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Abstract: Microelectromechanical systems (MEMS)-based filter with microchannels enables the
removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with
porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The
main problems associated with the filtration process are optimization of membrane geometry and
fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step
anodization process. Computational strength modeling and analysis of the membrane with specified
parameters were performed using the ANSYS structural module. A fuzzy simulation was performed
for the numerical analysis of flux through the membrane. The membrane was then incorporated
with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration
process have been studied. Scanning electron microscope (SEM) micrographs of membranes have
been obtained before and after the filtration cycles. The SEM results indicate membrane fouling
after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are
suitable for the separation and purification of various fluids. However, after several filtration cycles,
the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has
been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and
hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy
for maximizing filtration efficiency and reducing energy costs for the filtration process by using a
layered membrane setup.

Keywords: anodic aluminum oxide; membrane degradation; filtration; two-step anodization

1. Introduction

Microfluidics is a branch of BioMEMS and refers to the study of fluids on a small scale.
The size of MEMS devices can be measured in millimeters and micrometers. MEMS can
be built with moving parts like microgears, micromotors, microvalves, and micropumps
that use electrical energy to perform mechanical movements. Handheld devices can be
designed with remote settings using MEMS technology. To perform absolute separation
of micron-sized particles from fluids, MEMS microfilters are crucial [1,2]. In the field of
novel ion transportation, nanoscale fluidic channels have gathered substantial attention.
Membranes with homogenous channels can effectively separate solutes of low molecular
weight from fluids [3,4]. Categorizing the membrane filtration process is performed by
using a semi-permeable membrane and driving force for the flow of fluid. The driving force
may be produced due to concentration, pressure, or electric potential. Overall, the filtration
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process is based on pressure or diffusion process. Removal of impurities from water and
wastewater treatment is essential to eliminating health threats caused by environmental
pollution. Many industries are producing harmful, toxic, mutagenic, and carcinogenic
waste. The textile dyeing industry consumes large quantities of water during its different
dyeing and finishing steps and also releases dye into natural waterways. Metal–organic
frameworks have received attention for separation and adsorption applications due to
their controllable pores and high porosity. But the use of metal–organic frameworks
for purification and separation purposes is limited [5–10]. Concerning water treatment,
assessment of membrane technology is crucial [11,12]. Due to its convenient operation,
membrane separation has been increasingly used to treat inorganic wastes. There are four
types of membrane filtration: microfiltration, ultrafiltration, nanofiltration, and reverse
osmosis [13]. Ultrafiltration membranes have pore sizes between 2 and 100 nm. This range
of pore size is suitable for removing all sorts of microbiological threats and considerable
virus removal, as the size range of the viruses lies between 30 and 300 nm [11,14]. The
selection of membrane material and preparation methods are the foundations of membrane
morphology. Novel candidates for membrane technology should have easy and precisely
controllable membrane formation with homogenous structure and stability [15].

Anodic protection has been widely used to reduce metal corrosion [16]. Anodization
of aluminum substrate results in a porous membrane. Anodic aluminum oxide (AAO) has
important characteristics like uniform pore structure, high aspect ratio, low fabrication cost,
simplicity of fabrication with controllable geometric features, non-destructiveness, and
bio-compatibility. Due to these features, it has gathered great attention for applications in
biotechnology [17]. The researchers performed numerous investigations to study the effect
of the anodization parameters on the morphology of AAO membranes [18–21]. According
to the reported literature, AAO has been used in a wide range of applications, including
drug delivery [22], catalysts [23], biosensing [24], cancer treatments [25], nanoparticle
separation [26], and filtration processes [27].

Control over the geometric features of the membrane structure plays a vital role in all
applications. The variation in parameters of the anodization process can affect the controlled
geometry of AAO. The high aspect ratio of AAO and its self-ordered structure-property
make it a suitable candidate for many nanofluidic biological/microelectromechanical
systems (BioMEMS) applications [28–31]. For in vitro analysis, nanoporous membranes are
an obvious choice for use. Biocompatibility and easy integration with medical implants
make AAO membranes suitable candidates to be used in BioMEMS [32].

MW Ashraf et al. [33] reported the controlled pore diameter fabrication of the AAO
membrane using a two-step anodization process. MW Ashraf et al. [34] investigated the
suitability of the AAO membrane for dialysis by performing structural simulations. The
results of this study suggest that the membrane can bear pressure up to 0.79 MPa. Poinern
et al. [35] used kidney epithelial cells to test the biocompatibility of AAO membranes, and
the results showed that those were an excellent substrate for growing kidney epithelial
cells. Phuong, N. et al. [36] studied AAO membranes as a working template by injecting
functionalized nanoparticles into the membrane. These embedded nanoparticles result
in smaller voids and enhanced filtration. Patel, Y. et al. [27] reported the concept of
vibro-active AAO filters in the hydromechanical system for filtration and separation. Two-
layered and functionalized AAO membrane has been reported for speedy hemodialysis,
early detection of cancerous cells by potential biomarkers, water purification, and exosome
separation [37–40]. The significant complications associated with membrane filtration are
energy consumption and fouling problems. It is essential to study the permeability and
degradation of the membrane during the filtration process [41].

In this paper, a MEMS filter is developed to separate particles from suspension. An
AAO membrane has been fabricated using the two-step anodization method. The low-cost
fabrication method results in uniform pore arrays. The micro-fabricated membrane acts
as a fluidic filter through which the sample fluid is driven for separation based on its
size and morphology. Municipal fluid with a pH range between 6.5 and 8 and a density
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close to that of blood is used for filtration experiments. The filtration efficiency and
degradation of the AAO membrane were studied using a self-designed filtration prototype.
The strength analysis of AAO was performed using the ANSYS workbench. Flux was
numerically analyzed using fuzzy simulations. The scanning electron microscope (SEM)
characterization of the membrane has been performed before and after the filtration. An
analysis of membrane permeation and flux is performed practically, and the effect of
backflushing on the clogged membrane was also studied. This paper presents an extensive
exploration of the degradation mechanism of AAO membranes utilized in filtration systems.
What makes this research novel is its innovative blend of simulation techniques and in-
depth analysis, offering a comprehensive understanding of how these membranes degrade
under the influence of filtration. By employing advanced simulation models and analytical
methodologies, the study unravels the intricate changes that occurred in the membrane
structure, porosity, and overall integrity over prolonged filtration periods. The AAO
membrane was used without any treatment for filtration. The pore size used for the
filtration process is relatively small, and the permeance of the membrane is high. Also, the
process is completely optimized before application using computational analysis, which
further reduces the filtration cost [42].

2. Materials and Methods

Two-step anodization was used for the fabrication of the AAO membrane. The
anodization was carried out using acetone, perchloric acid, ethanol, phosphoric acid,
chromic acid, aluminum substrate, and glassware. Analytically grade 99 percent pure
Sigma Aldrich aluminum was used for sampling with a thickness of 0.5 um. The diameter
of the circular membrane was 4 cm. Computational analysis of membrane strength was
performed using the ANSYS workbench. A static structural model was used to build
membrane under actual conditions. The analysis consisted of 3D geometry, meshing, and
boundary conditions to predict the strength of the filter. The numerical analysis of flux
through a membrane filter was calculated using fuzzy simulation. Various variables were
selected to see the flux variations. After applying rules, defuzzification was performed to
calculate the crisp value of the output. Mamdani’s model was used to check the accuracy of
the obtained result. The MEMS-based filter with an integrated AAO membrane was used
to perform filtration practically.

3. Fabrication

Fabrication consists of three stages. The first stage is the pre-treatment of the substrate.
In this stage, the aluminum substrate and all the glassware were sonicated in the presence of
acetone to remove all the impurities. In order to obtain a smooth surface for the anodization
process, the substrate was electropolished at 5 ◦C and 20 V using 1:4 perchloric acid
and ethanol.

The setup for anodization is shown in Figure 1. The aluminum substrate was used as
an anode in the electrolyte bath of 0.5 M oxalic acid in the presence of lead as the cathode.
The anodization set up was maintained at 0 degrees under constant stirring. In the second
stage, a two-step anodization was performed. First, mild anodization was performed
at the substrate with a starting voltage of 45 V that was gradually increased to 125 V.
After the voltage of 125 V was achieved, the step was carried out for 28 min. Then, hard
anodization was performed for 190 min at a voltage of 125 V. The substrate was etched
using 5% phosphoric acid for about 30 min between the two steps.
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membrane filtration. The micropump in membrane filtration is responsible for manipu-
lating and controlling the delivery of miniature fluids. The pump has been connected toa 
frequency controller to rectify the fluid flow. The AAO membrane acts as a barrier that 
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Figure 1. Schematic of the anodization process for the fabrication of the AAO membrane.

After the anodization, the anodized membrane was post-treated. In this stage, the
membrane was etched in the presence of acid. Once the anodization procedure was
completed, the barrier layer was removed using a negative polarity voltage in 0.4 M
potassium chloride.

The membrane fabrication process was optimized. The porous membrane can be
regenerated using the mentioned anodization conditions.

4. Experimental Design for Filtration

The membrane filtration setup comprises components like a micropump, a frequency
controller, a porous AAO membrane, and fluid samples. This experimental setup was used
with a single AAO filter by Saher [42] and Faheem et al. [43] used the same experimental
setup with two stages of an AAO filter in the filtration process. This experimental setup
was developed by Saher Mansoor and Faheem Qasim collectively. In both studies, the
fluid samples were taken from the same area, Ichhra, Lahore, Pakistan, that contained the
same kinds of contamination. A micropump plays a vital role in membrane filtration. The
micropump in membrane filtration is responsible for manipulating and controlling the
delivery of miniature fluids. The pump has been connected toa frequency controller to
rectify the fluid flow. The AAO membrane acts as a barrier that restricts the transport of
unwanted material in a selective manner. Other components are pipes for fluid flow from
the inlet towards the outlet and a power supply for providing the necessary mechanical
energy for membrane actuation. The designed setup for filtration, along with its schematic,
is shown in Figure 2.
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For practical filtration using the AAO membrane, a certain volume of water was taken
into the feed beaker, where the inlet pipe was immersed. The apparatus then operates
at constant pressure, and the solution permeates through the AAO membrane, leaving
behind the waste materials. The permeated material is then collected from the outlet in the
permeate beaker.

5. Results and Discussion
5.1. Computational Analysis

During the filtration process, the fluid exerts a certain amount of force on the filtration
membrane, so strength analysis of the membrane plays an important role. The strength
of the porous membrane is different from the strength of the nonporous membrane. The
ANSYS static structural module can be used for strength prediction of the fabricated
membrane with specified parameters. To drag the fluid across the membrane during the
filtration process, the pressure gradient ranges from 50 to 350 kPa. The membrane must be
strong enough to bear pressure up to this range to function properly for application.

A porous membrane has been designed on the workbench using the parameters of the
fabricated membrane. The membrane was then meshed, and boundary conditions were
applied. The fixed support for the membrane was set, and the driving force of 350 kPa was
applied at the top of the membrane. The fluid flow through the filter produced the stress
in the filter that caused strain in the mechanical structure. Figure 3 shows the directions
of the axes X, Y, and Z of the membrane and the uniform stress distribution. The Z-axis
denotes the thickness. Figure 4 shows the strain distribution on the filter membrane. It
has been observed that deflection occurs at the center of the membrane along the negative
Z-direction. Figure 5 represents the uniform vector field for membrane deformation, and
Figure 6a represents the total directional deformation of the membrane along all three
dimensions. Figure 6b,c represent the directional deformation in the X and Y directions.
The magnitude of X and Y directional deformation is different due to the variation in the
pore distribution on either side. Figure 6d shows the Z-axes deformation. The stress and
strain do not exceed the yield strength of the porous membrane, and the results indicate
that the membrane filter can bear pressure up to 300 kPa.
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5.2. Numerical Analysis

Numerical analysis for membrane flux was performed using fuzzy simulations. Fuzzy
analysis provides support for predicting output using theoretical data before practical
application. Fuzzification was performed in a fuzzy simulation using three inputs against
one output. For simulation, pressure, frequency, and time have been taken in bar, hertz,
and minutes, respectively, with corresponding output flux in L/m2.h. The fuzzy logic
controller (FLC) interface is shown in Figure 7. For simulation, the range of all inputs was
defined, and three membership functions (Mf) were assigned to each input. The range of
all defined membership functions is given in Table 1. The triangular Mf type was used due
to its simple implementation and fast computation. A total of 27 rules have been defined.
The simulation provides three-dimensional graphs between inputs and output, as shown
in Figures 8–10. From the rule viewer graph shown in Figure 11, crisp values of all the
inputs are noted to calculate and verify results using Mamdani’s model.
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Table 1. Range of membership functions with their corresponding inputs and outputs.

No. Pressure
(bar)

Frequency
(Hz)

Time
(min)

Flux
(L/m2.h)

Mf1 Low 0.5~1.5 Low 5~120 Low 10~30 Low 10~18
Mf2 Medium 0.75~2.75 Medium 35~270 Medium 15~55 Medium 12~28
Mf3 High 2~3 High 185~300 High 40~60 High 22~30
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For calculations of flux, crisp values from the rule viewer graph are used in Mamdani’s
model. The calculated Mfs for input 1 (pressure) are calculated as k1 = 0.67 and k2 = 0.33.
Similarly, Mfs for input 2 (frequency) are k3 = 0.53 and k4 = 0.47. For input 3 (time), the
Mfs are calculated as k5 = 0.17 and k6 = 0.83.

The results are tabulated by selecting 8rules out of 27 rules for Mf k1, k2, k3, k4, k5,
and k6 values. The calculations are given in Table 2, where the “ˆ” sign represents the
comparison between Mf and the minimum value.

Table 2. Calculations of flux.

Rule no. Pressure
(bar)

Frequency
(Hz)

Time
(min)

Flux
(L/m2.h)

Comparison
between

Membership
Function Value

Min. Value
(Mi)

Singleton
Value for Flux

(Si)
Mi × Si

R1 Low Low Low Medium k1ˆk3ˆk5 0.17 0.2 0.034

R2 Low Low Medium Medium k1ˆk3ˆk6 0.53 0.2 0.106

R3 Low Low High Low k1ˆk4ˆk5 0.17 0.1 0.017

R4 Medium Medium Medium Medium k1ˆk4ˆk6 0.47 0.2 0.094

R5 Medium Medium High Medium k2ˆk3ˆk5 0.17 0.2 0.034

R6 Medium High High Medium k2ˆk3ˆk6 0.33 0.2 0.066

R7 High Medium High Medium k2ˆk4ˆk5 0.17 0.2 0.034

R8 High High High High k2ˆk4ˆk6 0.33 0.3 0.099

Σ Mi = 2.34, Σ (Mi × Si) = 0.484. Expression of Mamdani’s model = [Σ (Mi × Si)/ΣMi] × 100. The calculated
value of flux = 20.7 L/m2.h. The simulated MATLAB value of flux = 20 L/m2.h. The difference between calculated
and simulated values = 0.7.

Figure 10 shows that at a pressure of 1 bar, a frequency of 140 Hz, and a time of
50 min, the flux value is 20 L/m2.h. The calculated value of flux, that is, 20.7 L/m2.h, is in
agreement with the simulated value.
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5.3. Membrane Morphology

The SEM is used for the characterization of the fabricated AAO membrane. The
SEM micrographs are shown in Figure 12. Figure 12a shows the fabricated membrane.
In contrast, Figure 12b–d represents the membrane after 2, 4, and 6 cycles of filtration,
respectively. SEM reveals that the fabricated membrane has an average pore size of 80 nm.
After filtration, the clogging of the pores can be seen clearly. But it was observed that the
membrane was mechanically stable.
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5.4. Permeation Analysis

In the membrane filtration process, unwanted materials can be removed from water
by adsorption or repulsion mechanisms. In fouling and flux analysis, adsorbed solutes
on the membrane surface and desorbed fluid through the membrane are important. Pure
water flux “Φ” is calculated as the total volume of permeated water “V” divided by the
product of effective membrane area “A” and time of operation “t”, as given in the following
equation:

ϕ = V/At (1)

The permeability of a porous membrane depends on pore size, the properties of the
fluid, and the driving force. The permeation of a porous AAO membrane is calculated by
Darcy’s law given in Equation (2):

µ = QηL/A∆P (2)

where Q is the flow rate, η is the viscosity of the fluid, L is the length, A is the effective area,
and ∆P is the pressure change.

The geometric features of the fabricated membrane and filtration parameters are given
in Table 3.
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Table 3. Features of the AAO membrane and filtration parameters.

Features of AAO Membrane Filtration Parameters

Pore diameter 80 nm Pressure/driving force 1–3 bar

Interpore distance 105 nm Viscosity 0.89 mPa.s

Porosity 52% Density 940 kg/m3

Thickness 100 µm Initial permeance 63 L/m2.bar.h

5.5. Membrane Degradation Analysis

In membrane degradation analysis, various mechanisms can occur during filtration.
The membrane can be clogged intermediately due to filter condition. The chemical dissolu-
tion of membrane material can also occur. The chemically dissolute membrane material is
then deposited into the pores, which results in a clogged pore. In this study, the pH of the
solution was not high enough, so membrane fouling mostly occurred due to the deposition
of unwanted materials on the membrane during filtration. After six cycles, the clogging
was very high; this may be due to the re-deposition of dissolute water-soluble complexes.

The liquid flux of the AAO membrane linearly depends on the pressure, which shows
agreement with Darcy’s law. Figures 13 and 14 represent the dependence of fluid flux on
pressure and frequency, respectively. The clogging of membrane pores resulted in a rapid
flux decrease. In the first cycle of fluid flow, the clogging did not significantly affect the
flux rate, but after six cycles, the clogging of pores increased and the flux rate decreased
rapidly. The dependence of the specified permeate volume on permeance is shown in
Figure 15. In biological terms, the stable membrane refers to the membrane that does not
change characteristic properties during application under certain constraints. The stability
of the fabricated membrane was first checked with an ANSYS simulation. During the
experimental filtration, the membrane did not rupture and was also stable to buckling. It
indicated that the membrane was durable under the defined conditions.
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Through fuzzy simulation and practical results, it was clear that the frequency slightly
affected fluid flux, whereas pressure strongly affected the flux rate. The fluid flow during
filtration was in agreement with Poiseuille’s equation. After six cycles, the membrane
pores were highly clogged and affected the membrane’s permeance. The membrane, after
filtration, was then backflushed with DI water and sonicated to remove impurities. The
backflushed membrane after two cycles of filtration showed a permeance value close to
the permeance of the initially fabricated membrane. It showed that the effect of water-
soluble complexes was not significant. After multiple filtration cycles, the membrane
degrades chemically due to water-soluble complexes, a thick layer of deposited foulant
on the surface, and wholly occluded pores with foulants. When the solute particles are
smaller than the pore diameter, the membrane pores are clogged from inside. The particles
larger than the pore diameter are deposited on the surface of the membrane. The internal
and surface-deposited particles led to a reduction in pore size that resisted fluid flow.
Figure 12d shows that the uniform pore size of the fabricated membrane is significantly
reduced, and the pores are clogged due to deposited foulant. After multiple cycles, the
membrane requires chemical cleaning to restore flux and permeation. However, it was
observed that, after two cycles, the backflushing effect was significant. Thus, the fabricated
membrane did not initially degrade due to chemicals and showed better permeation results.
This membrane and the designed prototype are suitable for separation and filtration
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applications. The advantages of fabricated membranes include a low-cost fabrication
process, easy maintenance, and a small-sized filtration prototype. Due to the small size
of the membrane pores, a wide range of contaminants can be removed from the solvent,
including viruses. The disadvantage is that the AAO membrane is brittle and can break
if it is not handled with care. The fouling of the membrane also occurs after the filtration
process. However, certain procedures, like backflushing and chemical treatments, may be
used to reduce the fouling effect. This setup can be used as BioMEMS for hemofiltration
with a few modifications. The MEMS filter can also be used in MEMS-based handheld
devices for hemofiltration and artificial kidneys.

6. Conclusions

A nanoporous membrane with a pore size of around 80 nm was fabricated successfully
and applied for the filtration of municipal water. The fabricated AAO membrane, with its
high porosity and uniform pore size of ~80 nm, enables successive removal of unwanted
materials in the BioMEMS-based filtration prototype. The filter membrane’s strength is
crucial in the filtration process. Computational analysis was performed using a static
structural workbench to study membrane strength, as prolonged and continuous fluid flow
might reduce the filter strength. The analysis shows that the filter membrane can bear a
pressure of 300 kPa. Before the practical application of the membrane incorporated into the
filtration setup, flux through the membrane was calculated using fuzzy simulation. Fouling
of the membrane occurs due to the increased thickness of the deposited material on the
membrane, and with the passage of time, the pore size is reduced. After multiple cycles,
the pores become fully clogged. The permeance of the membrane is high as compared to
earlier reports. After two cycles, the pores are not chemically affected due to water-soluble
complexes, so the membrane can be reused after backflushing. After multiple filtration
cycles, the effect of water-soluble complexes is significant, and only backflushing cannot re-
tain the filtration capability of the membrane. The numerically analyzed results using fuzzy
simulation were in agreement with the practical results. This membrane, with its designed
prototype, can be effectively used for filtration and separation applications in biotechnol-
ogy. The model can also be applied as a BioMEMS for plasma filtration and separation of
various nanosized, unwanted materials from fluids. MEMS is enabling the technology and
application of porous membranes in blood and water filtration. The MEMS-based filtration
setup can be applied as a mini-dialyzer or hemofilter. If more than one membrane filter
is incorporated into the setup with varied pore sizes, this filtration setup can also obtain
maximum membrane efficiency for filtration with reduced energy consumption.
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