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Abstract: Human–robot interaction is of the utmost importance as it enables seamless collaboration
and communication between humans and robots, leading to enhanced productivity and efficiency. It
involves gathering data from humans, transmitting the data to a robot for execution, and providing
feedback to the human. To perform complex tasks, such as robotic grasping and manipulation, which
require both human intelligence and robotic capabilities, effective interaction modes are required. To
address this issue, we use a wearable glove to collect relevant data from a human demonstrator for
improved human–robot interaction. Accelerometer, pressure, and flexi sensors were embedded in
the wearable glove to measure motion and force information for handling objects of different sizes,
materials, and conditions. A machine learning algorithm is proposed to recognize grasp orientation
and position, based on the multi-sensor fusion method.

Keywords: robotic grasping; human–robot interaction; inertia; pressure; flexi sensors; wearable
devices; learning from demonstration

1. Introduction

Industrial robots have been used in a variety of applications, ranging from manu-
facturing to healthcare settings. These highly capable machines are designed to perform
repetitive tasks with precision and efficiency, enhancing productivity and reducing human
labor in industries. While traditionally programmed for specific tasks, the evolving needs
of modern industries have led to the demand for collaborative robots (cobots) that can work
alongside humans, thus emphasizing the importance of human–robot interaction (HRI) [1].
Collaborative robots are designed to safely and effectively collaborate with human opera-
tors, enhancing productivity and flexibility [2]. HRI applications have gained significant
attention across various domains. In manufacturing and industrial settings, robots collab-
orate with humans, assisting in tasks, such as assembly, material handling, and quality
control, improving productivity and worker safety [3]. Additionally, robots are employed
in healthcare centers, for patient care, rehabilitation, and surgical assistance, enhancing
medical procedures and reducing the physical strain on healthcare professionals [4]. In the
service industry, robots function as receptionists, guides, or companions, delivering person-
alized assistance and improving customer experiences [5]. HRI also finds applications in
education, entertainment, and social interactions, where robots serve as tutors, performers,
or companions, fostering engagement and enriching human experiences [6].

Learning from demonstration (LfD) is a special case of HRI, which enables robots to
learn new skills and behaviors through human guidance, enhancing the capabilities of in-
dustrial robots, enabling them to interact with humans and optimizing their performance [7].
The rapid development of sensor technologies and integration of artificial intelligence and
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machine learning techniques have opened up new possibilities in LfD [8]. Demonstra-
tion techniques can be divided into the following main groups [9]: kinesthetic teaching,
teleoperation demonstration, learning from observations, and sensor-based methods.

The kinesthetic teaching method involves physical guidance, where a human physi-
cally moves the robot’s limbs or manipulates its body to demonstrate the desired behavior.
The robot learns by recording and reproducing the demonstrated movements. Since the
human teacher directly guides the robot, the kinematic boundaries of the robot, including
joint limits and workspace, are considered during the demonstration. In other words, the
real-time feedback provided by the human teacher during kinesthetic teaching allows for
immediate corrections and refinements to the robot’s movements, facilitating faster learn-
ing and performance improvements. However, kinesthetic teaching requires a significant
dependency on human guidance, which makes it time-consuming and labor-intensive. The
effect of the human teacher’s proficiency on their demonstration data and kinesthetic teach-
ing was investigated in [10]. Scaling up kinesthetic teaching to complex or multi-step tasks
can also become challenging, as the complexity increases, and it becomes more difficult for
a novice human teacher to provide precise physical guidance.

In teleoperation demonstrations, robots are controlled remotely by the human operator
via a control interface, such as a joystick. The operator’s inputs are transmitted to the
robot in real-time, enabling the robot to mimic the operator’s movements and actions.
Unlike kinesthetic teaching, in which the human teacher moves individual segments by
hand, teleoperation demonstration requires an input device for robot movement. The
impact of the input device on the performance of teleoperation was studied in [11]. On
the negative side, teleoperation may not be suitable for tasks that require high levels of
autonomy or decision making, as the robot relies heavily on the operator’s guidance. It is
shown that teleoperation is slower and more challenging in comparison with kinesthetic
teaching [11]. An overview of teleoperation techniques with a focus on skill learning and
their application to complex manipulation tasks is presented in [12]. Key technologies, such
as manipulation skill learning, multimodal interfacing for teleoperation, and telerobotic
control, are discussed.

Unlike other learning methods that rely on explicit demonstrations or interactions,
learning from observations leverages existing data to extract patterns, make inferences,
and acquire knowledge. In this approach, the robot typically receives a set of observations
in the form of images or videos. Then, machine learning algorithms are employed to
analyze the data and extract meaningful patterns or relationships. In [8], an LfD system
based on computer vision was developed to observe human actions and deep learning to
perceive the demonstrator’s actions and manipulated objects. Deep neural networks were
utilized for object detection, object classification, pose estimation, and action recognition.
The proposed vision-based LfD method was tested on an industrial robot, Fanuc LR Mate
200ic, to pick and place objects with different shapes. The experimental results showed 95%
accuracy. The demonstrator’s intention was recognized by analyzing 3D human skeletons
captured by RGB-D videos [13]. It was shown that modeling the conditional probability
of interaction between humans and robots in different environments can lead to faster
and more accurate HRI. However, the presence of occlusion poses several problems for
vision-based HRI systems. It can lead to incomplete or ambiguous visual information,
making it challenging to accurately track and recognize objects or individuals.

Although the above demonstration techniques have greatly facilitated the interaction
between humans and robots, they cannot completely meet the demands of HRI in dynamic
and complex environments. Recently, wearable sensing technology has been applied in HRI.
Wearable sensing technology is an example of sensor-based methods, which rely on various
kinds of sensors to perceive users’ status [14]. Wearable devices are usually equipped
with inertial, bending, electromyography (EMG), and tactile sensors to capture position,
orientation, motion, and pressure. A data glove is a type of wearable device commonly
utilized in HRI to capture and transmit real-time action postures of the human hand to the
robot. The most employed approach in detecting finger bending involves the integration of
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flex sensors that are attached to the finger joint positions on the hand [15]. A wearable glove
system based on 12 nine-axis inertial and magnetic unit (IMMU) sensors was proposed
for hand function assessment [16]. The sensory system captured the acceleration, angular
velocity, and geomagnetic orientation of human hand movements. In [17], a wearable data
glove was designed to sense human handover intention information based on fuzzy rules.
The glove contains six six-axis IMUs, one located on the back of the hand and the rest on
the second section of each finger.

This paper proposes an experimental HRI system to grab different objects with a
robotic hand. Human demonstrators grasp objects with a wearable glove equipped with an
accelerometer, flex sensor, and pressure sensor. The data glove provides useful information
to train machine learning algorithms to mimic human grasping actions. In addition, an HRI
module is evaluated by a universal robot. To evaluate the effectiveness of this sensor-based
HRI system, different objects with different shapes were grasped by the robotic hand.

2. Methodology

In this section, we will provide a detailed description of the proposed data glove,
encompassing its hardware and software components, as well as the sensors utilized.
Additionally, we will delve into the calibration process of the sensors, the coordinate
systems employed, and the placement of the sensors on the glove.

2.1. System Hardware and Software

The proposed HRI system consists of MEMS sensors, a microprocessor, a host com-
puter, and a robotic hand. Figure 1 illustrates the communication flow between the hard-
ware. The ADXL335 MEMS (microelectromechanical system) inertial sensor has been
selected as the sensing module for capturing finger motion information. It is a compact,
slim, low-power accelerometer that provides a fully integrated 3-axis accelerometer with
voltage output that is conditioned for signal processing. It features ±3 g tri-axis accelerom-
eter readings. The second sensor is the flex sensor that is employed to detect the bending of
the first finger segment. We also used SPX-14687 sensor, which is a pressure sensor working
based on the principle of proximity. Table 1 shows the specifications of each sensor. The
raw sensor data of multiple ADXL335, flex, and SPX-14687 are sampled at 100 Hz with
I2C interface by using low-power processor RP2040. The incorporation of flexible GPIO
(General Purpose Input/Output) in our system enables the connection of various digital in-
terfaces, including SPI (Serial Peripheral Interface) Master/slave, TWI (Two-Wire Interface)
Master, and UART (Universal Asynchronous Receiver–Transmitter). These GPIOs provide
the flexibility to connect and communicate with external devices or modules that utilize
these digital interfaces. The host computer receives the data transmitted by the processor
through the serial port and subsequently performs the necessary calculations. The robot
hand receives action commands to execute the specific applications.

Figure 2a illustrates a system schematic of the data glove, depicting the arrangement
of sensors and the communication network. In Figure 2b, the prototype of the data glove is
presented, showcasing various versions and the interface with a robotic hand. In the initial
version of the data glove, flex sensors were employed to measure finger bending. To capture
the bending values of the finger segments, a rigid printed circuit board (PCB) was designed.
In the second version, a significant improvement was made by developing a compact and
flexible PCB. This flexible PCB design allowed for a more ergonomic and comfortable fit
on the hand, while still effectively recording the bending data of the fingers. In the third
version of the data glove, additional sensors were incorporated to further enhance the
accuracy and precision of data capture, particularly during grasping actions. In addition to
the flex sensors, an accelerometer and pressure sensors were integrated into the glove. The
accelerometer measured the hand’s orientation and movement in three-dimensional space,
providing additional information about hand motion. The pressure sensors detected the
pressure or force applied by the fingers during grasping actions, enabling more detailed
and comprehensive data capture.
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Table 1. The specifications of sensors.

Units ADXL335 Flex Seonsor SPX-14687

Dimensions 3 axis 1 axis 1 axis
Power supply 1.8–3.6 V 1.8–3.6 V 2.5–3.6 V
Operating
temperature −40–+85 ◦C −35–+80 ◦C −40–+85 ◦C

Dynamic range ±3 g ----------- -----------
Cross-axis sensitivity ±1% ----------- -----------
Accuracy ±1% ±8% ±10%
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2.2. Coordinate System

In our system design, there are three coordinate systems that interact through mutual
transformations: the world frame (w-frame), the hand frame (h-frame), and the sensor
frame (s-frame), as depicted in Figure 3. The definitions of these three frames are as follows.

• w-frame is defined with the Earth as the reference for describing human posture. In
this study, we adopt the local Earth frame as the w-frame, where the X-axis aligns
with the north direction, the Y-axis aligns with the east direction, and the Z-axis is
perpendicular to the ground plane, pointing towards the center of the Earth.

• s-frame represents the coordinate system defined by the manufacturer during the
sensor’s design. In our study, s-frame is determined by the ADXL335 inertial sensor.
The specific definitions of these coordinate systems are illustrated in Figure 3.

• h-frame is primarily employed to characterize the spatial posture of the hand and
individual finger segments. In this paper, we consider the palm as the root node
and establish five kinematic chains extending to each finger based on the hand’s
skeletal structure (Figure 3). The segments are connected through the joint points, and
each joint is associated with its respective frame to represent the spatial posture of
the segment.
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2.3. Sensor Placement

The placement of sensors plays a crucial role in the development of the data glove.
Figure 4a depicts the structure of the hand joints. The joints in the human hand’s index
finger, middle finger, ring finger, and little finger can be classified into three main categories:
distal interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpopha-
langeal joint (MP). However, the thumb differs in having only two joints: interphalangeal
joint (IP) and metacarpophalangeal joint (MP). In the work by Fei et al. [16], they positioned
12 IMU sensors on the hand phalanges, while an additional IMU sensor was placed on
the back of the hand to estimate joint angles and hand gestures. In this research paper, we
find the optimum position of sensors by conducting grasping experiment using objects
with different shapes and sizes, as shown in Figure 4b–d. Based on the data obtained from
these experiments, we proposed placing accelerometer sensors on the second segment
of fingers, specifically between the PIP joint and DIP joint. This segment is primarily
responsible for strong grasping actions. Therefore, we use 5 accelerometer sensors and flex
sensors for capturing grasping actions, reducing the number of sensors compared to the
previous work [16]. The flex, accelerometer, and pressure sensor placement for single finger
is depicted in Figure 5.
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2.4. Sensor Calibration

The accelerometer may encounter several errors, including zero deviation error, scale
factor error, and non-orthogonal error. These errors contribute to the overall accelerometer
error model, which can be represented as shown in reference [17].ax_c

ay_c
az_c

 =

S11 S12 S13
S12 S22 S23
S13 S23 S33

×
axraw − bx

ayraw − by
azraw − bz

 (1)

In Equation (1), axraw , ayraw , azraw show the raw data obtained from the accelerometer
and ax_c, ay_c, az_c represent the calibrated acceleration data. The terms bx, by, bz corre-
spond to the bias correction values, while Sij(i = 1, 2, 3; j = 1, 2, 3) represents the scale
factor and nonorthogonality correction factor values. The calibration error, denoted as
e(S11, . . . . . . . . . .S33, bx, . . . . . . . . . . bz), is defined as the discrepancy between the squared
sum of the calibrated acceleration and the squared gravitational acceleration:

e(S11, . . . . . . . . . .S33, bx, . . . . . . . . . . bz) = a2
x_c + a2

y_c + a2
z_c − g2 (2)

Gauss–Newton’s method is applied to estimate the unknown calibration parameters
e(S11, . . . . . . . . . .S33, bx, . . . . . . . . . . bz). The iteration of calibration error can be represented
by the following equation:

ek+1 = ek + γkdk (3)
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where γk is the damping control factor, which is used to control the convergence speed
of the iteration algorithm. A larger γk value means a faster convergence speed but lower
accuracy. dk is defined as the iterative direction:

dk =
(

JT J−1
)(

JT(−e)
)

(4)

where matrix J is defined as the Jacobian matrix of the calibration error:

J(e) =
δe
δx

=


δe

δs11
. . . δe

δbz
...

. . .
...

δe
δs11

. . . δe
δbz

 (5)

When the iteration time reaches its maximum or the convergence condition is satisfied,
the unknown calibration parameters can be estimated. With ζ defined as the convergence
threshold, the convergences condition can be represented as follows:

|e(S11, . . . . . . . . . .S33, bx, . . . . . . . . . . bz)| < ζ (6)

The Arduino code is utilized to capture the raw data of the accelerometer by moving
the ADXL335 sensor along the X-Y-Z directions. Subsequently, a Python code is developed
to estimate the bias correction values, as well as the scale factor and nonorthogonality
correction factor values. Figure 6 illustrates the comparisons of normalized acceleration
data before and after calibration. As can be seen, the accuracy of the local gravitational
acceleration is enhanced after calibration.
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2.5. Experimental Results of Sensor Calibration

To verify the accuracy of the joint angles obtained from the data glove accelerometer
(ADXL335), a manual drawing protector is employed to measure the angles. The validation
process is depicted in Figure 7. It is worth noting that the angle values are represented as
negative due to the utilization of a second quadrant system.

Table 2 presents a comparison of the measurement results obtained from two sources:
the drawing protector and the data glove accelerometer. Around 20 samples were collected
for 90- and 30-degree positions. The angles recorded correspond to the index finger when
held in two distinct positions. It is important to note that only the rotation of the Y-axis of
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the accelerometer was considered for this specific experiment. The average error rate was
less than 2% and the maximum deviation was nearly 1.55 degrees.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 6. Comparisons of accelerometer data distribution before and after calibration. 

2.5. Experimental Results of Sensor Calibration 
To verify the accuracy of the joint angles obtained from the data glove accelerometer 

(ADXL335), a manual drawing protector is employed to measure the angles. The valida-
tion process is depicted in Figure 7. It is worth noting that the angle values are represented 
as negative due to the utilization of a second quadrant system. 

   

   
(a) (b) (c) 

Figure 7. Comparisons of the measured angle between data glove accelerometer and drawing pro-
tector: (a) −90-degree, (b) −30 degree, and (c) 0 degrees. 

Table 2 presents a comparison of the measurement results obtained from two sources: 
the drawing protector and the data glove accelerometer. Around 20 samples were col-
lected for 90- and 30-degree positions. The angles recorded correspond to the index finger 
when held in two distinct positions. It is important to note that only the rotation of the Y-
axis of the accelerometer was considered for this specific experiment. The average error 
rate was less than 2% and the maximum deviation was nearly 1.55 degrees.  

Figure 7. Comparisons of the measured angle between data glove accelerometer and drawing
protector: (a) −90-degree, (b) −30 degree, and (c) 0 degrees.

Table 2. Measurement results of drawing protector and data glove accelerometer.

Angle from drawing protector (deg) −90 −28.5
Average angle from data glove (deg) −88.45 −28.12
Error (degree) 1.55 0.38
Error % 1.75% 1.35%

3. Human–Robot interaction Using Data Glove

To verify the functionality of the developed data glove, real-time human–robot in-
teraction is performed. In this research paper, a robotic hand is attached to the end of a
universal robot (UR5) to replicate the motions performed by the human demonstrator. The
robotic hand employed in this study is equipped with five servo motors to control each
finger. It is connected to the end of the universal robot (UR5) with 3D printed mounting
and operated through the data glove. Figure 8 shows the components in our HRI facilitated
by the data glove.

Moreover, this paper proposes a learning-from-demonstration method to develop
a machine learning model based on the sensor data from the data glove during various
grasping operations. This approach aims to enhance the understanding and capabilities of
HRI through machine learning techniques.

This study concentrates on objects with different shapes and sizes. Figure 9 illustrates
a flow diagram of the machine learning model proposed in this paper, which incorporates
a learning-from-demonstration approach. The objects are categorized into three sets:
rectangle, cylindrical, and spherical (Figure 10). The experimentation begins by capturing
data from sensors mounted on the data glove when grasping different objects. Each sensor’s
data was recorded with a sample length of 10,000 ms. This means that for every sensor, a
continuous stream of measurements was recorded for a duration of 10 s. The ADXL335
sensor data was collected at a frequency of 7 Hz. A total of 1550 samples were collected as
raw data for each object. After recording the raw data from the sensors, we proceeded to
split them into training and testing sets using an 80:20 ratio.
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During the data analysis step, the sensor data was fused before being used as input for
the machine learning (ML) model. The TinyML model was developed using a preprocessing
feature extraction method in the development phase [18]. Following the training phase, the
ML model was tested on the test dataset. To optimize the performance of the ML model,
the number of training cycles was increased to 250, and the learning rate was set to 0.0005.
Finally, the developed model was deployed on a real robotic hand apparatus for grasping
objects of various shapes and sizes.
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3.1. Data Collection

The human demonstrator grabbed each item for 10 s. The accelerometer was utilized to
acquire hand data in this study, with a frequency of 7 Hz. The sensors were positioned on
the second segment of each finger. Figure 11 illustrates a few samples of the data acquired by
the data glove for grasping different objects. As illustrated in Figure 11a, the thumb angle
for grasping rectangle-shaped objects ranges from 18 to 21 degrees, while the angles for the
ring and pinky fingers vary between 45 and 51 degrees. Similarly, for grasping spherical-
shaped objects (Figure 11b), the thumb angle ranges from 15 to 17 degrees, and the angles
for the ring and pinky fingers vary between 55 and 58 degrees. When it comes to grasping
cylindrical-shaped objects, as shown in Figure 11c, the thumb, ring, and pinky finger angles
vary between 20–22 degrees, 55–58 degrees, and 43–45 degrees, respectively. Notably, the
index finger angle, as shown in Figure 11c, differs significantly from the angles observed
when grasping rectangular- and spherical-shaped objects, ranging from 29 to 30 degrees.
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3.2. Data Analysis and Feature Extraction

In this paper, the spectral analysis is utilized for data analysis and feature extraction.
Low-pass and high-pass filters are applied to filter out unwanted frequencies. Spectral
analysis is a great tool for analyzing repetitive motion, such as data from accelerometers in
our case. It extracts the features based on frequency and power characteristics of a signal
over time. The wavelet transformation is often preferred over Fourier transformations in
certain applications due to its advantages in examining specific frequencies and reducing
computational requirements.

We used the following wavelet transform to extract the features.

F(τ, s) =
1√
| s|

∫ +∞

−∞
f (t)ψ∗

(
t− τ

s

)
dt (7)

where τ is scaling factor and s represents time shift factor. Figure 12 depicts the feature
extraction from the accelerometer data using wavelet transform for a sample time of 5 s.
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3.3. Neural Network Classifier

A neural network classifier takes some input data and outputs a probability score
that indicates how likely it is that the input data belongs to a particular class. The neural
network is composed of multiple layers, each containing numerous interconnected neurons.
The network’s output is compared to the correct answers, and based on the results, the
weights of the connections between neurons are modified. This iterative process is repeated
until the network effectively learns to predict the correct answers for the training data [18].
Figure 13 shows the neural network architecture employed in this paper. We used a shallow
feed-forward neural network (NN) composed of three layers. The input layer consists of
140 neurons, which are determined by the dimensions in the input data. The hidden layer
is composed of layers, each having 10 neurons with hyperbolic tangent activation functions.
The output layer has three neurons with the softmax transfer function, which corresponds
to the number of classes (cylinder, rectangle, sphere). For training the NN, we use the
gradient descend method and the Adam optimizer from the tensorflow.keras.optimizers
library. A batch size of 32 is considered for the training process. Table 3 shows the neural
network classifier setting parameters. The training was performed on a personal computer
with an Intel® Core™ i7 processor with 8 GB of RAM memory.
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Table 3. Neural network classifier parameter values.

Parameters Value

Number of training cycles 300
Learning rate 0.0005
Validation set size 20

To evaluate our model performance, we used a confusion matrix, which tabulates a
summary of the correct and incorrect responses generated by the model when presented
with a dataset. The labels on the side of the matrix represent the actual labels present in
each sample, while the labels on the top represent the predicted labels produced by the
model. The confusion matrix is illustrated in Figure 14. The overall accuracy of the trained
model is 95.7%, which is acceptable for our application. The spatial distribution of input
features is shown in Figure 15. Green-color items are classified correctly, whereas items
in red color are misclassified. Hence, the wavelet-based function proposed in Section 3.2
demonstrates its effectiveness in effectively distinguishing between the different classes.
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By analyzing the results of grasping, it was observed that accelerometer sensors, which
capture the dynamic movements and orientations of the grasped objects, can effectively
differentiate between spheres and rectangles or cylinders. This is due to fact that the rolling
motion of a sphere during a grasp generates distinctive accelerometer patterns compared
to the linear movements associated with grasping rectangles or cylinders. Moreover, we
noticed that grasps on spheres resulted in more evenly distributed pressure across the
contact area, while grasps on rectangles and cylinders exhibit higher pressure around the
edges or corners due to the need for more precise finger positioning. Additionally, we
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observed that flexi sensors placed on the finger joints could capture the degree of finger
flexion during grasping. Experiments showed that grasps on rectangles require more
pronounced flexion in the fingers to achieve a stable grip, while grasps on spheres involve
more extended finger positions.
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3.4. Model Testing

The trained model undergoes testing using the test dataset to validate its performance.
Table 4 shows the prediction results for the test dataset. The overall accuracy achieved
during testing is 96.22%. To further improve the model’s accuracy, the samples that were
initially part of the test dataset can be moved back to the training dataset, and the model
can be retrained with these augmented training data.

Table 4. Test dataset validation.

Sample Name Expected Lables Time Length Accuracy % Results

cylinder.4dmd cylinder 10 s 97% 36 cylinder, 1 other
rectangle.4dmf rectangle 10 s 89% 33 cylinder, 4 others
sphere.4dme sphere 10 s 100% 37 sphere
sphere.4dmt sphere 10 s 94% 35 sphere, 2 others
cylinder.4dmdh cylinder 10 s 100% 37 cylinder

Metric parameters, such as accuracy, precision, and recall, play a crucial role in evalu-
ating the performance of classification models in machine learning. Accuracy measures
the overall correctness of the model’s predictions. Precision indicates the model’s accuracy
when it predicts the target class, while recall measures the model’s ability to correctly
identify all instances of the target class. Equations (8)–(10) represent the formulas for
calculating accuracy, precision, and recall. These metrics provide valuable insights into the
effectiveness and reliability of a classification model.

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(8)

Precision =
True Positive

True Positive + False Positive
(9)

Recall =
True Positive

True Positive + False Negative
(10)

Figure 16 illustrates the performance metrics of the proposed model, considering
different training settings by varying the number of training cycles. In this comparison,
the learning rate value was kept constant at 0.0005. It can be seen that when the number
of training samples is 150, the overall accuracy of the model reaches 84%. However, if the
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number of training samples is increased to 500, the model exhibits near-perfect accuracy,
indicating overfitting. To address this issue, we set the number of training samples to 300,
resulting in improved overall accuracy, precision, and recall values.
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3.5. Experimentation Setup

The proposed HRI system is validated using a real robot arm with an attached robotic
hand, as depicted in Figure 8b. In this study, the object class type (sphere, cylinder, rectangle)
is manually provided as input to the model, and the model predicts the corresponding
movements (angle in degrees) of the robotic hand’s fingers, which are mapped into servo
angles ranging from 0 to 90 degrees. The average bending angles of servo joints of robotic
hand fingers for grasping the objects are shown in Table 5. Figure 17 showcases the results
of the robotic grasping of objects with different shapes and sizes.

Table 5. Bending angles of servo joints.

Objects Shape Thumb Index Finger Middle Finger Ring Finger Pinky Finger
(deg) (deg) (deg) (deg) (deg)

Sphere 14.2 36.46 34.42 40.13 42.12
Rectangle 18.59 39.62 42.93 55.70 52.81
Cylinder 22.45 32.43 44.52 57.20 45.19
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The performance of the proposed data glove is compared to other state-of-the-art data
glove prototypes in Table 6. The results indicate that data gloves utilizing optical fiber
sensors and IMU sensors outperform in measuring joint angles. However, IMU sensors
generally offer a lower cost compared to optical fiber sensors. In our proposed design,
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we incorporate five IMU sensors (accelerometers) along with flex sensors to monitor the
proximal interphalangeal (PIP) joint angle for each finger. Additionally, an optional IMU
sensor is included to track wrist roll motion.

Table 6. Comparison of proposed data glove.

Publications, Year Type of Sensor Number of Sensors Joint Angle Deviation

Fei et al. [16], 2021 IMMU 12 (one hand) 1.4 deg
Cha et al. [19], 2017 Piezoelectric 19 (one hand) 5 deg
Li et al. [20], 2011 Optical encoder 14 (one hand) 1 deg

Proposed data glove IMMU + flex 5 + 5 (one hand) 1.55 deg

Although a wearable glove-based HRI offers promising possibilities, it comes with
certain limitations and challenges. Integrating multiple sensors into a wearable glove
requires accurate calibration. To this end, we calibrated all sensors to ensure accurate and
synchronized sensor measurements across different modalities (e.g., accelerometers, force
sensors, flex sensors). Also, sensor measurements can be affected by noise or occasional
sensor failures, leading to unreliable data. In this paper, we employed the sensor fusion
technique to combine information from multiple sensors, improving overall accuracy
and robustness. Moreover, proper sensor positioning is essential to capture relevant data
and enable accurate interpretation of human hand movements and grasp patterns. By
conducting several experiments, we optimized the sensor placement and orientation for
improved HRI performance.

For future work, we will incorporate a camera into the HRI system to capture images
of objects and automatically detect object classes, enhancing its ability to recognize and
manipulate objects. Additionally, we will deploy the flex and pressure sensors to adjust
position and force of gripping with an industrial gripper. As can be seen in Figure 18,
universal robots need position, speed, and force parameters, which should be set before
object grasping.
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Figure 18. Universal robot interface for grasping.

4. Conclusions

This paper presents a practical human–robot interaction system based on a wearable
glove for object grasp application. We embedded three different types of sensors to capture
grasp information from human demonstrators to imitate the posture and dynamics of the
human hand. Calibration algorithms were implemented to avoid errors caused by the
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sensors. After analyzing the collected data, the positions of the accelerometer, pressure, and
flexi sensors were determined in the wearable glove to capture grasp information of objects
with different sizes and shapes. A three-layer neural network was trained to recognize
grasp orientation and position, based on the multi-sensor fusion method. The experimental
results showed that an industrial robot can successfully grasp sphere, rectangle, and
cylinder objects with the proposed HRI based on learning from demonstration.
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