture and food supply chain domains in the future [4]. For instance, Caria and others
have emphasized the significance of AR technology in the context of precision livestock
farming, highlighting its crucial role in enabling the real-time monitoring of animals during
farm operations [5]. Augmented reality can enhance farm management by providing
farmers with real-time access to details, such as milking, feeding, and breeding of animals,
thereby improving efficiency and accuracy in farm operations. Particularly, AR-based
smart glasses can display information, like animal identification numbers, health status,
genetic characteristics, and production data, making the process of animal selection and
management more efficient and precise, thus offering substantial advantages to farmers [6].
AR technologies can also assist farmers in navigation and guidance, especially in large-scale
farms. They can be utilized to determine the locations of animals and facilities using GPS
and sensors. For example, AR-based smart glasses can provide directions to specific animals
or groups of animals, as well as suggest the most optimal routes to reach them, which can
reduce the time and effort required for animal tracking and grouping [7]. Another example
of the use of AR in the field of livestock is its application in improving the education and
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training of veterinary students and professionals. AR can provide interactive learning
experiences by simulating animal anatomy, physiology, diseases, and treatments [8,9].

Industry 4.0 and precision livestock farming (PLF) have enabled a modern techno-
logical approach to animal farming and production, encompassing ethical, economic, and
logistical aspects [10]. The advent of Industry 4.0 and the Internet of Things (IoT) have
enabled the continued advancement and development of PLF. Everyday farming practices
coupled with continuous and real-time monitoring of animal parameters can have signifi-
cant impacts on welfare and health assessment. The term Agriculture 4.0 emerged from
the term Industry 4.0. However, the benefits that Industry 4.0 bring to industrial use cases
may not be fully transferable to livestock farming [11]. The presence of individual living
animals and the strong environmental impact of livestock farming affect the role of digital
individualization and demand orientation. The introduction and adoption of Industry
4.0 concepts and technologies may contribute significantly to transforming agriculture into
something that may be called Agriculture 4.0.

AR is still an emerging technology in the field of agriculture [4]. It can potentially help
farmers with training by providing an interactive and safe form of training. However, its us-
age in agriculture is unexplored. AR technologies are employed in agriculture and livestock
to enhance data visualization, integrate with Industry 4.0 technologies, support disease
detection, facilitate real-time monitoring, and enable individual animal management, as
well as improve efficient access to information and animal tracking. These applications
aim to enhance overall efficiency, productivity, and sustainability in the agricultural sector.
Factors such as monitoring, identification, and estrus detection in animals hold significant
importance in dairy cow farming, both in open and closed environments. These pro-
cesses facilitate the close monitoring of animal health, early disease detection, and timely
treatment when needed. Furthermore, animal identification allows for accurate record
keeping and data tracking, thereby enhancing efficiency. Estrus detection, when accurately
timed, improves reproductive efficiency and enables more effective management of genetic
resources. Therefore, animal monitoring and management play a critical role in both ani-
mal welfare and production efficiency in dairy cow farming. Traditionally, identification
methods such as ear tags, smart collars, and Radio-Frequency Identification (RFID) are com-
monly used in livestock farming [12]. These systems are suitable for indoor facilities and are
typically associated with static infrastructure, such as milking, feeding, or watering units.
However, innovative identification methods, such as image-based pattern/spot [13–15],
nose prints [16,17], or head/face recognition systems [18], have emerged as alternatives
to traditional systems. These new systems can provide more precise, cost-effective, and
efficient monitoring and management of cows, and they are also suitable for deployment
in mobile setups.

The estrus period in cows refers to the time when a mature cow is most fertile and
ready for conception. This period is usually marked by specific movements and behaviors.
Cows typically have an estrus cycle that lasts around 21 days, and if they do not become
pregnant, they will enter another estrus period approximately 21 days later [19,20]. The
estrus period of cows can vary depending on factors such as age, seasonal conditions,
diet, etc. Monitoring estrus in cows is important to ensure that pregnancy occurs within
a short period of time after giving birth. In Reith and Hoy’s classification of estrus signs,
both primary and secondary signs of estrus are explained [21]. Primary signs include
“standing to be mounted”, which is the most prominent behavior, indicating that cows are
ready for mating during the estrus period. However, a decrease in the frequency of this
behavior has been noted, especially in cows with high milk production. The duration of this
behavior may be shorter in high-yielding cows. Secondary signs include mounting behavior,
increased activity, changes in rumination time, agonistic interactions, and social interactions.
Mounting behavior is a secondary sign that begins before the primary sign of estrus and
continues afterward. The frequency of cows mounting each other or attempting to mount
during the mating period can be considered a more reliable indicator for estrus detection.
These signs are important for accurately detecting the estrus period and determining the
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optimal time for artificial insemination. Additionally, the text emphasizes the impact of
environmental factors such as housing conditions, floor features, and climate on these signs.
Observing the estrus period of a cow is important for optimal timing of insemination to
increase productivity [19,22]. The estrus cycle seen in cows is shown in Figure 1. Artificial
insemination can be performed between the 12th and 24th h of estrus, but the highest
conception rate is achieved between the 12th and 18th h.
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The detection of estrus using traditional methods involves employees on the farm
monitoring the mounting behavior of the cows. Missing the estrus period due to any
disruptions can result in economic losses for the business. These economic losses can lead
to a reduced milk yield, delayed insemination by 21 days, and a one-month delay in calf
birth [23–26]. For example, in a farm with 10 cows, if estrus is missed once for each cow, it
causes one calf loss in a year in the number of calves that will be born on the farm.

Machine learning and deep learning techniques are among the latest technologies
used to automate estrus detection. These techniques detect the estrus period based on
the activities, behaviors, and/or physiological characteristics of the cows relying on their
video images. This enables increased productivity in farming by preventing the need
for employees to spend time on estrus detection and minimizing the risk of inaccurate
detections [22].

The mounting behavior of the cow in estrus is shown in Figure 1. Memmedova and
Keskin aimed to detect cows’ estrus by utilizing the movement characteristics of cows
during the estrus period [23]. They aimed to detect estrus using a fuzzy logic model that
includes features like the level of activity of a cow and the time elapsed since giving birth.
The movement characteristics of the cows were measured by attaching step counters to
their front legs. Memmedova and Keskin were able to detect the cows’ estrus state at a rate
of 98% using the method they used [23].
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Yıldız and Özgüven conducted a study that aimed to detect cows’ estrus by examining
not only the movements displayed by cows during the estrus periods but also the effects of
the season [27]. They collected movement data and seasonal information from 186 cows
that exhibited estrus, of which 78 were dairy cows. They trained single-layer artificial
neural network models on this data and obtained an estrus period detection accuracy of
97% [27]. Arago et al. developed a system that aims to detect cows’ estrus by tracking
the mounting behavior displayed by cows during the estrus period [28]. In their study,
they trained two artificial neural network models using the Tensor Flow Object Detection
Application Programming Interface (API) with the goal of detecting the estrus event within
100 m. They carried out the detection process with the trained models by analyzing images
taken from cameras installed at specific angles. The system they developed has an accuracy
rate of 94%. In addition to these academic studies, there are also products that detect estrus
in cows. Actimoo is a commercial estrus tracking system [29]. This product detects estrus
based on physical data collected by an activity meter attached to the neck of the cows, and
its accuracy rate is defined as 80%. Another product used for estrus tracking is the estrus
band. Estrotect bands are attached to the backs of cows, and they change color during the
estrus period when another cow mounts the band-wearing cows, indicating estrus [30].

Various methods exist for detecting the estrus period in cows used in production.
These methods typically involve attaching a pedometer-like collar or wearable bracelet
device [23,27,29,31–33] to the cow or applying painting patches called estrus patches [30]
to the tail region of the cows. The main disadvantage of commercial wearable devices
used in animal husbandry, namely wristbands, collars, or paint patches, compared to
computer vision-based systems, is the necessity of allocating a device to each animal and,
therefore, pricing per animal. In addition, painting patches, such as Estrotect [30], are
disposable, although they are cheap and practical. Actimoo [29] and SCR [33], which
are commercial systems, have a limited usage time (as long as battery life) and require
infrastructure because they communicate wirelessly with the intermediary device; that is,
they are environment dependent.

Systems supported by deep learning, which could be considered more recent, are
still in the research stage, and a commercially matured system has not been encountered.
Existing visual systems serve a single purpose, such as estrus detection. This paper proposes
the development of a system that sequentially performs both estrus detection and cow
identification processes for use in augmented reality applications in dairy cows. The system
we propose is not individual based but refers to a volume such as a room, cow pen, or open
area, and its mobility is higher, especially for use in devices such as smartphones or drones.
The method proposed in this study aims to contribute to the following aspects:

• Introduce a deep learning-based method to visually identify animals on a livestock
farm;

• Introduce a deep learning-based method for detecting standing mounted and mount-
ing behaviors, the primary and secondary signs of estrus behavior. This brings new
technology to the dynamic structure of modern animal husbandry;

• Present a high-accuracy system by integrating estrus detection and cow identification
processes through the proposed method.

2. Materials and Methods

The core idea of the method is shown in Figure 2. The general structure of the method
involves the sequential utilization of two deep learning-based detectors for estrus and cow
identification, as illustrated in Figure 2. In the general method, the mounting detection
process is initially performed using a CNN or VGG, followed by determining the region of
interest (ROI) where the mounting action occurs using YOLO. After identifying the ROI, it
is cropped with a padding of 20 pixels around it. Cow ID detection is then carried out on
this cropped ROI using YOLO. Subsequently, the cow IDs are registered in the system. The
details of these procedures are presented in the subsequent subsections.
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The estrus detector operates by transferring a model trained on images containing
positive and negative cases of estrus periods, collected from the internet to real videos. This
method was chosen due to the labor-intensive and time-consuming nature of monitoring
and photographing the estrus period. For cow identification, a dataset of images was
gathered from various angles of cows present in the livestock facility and manually labeled.
The obtained dataset was utilized for this purpose. The two models obtained were tested on
images captured from drones, smartphones, and pan-tilt cameras. Initially, estrus detection
is performed, followed by the identification of cows during the estrus period, enabling
labeling within the facility.

2.1. Dataset and Transfer Learning for Mounting Detection

After the first calving, a dairy cow can be counted in the productive stage [34]. The
lifecycle in this stage is a sequence of lactation (up to 305 days), dry period (about 60 days),
and calving (about 280 days) [34–36]. Even if samples are collected in an area with many an-
imals due to the fact that obtaining comprehensive data from different animals would take
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a year and necessitate continuous observation by an individual who tags these moments
through video, it has been decided that the process of data collection is both laborious and
time consuming. To alleviate the burden on human resources, expedite the process, and
expand the dataset, we opted to source images featuring both mounting and non-mounting
behavior from the internet. Our research is centered around a dataset comprising cows
of diverse breeds, specifically Simmental, Holstein, Jersey, and Brown Swiss (Montofon).
This dataset encompasses images of cows engaged in mounting behavior and those not
involved in such activities, all captured from various angles. The dataset was curated by
collating images from online sources, specifically from search engines where cow images
are publicly shared. Importantly, each image underwent a manual labeling process to
categorize them appropriately.

The dataset was enriched with data augmentation techniques to prevent the models
from overfitting. During the data augmentation phase, techniques such as rotating images
by a specific angle and zooming in and out were benefited [37]. The total size of the dataset
is 1638. The test data size is 492 (30%), and the training size is 1146 (70%). The distribution
is not stratified. The two-class dataset consists of a total of 1638 images, comprising
937 images of cows in estrus and 701 images of cows not in estrus. Figures 3 and 4 display
some examples belonging to the positive and negative classes within the dataset. The
images in the dataset were preprocessed and normalized prior to training. During the
preprocessing stage, images with different pixel dimensions were resized to (224,224)
pixel dimensions.
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2.2. Dataset and Cow Identification

The dataset was collected from a farm in the Aydın region, and this cow recognition
project was enhanced through the use of drone technology. All 300 dairy cows in the
full-capacity section of the farm were captured in high-quality images, which were then
analyzed using artificial intelligence techniques. The inclusion of cows from different
breeds, such as Holstein and Simmental, highlights the ability of artificial intelligence and
deep learning to accurately recognize various breeds and characteristics.
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2.3. Deep Learning Architectures
2.3.1. Convolutional Neural Network (CNN)

A CNN was used only for mounting detection purposes; therefore, only the estrus
dataset consisting of images of mounting or non-mounting situations was used, and the
images were collected from the internet. Artificial neural networks are models that are
based on the functioning of the human brain. The goal of this structure is to perform the
learning process, interpret the acquired knowledge, and make decisions autonomously.
Convolutional neural networks (CNNs) are a type of artificial neural network that are
used primarily for image recognition and computer vision tasks, although they can also be
used for other types of data processing, such as natural language processing. CNNs have
revolutionized the field of computer vision and continue to be an active area of research
and development [38,39]. Computers must recognize and convert incoming images into a
computationally manageable matrix format. The first layer in a CNN is a convolutional
layer, which applies a set of filters to the input image to extract features, such as edges
and corners. The output of the convolutional layer is then passed through an activation
function to introduce non-linearity into the model. The output of the activation function
is then passed through a pooling layer, which reduces the dimensionality of the feature
maps while retaining the most important information. The final output of the network is
typically a fully connected layer that performs classification. It learns the impact of these
differences on the label during the training phase and then uses this knowledge to make
predictions for new images. In this study, a 9-layer convolutional neural network was used,
as seen in Figure 5, and the network was trained for 20 epochs with binary classification.

2.3.2. VGG-19

VGG-19 was used only for mounting detection purposes; therefore, only the estrus
dataset consisting of images of mounting or non-mounting situations was used, and the
images were collected from the internet. The VGG-19 is a CNN architecture that was
introduced by the Visual Geometry Group (VGG) at the University of Oxford [40]. It is a
deep CNN with 19 layers that was designed primarily for image classification tasks. The
VGG-19 architecture consists of a series of convolutional layers with 3 × 3 filters, followed
by max pooling layers and rectified linear unit activation functions. The convolutional
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layers are organized into five blocks, with each block containing multiple convolutional
layers and a max pooling layer. The final layers of the VGG-19 architecture consist of fully
connected layers that perform the classification task. The output of the last fully connected
layer is fed into a SoftMax activation function to produce the class probabilities [40,41].
In this study, as seen in Figure 6, we removed the fully connected layer of the pretrained
VGG-19 model and added a new connection layer based on the number of classes in
the dataset.
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2.3.3. YOLO

The YOLOv5 method was used for both mounting regions of interest detection and
cow identification. For this reason, two models were created separately for each dataset.
YOLOv5 is a convolutional neural network (CNN) architecture that was introduced in 2020
as an evolution of the popular YOLO (You Only Look Once) object detection model [42].
YOLOv5 is designed primarily for real-time object detection and recognition tasks, includ-
ing the detection of people, vehicles, and animals. Its acronym stands for ”You Only Look
Once”, referring to its ability to quickly and efficiently make object detection predictions
in a single step. YOLO divides the input image into an N × N grid, and each grid cell
determines the presence of an object within its area, considering the object’s center. The
grid cell that determines the center of the object will also find the class, height, and width
of the object and draw a bounding box around it [43]. This simplifies the architecture and
improves speed and accuracy. In our study, the dataset was labeled as positive or negative,
and the YOLOV5 model, which is the 5th version of YOLO, was trained on this dataset for
150 epochs.

2.4. Deep Learning Performance Evaluation and Model Selection

The hyperparameters of the algorithms used in the study, the optimizer used, the
preferred primary performance metric, train test dataset ratios, and loss value are shared in
Table 1. Models are focused on a binary classification problem. Models are compiled with
the “binary_crossentropy” loss function and “rmsprop” optimizer presented in Table 1.
The “accuracy” metric is used to evaluate the model’s performance in terms of accuracy. To
measure classification performance, accuracy, F1 score, precision, and recall performance
metrics, as presented in Table 2, are used. The dataset was split into 70% training data and
30% test data. In our study, we opted not to use k-fold validation for several reasons. Firstly,
k-fold validation may present challenges during deployment, as determining which fold to
use in real-world scenarios lacks a clear criterion. Additionally, our models demonstrated
high performance without the need for extensive hyperparameter tuning, making the
application of k-fold validation less crucial in our context. Moreover, the computational
cost associated with k-fold cross-validation, which requires training a separate model for
each fold, was deemed excessive given the satisfactory performance of our models. In
summary, our decision aligns with practical considerations related to deployment, a lack of
hyperparameter tuning needs, and the desire to maintain computational efficiency in the
field of computer engineering.

Table 1. The model’s hyperparameters.

Model Loss Function Optimizer Performance
Metric

Train Data
(%)

Validation
Data (%) Epoch Mini-Batch

Size
Learning

Rate

CNN Binary crossentropy Rmsprop Accuracy 70 30 20 32 0.001
VGG-19 Binary crossentropy Rmsprop Accuracy 70 30 20 32 0.001
YOLO Binary crossentropy Rmsprop Accuracy 70 30 150 16 0.001

Table 2. Classification performance metrics.

Metric Equation

Accuracy A =
Number o f True Positives + Number o f True Negatives

Number o f Samples

Precision P =
Number o f True Positives

Number o f True Positives + Number o f False Positives

Recall R =
Number o f True Positives

Number o f True Positives + Number o f False Negatives

F1 Score F1 =
2 × P × R

P + R
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3. Results and Discussion

The dataset containing images of cows’ mounting movements during the estrus
period was used to successfully detect estrus in cows. Three different deep learning models,
namely the convolutional neural network, YOLO, and VGG-19, were trained on the dataset.

3.1. Estrus Detection

Performance metric results obtained by the methods used for estrus detection are
presented in Table 3. Accordingly, the highest accuracy value was obtained with VGG-19
and is 99%. The findings obtained with each method are discussed in the subsections.

Table 3. Performance metric results of the models.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

CNN 98 97 98 97
VGG-19 99 99 98 99
YOLO 98 98 98 97

3.1.1. Mounting Detection with CNN

The CNN model, which is a classical approach to image recognition problems, has been
developed for this study. The developed CNN model consists of nine layers, and the dataset
has been divided into 70% for training and 30% for testing. The CNN training process
consists of 20 epochs, with a duration of 25.2 min. While training the CNN model, the
GPU services of Google Colab, specifically the T4 GPU, were utilized. In this process, using
32 GB of RAM proved to be sufficient. After training on the training dataset for 20 epochs,
Figure 7 shows that the model achieved an accuracy rate of 98%, as represented in Table 3.
The model’s loss value is calculated to be 0.1. Interpreting the CNN results requires an
understanding of the metrics used to measure the model’s performance, consideration
of the dataset and training parameters used, and careful analysis of the results. Figure 8
presents a confusion matrix, indicating that the CNN model correctly identified 203 out of
207 estrus cases in the test dataset. In the negative cases where the cows did not show estrus,
it accurately detected 279 out of 285 cases. Figure 9 includes an example of prediction
results from the trained model. It is observed that the second case is the false predictions,
and this error seems to stem from the model perceiving the size difference between cows
and calves as a feature. In Figure 9, it is observed that errors occur in images predicted as
false not mounting when the feet are aligned, in contact, or very close. In images predicted
as false mounting, incorrect results are noticeable in crowded situations. However, despite
all these errors, only 10 out of a total of 492 test images have been predicted as false.
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3.1.2. Mounting Detection with VGG-19

The VGG-19 model, which is a transfer learning model, has been trained on the dataset.
The dataset has been divided into 70% for training and 30% for testing. Considering the
two classes in the dataset, the fully connected layer has been adjusted accordingly, and the
model has been trained on the training dataset for 20 epochs with a duration of 28.3 min.
While training the VGG-19 model, the GPU services of Google Colab, specifically the T4
GPU, were utilized. In this process, using 32 GB of RAM proved to be sufficient. The
interpretation of the VGG model results may vary depending on the task and performance
criteria for which the model is used. The VGG model is commonly used for image classifica-
tion tasks, and accuracy is the most common performance measure for this task. Therefore,
the VGG model results are typically presented in the form of a table or graph with high
accuracy, indicating that the model is successful in the classification task with high accuracy.
The trained model achieved an accuracy rate of 99%, making it the most successful model
in our study. Furthermore, the developed model correctly identified 280 out of 283 negative
states. Figure 10 shows that the developed model’s loss value approaches zero. Figure 11
displays a confusion matrix, which demonstrates that the developed VGG-19 model suc-
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cessfully predicted 209 out of 209 estrus states in the test dataset. Figure 12 includes an
example of prediction results from the trained model. The origin of all false predictions
made by the VGG-19 model is attributed to the data augmentation techniques applied
to prevent overfitting. Due to operations, such as rotation, zooming, and others applied
within the dataset, pixel losses occurred, leading to erroneous classifications by our transfer
learning model. Similar to the CNN model, in images predicted as false negatives in
Figure 12, errors are observed in aligning the feet in close or touching images. However, in
the VGG model, there are no images predicted as false mounting, and only three out of
492 test images are falsely predicted.
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3.1.3. Mounting Region of Interest Detection with YOLOv5

The YOLOv5 deep learning model was used to detect estrus states by labeling the
937 images in the dataset that show estrus. YOLOv5 can be evaluated using a variety of
performance metrics, and these include mean average precision (mAP), accuracy, precision,
and recall. mAP is a widely used metric to examine the results of object recognition models.
The higher the map of an object recognition model, the more accurate and reliable the
model is. Accuracy measures the evaluation of samples, showing that the modeling is
correct. Based on Figure 13, the trained YOLOv5 model achieved a 98% accuracy rate in
detecting estrus conditions. The “metrics/mAP 0.5” value in this figure shows the accuracy
rate of our model. The “loss” values in the figure indicate how many errors the model
made during its training. Our model continued its training until we minimized our loss
values. The YOLOv5 training process is 150 epochs, and the duration is 32.4 min. While
training the YOLO model, the GPU services of Google Colab, specifically the T4 GPU, were
utilized. In this process, using 32 GB of RAM proved to be sufficient. Figure 14 includes an
example of prediction results from the trained model.
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3.2. Cow Identification

All 300 dairy cows in the full-capacity section of a farm in the Aydın region were cap-
tured with high-quality images. Sample images obtained for YOLOv5 used are presented in
Figure 15, and evaluation results are presented in Figure 16. The YOLOv5 training process
is 150 epochs, and the duration is 15.2 min. The cow identification accuracy of the system
is about 95%.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20 
 

 

3.2. Cow Identification 
All 300 dairy cows in the full-capacity section of a farm in the Aydın region were 

captured with high-quality images. Sample images obtained for YOLOv5 used are 
presented in Figure 15, and evaluation results are presented in Figure 16. The YOLOv5 
training process is 150 epochs, and the duration is 15.2 min. The cow identification 
accuracy of the system is about 95%. 

  
(a) (b) 

Figure 15. YOLO cow identification: (a) cow identification from a pan-tilt camera; (b) cow 
identification from a drone camera. 

 
Figure 16. YOLO cow identification evaluation. 

3.3. Cascaded System Results 
The process of cow identification is illustrated in Figure 17, where cropping is 

performed around the relevant bounding box after mounting detection, with a 20-pixel 
padding. Primary and secondary behavioral signs for estrus, such as waiting periods for 
standing to be mounted and mounting, are depicted in Figure 17a. Subsequently, the 
identified identifiers for both cows are presented in Figure 17b. Following this detection 
and animal marking process, relevant information can be sent, and the artificial 
insemination process can be initiated. Mounting couple detection accuracy is 94%. 

Figure 15. YOLO cow identification: (a) cow identification from a pan-tilt camera; (b) cow identifica-
tion from a drone camera.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20 
 

 

3.2. Cow Identification 
All 300 dairy cows in the full-capacity section of a farm in the Aydın region were 

captured with high-quality images. Sample images obtained for YOLOv5 used are 
presented in Figure 15, and evaluation results are presented in Figure 16. The YOLOv5 
training process is 150 epochs, and the duration is 15.2 min. The cow identification 
accuracy of the system is about 95%. 

  
(a) (b) 

Figure 15. YOLO cow identification: (a) cow identification from a pan-tilt camera; (b) cow 
identification from a drone camera. 

 
Figure 16. YOLO cow identification evaluation. 

3.3. Cascaded System Results 
The process of cow identification is illustrated in Figure 17, where cropping is 

performed around the relevant bounding box after mounting detection, with a 20-pixel 
padding. Primary and secondary behavioral signs for estrus, such as waiting periods for 
standing to be mounted and mounting, are depicted in Figure 17a. Subsequently, the 
identified identifiers for both cows are presented in Figure 17b. Following this detection 
and animal marking process, relevant information can be sent, and the artificial 
insemination process can be initiated. Mounting couple detection accuracy is 94%. 

Figure 16. YOLO cow identification evaluation.

3.3. Cascaded System Results

The process of cow identification is illustrated in Figure 17, where cropping is per-
formed around the relevant bounding box after mounting detection, with a 20-pixel
padding. Primary and secondary behavioral signs for estrus, such as waiting periods
for standing to be mounted and mounting, are depicted in Figure 17a. Subsequently, the
identified identifiers for both cows are presented in Figure 17b. Following this detection and
animal marking process, relevant information can be sent, and the artificial insemination
process can be initiated. Mounting couple detection accuracy is 94%.
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3.4. Comparison with Similar Studies

Table 4 illustrates the differences between our approach and other common methods.
Commercial systems in the literature are designed as wearable smart collars and paint
patches, as presented in Table 4. Determining the onset of estrus, which is considered the
most suitable time for the beginning of cows’ reproductive cycles, and artificial insemi-
nation, supports livestock farming that meets a large portion of the increasing country’s
population’s food needs. On the other hand, it will also save the farm owner from the
delays and economic losses that occur during these reproductive cycles. If the farm owner
misses or incorrectly detects the estrus period, they may face problems such as a loss in
milk production, a calf born with a delay of at least a month, and the inability to take
advantage of government support. The purpose of our study is to detect the estrus periods
and thereby help farm owners avoid economic losses and delays. Traditional methods
used to detect estrus in cows include observing physical movements. Among these studies,
Memedova and Keskin achieved 98% accuracy in detecting estrus by tracking the physical
movements of cows with a fuzzy logic model that they developed [23]. In another study,
which was prepared as a doctoral thesis by Yildiz, an artificial neural network model was
developed that used not only physical movements but also seasonal data, achieving 97%
accuracy [27]. Arago et al. aimed to detect cows in estrus that display mounting behavior,
using models trained on images of cows [28]. Although the collected dataset has not been
shared, a system that works with a 94% accuracy rate was developed with the help of the
trained model. Our study and the results of other studies conducted in the literature are
shown in Table 5.

Behaviors such as standing to be mounted and mounting are all just symptoms of the
estrus period, and as shown in Figure 1. If these symptoms are detected, only the success
rate of artificial insemination increases [21]. While livestock wearables equipped with IMU,
painting patches, and visual computing systems successfully identify mounting and/or
standing-to-be-mounted behaviors, they are commonly referred to as estrus detection
systems [28–33]. The proposed method is a visual system and is used to detect mounting
and/or standing-to-be-mounted behaviors. In this way, it is possible to increase the success
rate of artificial insemination by identifying only animals that are likely to be in estrus. It is
important to mention that false estrus warnings, resulting from social mounting interactions
in dairy cows, can also be detected by the system. This limitation has implications for the
broader impact of smart estrus detection studies presented in Table 4 as well. In addition,
the interactions creating false alerts are short in duration [21,44]. Therefore, it is possible
to reduce false alerts by separating longer-term standing-to-be-mounted situations and
creating a rule-based system for when the visual system is triggered. If it is desired to
determine the exact status of the cows rather than predicting, more comprehensive studies
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are required that include not only visual or biomechanical data but also physiological data
and veterinary examination reports.

Table 4. Comparison of the systems to detect the estrus period and cow identification.

Reference Sensor Estrus Detection Cow Identification Cost Lifetime

Actimoo [29] IMU
Pattern recognition from

IMU signals obtained from
cow collars

Smart collar matching with
the ID of the dairy cow

~EUR 120 per
cow

5 years battery
life

SCR Heatime
[33] IMU

Pattern recognition from
IMU signals obtained from

cow collars

Smart collar matching with
the ID of the dairy cow

~EUR 200 per
cow

7 years battery
life

Estrotect [30] Paint Patch that changes color
when the cow mounts

Accomplished by seeing the
painted cow by the farmer

EUR 2.5 per
usage Disposable

[28] PTZ
Camera

Faster R-CNN and
SSD cow localization

and tracking
NA NA No battery

[45] Camera
Detection of cow images

with deep learning
(YOLOv5)

NA NA No battery

[46] Multiple
cameras

Detection of ewe images
with deep learning

(YOLOv3)
NA NA No battery

[47] RFID NA Yes Under EUR 1
per cow No battery

[48] IMU and
RFID NA Yes Under EUR 20

per cow
Rechargeable

Li-Po (728 days)
Proposed
method Camera Detection of cow images

with deep learning
Classification of images

with deep learning NA No battery

Table 5. Comparison of machine learning-based methods in estrus detection and cow identification.

Reference Sensor Software Estrus Detection
Accuracy (%)

Cow Identification
Accuracy (%)

[23] IMU Fuzzy logic model 98 NA
[27] IMU Deep learning 97 NA
[29] IMU NA 80 NA
[28] Camera Deep learning 94 NA

[45] Camera
Detection of cow images

with Deep learning
(YOLOv5)

94.3 NA

[49] Camera Computer vision 90.9 NA
[50] Camera YOLOv3 82.1 NA
[51] Camera and ear tag CNN NA 84
[52] Camera YOLO and faster R-CNN NA 84.4

Proposed CNN model Camera Deep learning 98 NA
Proposed VGG-19 model Camera Deep learning 99 NA
Proposed YOLO model Camera Deep learning 98 95

4. Conclusions and Future Works

This manuscript introduces an innovative approach utilizing machine learning for the
identification of individual cows and the detection of estrus behaviors. While previous
studies have successfully detected estrus behaviors through machine vision, identifying
individual cows in estrus within a herd has proven challenging. This pursuit is deemed
valuable, and the development of an algorithm capable of providing such information
holds significant importance. In livestock production, various methods exist for detecting
the estrus period, such as attaching pedometer-like devices or applying estrus patches.
However, these commercial wearable devices pose limitations, including the need for one
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device per animal, pricing concerns, environmental dependency, and restricted lifespans.
This study proposes a deep learning-based system for both estrus detection and cow
identification, addressing the shortcomings of existing methods and aiming to contribute
to automated livestock management.

The proposed approach seamlessly integrates estrus period detection and cow identi-
fication using AR. The process commences with deep learning-based mounting detection,
followed by the identification of the mounting ROI through YOLOv5. Subsequently, the
ROI is cropped with padding, and cow ID detection is performed using YOLOv5 on the
cropped ROI. The system then records the identified cow IDs. Demonstrating exceptional
accuracy, the proposed system achieves 99% precision in detecting mounting behavior, 98%
accuracy in ROI identification for mounting, and 94% accuracy in detecting the mounting
couple. The overall success of these operations underscores the potential of the proposed
system in contributing to AR and AI applications within the realm of livestock farming.
This research holds significance for automating livestock management through advanced
augmented reality systems, showcasing efficiency in estrus period detection and cow iden-
tification by integrating CNN and VGG-16 detectors sequentially. This approach addresses
the limitations of labor-intensive and time-consuming traditional monitoring methods.

Recognizing the critical importance of accurately determining the reproductive cycles
of cows for sustainable livestock farming, this study emphasizes the economic benefits and
increased production efficiency that result from informed decision making. By combining
augmented reality and deep learning models, the research represents a scientific advance-
ment, offering a non-intrusive alternative to traditional wearable systems. The proposed
system also presents cost-effective and durable solutions for veterinary training in large
businesses, with potential applications in pasture farming, drone adaptation, and even
aspects of robotic shepherding. This study anticipates a positive impact on livestock man-
agement by providing a state-of-the-art solution that facilitates automation and enhances
productivity in the livestock sector.

In conclusion, this research proposes a cutting-edge solution to enhance livestock
management, offering a method that can detect estrus periods in an efficient way. The
image-based approach for estrus period detection contributes to the literature and is poised
to drive automation and productivity improvements in the livestock sector.
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co-advisor is F.S.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 9795 18 of 19

References
1. Araújo, S.O.; Peres, R.S.; Barata, J.; Lidon, F.; Ramalho, J.C. Characterising the Agriculture 4.0 Landscape—Emerging Trends,

Challenges and Opportunities. Agronomy 2021, 11, 667. [CrossRef]
2. Symeonaki, E.; Arvanitis, K.G.; Loukatos, D.; Piromalis, D. Enabling IoT Wireless Technologies in Sustainable Livestock Farming

Toward Agriculture 4.0. In IoT-Based Intelligent Modelling for Environmental and Ecological Engineering: IoT Next Generation EcoAgro
Systems; Krause, P., Xhafa, F., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer International
Publishing: Cham, Switzerland, 2021; pp. 213–232, ISBN 978-3-030-71172-6.

3. Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling
Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021, 17, 4322–4334. [CrossRef]

4. Hurst, W.; Mendoza, F.R.; Tekinerdogan, B. Augmented Reality in Precision Farming: Concepts and Applications. Smart Cities
2021, 4, 1454–1468. [CrossRef]

5. Caria, M.; Todde, G.; Sara, G.; Piras, M.; Pazzona, A. Performance and Usability of Smartglasses for Augmented Reality in
Precision Livestock Farming Operations. Appl. Sci. 2020, 10, 2318. [CrossRef]

6. Caria, M.; Sara, G.; Todde, G.; Polese, M.; Pazzona, A. Exploring Smart Glasses for Augmented Reality: A Valuable and Integrative
Tool in Precision Livestock Farming. Animals 2019, 9, 903. [CrossRef]

7. Zhao, Z.; Yang, W.; Chinthammit, W.; Rawnsley, R.; Neumeyer, P.; Cahoon, S. A New Approach to Utilize Augmented Reality on
Precision Livestock Farming. In Proceedings of the ICAT-EGVE, Adelaide, Australia, 22–24 November 2017; pp. 185–188.

8. Lee, S.; Lee, J.; Lee, A.; Park, N.; Lee, S.; Song, S.; Seo, A.; Lee, H.; Kim, J.-I.; Eom, K. Augmented Reality Intravenous Injection
Simulator Based 3D Medical Imaging for Veterinary Medicine. Vet. J. 2013, 196, 197–202. [CrossRef] [PubMed]

9. Little, W.B.; Dezdrobitu, C.; Conan, A.; Artemiou, E. Is Augmented Reality the New Way for Teaching and Learning Veterinary
Cardiac Anatomy? Med. Sci. Educ. 2021, 31, 723–732. [CrossRef]

10. Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to Date
Overview across Animal Productions. Sensors 2022, 22, 4319. [CrossRef]

11. Kraft, M.; Bernhardt, H.; Brunsch, R.; Büscher, W.; Colangelo, E.; Graf, H.; Marquering, J.; Tapken, H.; Toppel, K.; Westerkamp,
C.; et al. Can Livestock Farming Benefit from Industry 4.0 Technology? Evidence from Recent Study. Appl. Sci. 2022, 12, 12844.
[CrossRef]

12. Pandey, S.; Kalwa, U.; Kong, T.; Guo, B.; Gauger, P.C.; Peters, D.J.; Yoon, K.-J. Behavioral Monitoring Tool for Pig Farmers: Ear Tag
Sensors, Machine Intelligence, and Technology Adoption Roadmap. Animals 2021, 11, 2665. [CrossRef]

13. Zhao, K.; Jin, X.; Ji, J.; Wang, J.; Ma, H.; Zhu, X. Individual Identification of Holstein Dairy Cows Based on Detecting and Matching
Feature Points in Body Images. Biosyst. Eng. 2019, 181, 128–139. [CrossRef]

14. Zin, T.T.; Phyo, C.N.; Tin, P.; Hama, H.; Kobayashi, I. Image Technology Based Cow Identification System Using Deep Learning. In
Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, 14–16 March 2018; Volume
1, pp. 236–247.

15. Xiao, J.; Liu, G.; Wang, K.; Si, Y. Cow Identification in Free-Stall Barns Based on an Improved Mask R-CNN and an SVM. Comput.
Electron. Agric. 2022, 194, 106738. [CrossRef]

16. Kumar, S.; Singh, S.K.; Singh, A.K. Muzzle Point Pattern Based Techniques for Individual Cattle Identification. IET Image Process.
2017, 11, 805–814. [CrossRef]

17. Bello, R.W.; Olubummo, D.A.; Seiyaboh, Z.; Enuma, O.C.; Talib, A.Z.; Mohamed, A.S.A. Cattle Identification: The History of Nose
Prints Approach in Brief. IOP Conf. Ser. Earth Environ. Sci. 2020, 594, 012026. [CrossRef]

18. Yang, L.; Xu, X.; Zhao, J.; Song, H. Fusion of RetinaFace and Improved FaceNet for Individual Cow Identification in Natural
Scenes. Inf. Process. Agric. 2023. [CrossRef]

19. Roelofs, J.; López-Gatius, F.; Hunter, R.H.F.; van Eerdenburg, F.J.C.M.; Hanzen, C. When Is a Cow in Estrus? Clinical and Practical
Aspects. Theriogenology 2010, 74, 327–344. [CrossRef] [PubMed]

20. Remnant, J.G.; Green, M.J.; Huxley, J.N.; Hudson, C.D. Associations between Dairy Cow Inter-Service Interval and Probability of
Conception. Theriogenology 2018, 114, 324–329. [CrossRef] [PubMed]

21. Reith, S.; Hoy, S. Review: Behavioral Signs of Estrus and the Potential of Fully Automated Systems for Detection of Estrus in
Dairy Cattle. Animal 2018, 12, 398–407. [CrossRef]

22. Fricke, P.M.; Carvalho, P.D.; Giordano, J.O.; Valenza, A.; Lopes, G.; Amundson, M.C. Expression and Detection of Estrus in Dairy
Cows: The Role of New Technologies. Animal 2014, 8, 134–143. [CrossRef]
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