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Abstract: Accurately predicting the changes in turbine vibration trends is a key part of the operational
condition maintenance of hydropower units, which is of great significance for improving both the
operational condition and operational efficiency of hydropower plants. In this paper, we propose
a multistep prediction model for the vibration trend of a hydropower unit. This model is based on
the theoretical principles of signal processing and machine learning, incorporating variational mode
decomposition (VMD), stochastic configuration networks (SCNs), and the recursive strategy. Firstly,
in view of the severe fluctuations of the vibration signal of the unit, this paper decomposes the unit
vibration data into intrinsic mode function (IMF) components of different frequencies by VMD, which
effectively alleviates the instability of the vibration trend. Secondly, an SCN model is used to predict
different IMF components. Then, the predicted values of all the IMF components are superimposed
to form the prediction results. Finally, according to the recursive strategy, a multistep prediction
model of the HGU’s vibration trends is constructed by adding new input variables to the prediction
results. This model is applied to the prediction of vibration data from different components of a
unit, and the experimental results show that the proposed multistep prediction model can accurately
predict the vibration trend of the unit. The proposed multistep prediction model of the vibration
trends of hydropower units is of great significance in guiding power plants to adjust their control
strategies to reach optimal operating efficiency.

Keywords: hydroelectric generator unit; vibration trend prediction; variational mode decomposition;
stochastic configuration networks; recursive multistep prediction model

1. Introduction

As the proportion of renewable energy sources like wind and solar grows within
the power production system, addressing the challenges of grid integration for these
intermittent energy sources has become crucial [1,2]. Hydroelectric power, being the pioneer
in power generation technologies, serves as a linchpin for peak shifting and frequency
regulation, and it often complements these intermittent energy sources, ensuring the grid
operates smoothly and stably [3–5]. Given this backdrop, it is imperative for hydroelectric
units to possess a broad operational range to cater to the regulatory demands of the system.
Yet their expansive operational scope and intricate structure result in a heightened risk of
turbine failures, and traditional methods of planned and shutdown maintenance no longer
suffice for the safe operation of hydropower plants, making condition-based maintenance
using historical operation data the prevailing trend [6].

In recent years, a significant proportion of the research concerning the operational
state of hydraulic turbines has been centered on fault diagnosis. Utilizing data from
vibration, pressure pulsation, and other unit-specific metrics to ascertain the operating
condition of turbines has emerged as a focal area of investigation, yielding a series of
notable findings [7–10]. For example, Zheng et al. [8] proposed a method for identifying the
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flow state in the leafless zone of the draft tube based on empirical wavelet transform (EWT)
and adaptive convolutional neural networks (ACNNs), which were used to analyze and
identify the different operating states of the pump water wheel. Dao et al. [11] collected
fault signals caused by unit sediment abrasion through acoustic vibration sensors on the
turbine runner and determined the fault frequency of the signals through wavelet transform
(WT), ensemble empirical mode decomposition (EEMD), and fast Fourier transform (FFT)
methods, which is an important guide for the operation and maintenance of turbines which
have been maintained over sediments. Therefore, developing a high-performance HGU
vibration trends prediction model to accomplish accurate forecasts of HGU state trends
will help power plant decision-makers build more appropriate operation and maintenance
plans. These methods have a certain reference value in detecting and identifying abnormal
states in hydropower units, but it is worth noting that these data-driven methods essentially
belong to the category of ex post facto analysis and can only play a role in the event of
equipment failure. Meanwhile, the health state of HGUs will show a trend of gradual
deterioration due to the influence of the operating environment and equipment life, which
will lead to the above fault diagnosis methods being unable to detect early equipment
failures in time [12].

During real-world power station inspections, personnel often prioritize monitoring
fluctuations in hydraulic turbine vibration and oscillation signals. If these operational
metrics exceed specific thresholds, alarms are activated. The emphasis on vibration and
oscillation signals as key detection indices stems from two primary reasons: first, these sig-
nals are exceptionally convenient to monitor, and second, the majority of hydraulic turbine
malfunctions manifest externally as excessive vibration or oscillation [13–16]. Consequently,
accurately forecasting the trend changes in hydraulic turbine vibration and oscillation has
emerged as a novel research focus [17–22]. For instance, Bi et al. [18] proposed a fused met-
rics method based on Pearson and distance correlation to select suitable condition variables
and integrated the BLSTM network to establish a prediction model that accurately forecast
the vibration trend in hydraulic turbines. Similarly, Zhou et al. [21] amalgamated signal
processing, feature selection, and prediction modules within a multi-objective optimization
algorithm, resulting in an accurate and efficient model for predicting the vibration trends
of hydropower units.

The above data-driven methods have achieved good application results in the field
of vibration trends prediction of HGUs. However, most of these models only involve
single-step prediction and cannot predict the change of vibration trend of hydroelectric
units for a long time in the future. How to construct a multistep prediction model and
realize multistep prediction of unit vibration trend is the focus of this paper. In general,
the multistep prediction model of vibration trend is mainly constructed based on five
multistep prediction strategies: Recursive [23], Direct [24], DirRec [25], Multiple-Input–
Multiple-Output (MIMO) [26], and DIRMO [27]. Among them, the recursive strategy
has the advantages of simplicity and easy operation. Meanwhile, the strategy adopts the
method of rolling prediction to build a multistep prediction model step by step, which is in
line with the idea of HGU vibration trends prediction. For this reason, this paper constructs
a multistep model for HGU vibration trends prediction by the recursive strategy.

Essentially, HGU vibration trends prediction is a kind of time series prediction based
on HGUs’ historical data. For the time series prediction, Fu et al. [13] generalized the vi-
bration trends prediction of HGUs into two aspects: signal processing and data regression.
Among them, recursive signal processing methods such as EMD [28,29], EEMD [30,31]
and LMD are widely used. However, recursive methods like EMD have problems such as
insufficient theory, serious modal aliasing, and inability to select modal components. For
EEMD, it generates redundant IMFs during the decomposition process, which may not
have practical significance or contribute to the analysis. This can increase the complexity
of signal decomposition and add unnecessary computations. To address these problems,
Dragomiretski et al. [32] proposed variational mode decomposition (VMD). Unlike recur-
sive decomposition algorithms, such as EMD, VMD searches for variational models by
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iterative methods and decomposes the signal into IMF components of different frequency
bands. In this article, VMD is chosen as a preprocessing method for HGU signals to alleviate
the nonstationarity problem of the acquired vibration signals.

In recent years, with the continuous development of machine learning and deep
learning, AI models are gradually replacing traditional statistical models. For example,
Fu et al. [13] proposed an HGU vibration trends prediction model based on OVMD and
LSSVM, which overcame the disadvantage of the poor prediction accuracy of a single model.
Xiong et al. [19] introduced a deep learning framework into the field of HGU vibration
trends prediction, constructed a hybrid CNN-LSTM prediction model, and realized the
effective prediction of HGU vibration trends. However, all of the above models suffer from
the problem of difficult parameter settings, which seriously reduces the generalization
ability of the models. A stochastic configuration network (SCN) [33], as a kind of stochastic
parameter neural network, employs a model optimizer with low computational cost and
high efficiency in the randomization algorithm. Therefore, it has good performance in
model efficiency and accuracy. In this article, an SCN model is utilized to predict the IMF
components of the VMD, and the predicted values of all IMF components are superimposed
in the final prediction results.

For fast and accurate multistep prediction of vibration trends in hydroelectric units,
we have conducted the following studies and made the following contributions:

(1) We propose a hybrid VMD and SCN-based vibration trend prediction model for
hydroelectric units.

(2) We introduce the recursive strategy to enhance the VMD–SCN model, resulting in a
multistep prediction model for the vibration trend of hydroelectric units.

(3) We apply the proposed multistep prediction model to the trend prediction of two dif-
ferent signal types: vibration signals and swing signals. This further validates the
effectiveness and practicality of the proposed method.

The remainder of the paper is as follows: Section 2 introduces the methods and
principles of the multistep prediction model. Section 3 shows the concrete flow of the
proposed framework. Section 4 carries out case study research on a real Francis turbine.
Finally, Section 6 obtains the conclusions of the study.

2. Methods and Principles
2.1. Variational Mode Decomposition (VMD)

Aiming to solve the problems of empirical mode decomposition (EMD), such as end-
point effect, mode aliasing, and insufficient theoretical basis, Dragomiretski and Zosso [32]
proposed a new adaptive signal processing method named VMD. Different from recursive
decomposition algorithms such as EMD, VMD searches variational modes through iterative
methods and decomposes signals into IMF components of different frequency bands. VMD
has good applications in fault diagnosis [34,35], signal noise reduction [36] and parameter
identification [37]. The specific calculation method of VMD is as follows:

(1) Taking the minimum sum of the estimated bandwidths of each modal component as
the objective function, the constrained variational problem obtained is:

min
{

K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t

n
∑

k=1
uk(t) = x(t)

(1)

where K represents the number of intrinsic mode function (IMF) components, ∂t
is the first-order partial derivative of the function with respect to time, δ(t) is the
unit impulse function, ∗ is the convolution symbol, uk(t) represents the k-th IMF
component, ωk represents the center frequency of the k-th mode component, and x(t)
is the original signal.
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(2) To simplify the calculation, the quadratic penalty factor and Lagrange multiplier are
introduced to transform Equation (1) into an unconstrained problem.

L({uk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2
+∥∥∥∥x(t)−

K
∑

k=1
uk(t)

∥∥∥∥+〈λ(t), x(t)−
K
∑

k=1
uk(t)

〉 (2)

where α is the quadratic penalty factor, and λ(t) is the Lagrange multiplier.
(3) According to the alternating direction multiplier method to find the saddle point of

Equation (2), the specific process is as follows:

Set the number of mode decomposition K, initialize the frequency domain û1
k , the

center frequency ω1
k , and the Lagrange multiplier λ̂1, and then calculate the IMF uk and

center frequency ωk according to Equation (3).

ûn+1
k =

x̂(ω)− ∑
i 6=k

ûi(ω)+
λ̂(ω)

2

1+2α(ω−ωk)
2

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|dω∫ ∞
0 |ûk(ω)|dω

(3)

Calculate the Lagrange multiplier λ according to Equation (4):

λ̂n+1(ω) = λ̂n(ω) + ζ1

(
x̂(ω)−∑ ûn+1

k (ω)
)

(4)

where ζ1 is the noise tolerance.
uk, ωk and λ are iteratively updated successively until the criterion in Equation (5)

is satisfied.

∑
k

∥∥∥un+1
k − u2

k

∥∥∥2

2∥∥u2
k

∥∥2
2

< E (5)

where E is the discriminant accuracy.

2.2. Stochastic Configuration Networks (SCNs)

As a new type of randomly weighted neural network with a supervisory mechanism,
SCNs are different from conventional feedforward neural networks. SCNs are gradually
constructed according to the supervisory mechanism, which restricts the random input
weights and the specific value range of biases. This supervisory mechanism guarantees
the general approximation property of the SCN model generated by a given nonlinear
mapping. SCNs are widely used in energy consumption prediction [38,39], industrial
production [40,41] and state recognition [42]. The detailed process of the SCN model is
described as follows:

(1) Given a training data set {W, P} ∈ R(δ+d)×n, where W represents input data, P
represents output data, δ is the dimension of input data, d is the dimension of output
data, and n is the number of samples. Assuming that the SCN model has S− 1 hidden
nodes, the output ZS−1 of the SCN is:

ZS−1 =
S−1
∑

i=1
βigi(ω

T
i W + bi)

S = 2, 3, 4, · · · , Z0 = 0
(6)

where βi = [βi,1, βi,2, · · ·, βi,d]
T is the output weight vector of the i-th hidden node, ωi

and bi are the input weight vector and bias of the i-th hidden node. g(·) represents an
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activation function of the SCN model. Meanwhile, the current residual eS−1 can be
calculated according to Equation (7):

eS−1 = Z− ZS−1 = [eS−1,1, eS−1,2, · · · , eS−1,d] (7)

(2) The SCN introduces a supervisory mechanism to assign parameters to hidden nodes.
The specific supervisory mechanism forms are as follows:

gS =
[
gS
(
ωT

S w1 + bS
)
, gS
(
ωT

S w2 + bS
)
, · · · , gS

(
ωT

S wn + bS
)]T〈

eS−1,j, gS
〉2 ≥ b2

g(1− r− µS)
∥∥eS−1,j

∥∥2, j = 1, 2, · · · , d
(8)

where
〈
eS−1,j, gS

〉
is the inner product of the vector eS−1,j and gS, gS is the output of

the S-th hidden node, for ∀g ∈ Γ (Γ denotes a spanned function space), 0 ≤ ‖g‖ ≤ bg,
bg ∈ R+, r is the regularization parameter ranging from 0 to 1. µS is a sequence of
nonnegative real numbers with lim

S→∞
µS = 0 and 0 < µS ≤ 1− r, and the hidden node

optimal parameters ωs and bs are determined according to the supervisory mechanism.
(3) Use the least squares method to calculate the hidden layer output weights:

[β1, β2, · · · , βS] = argmin

∥∥∥∥∥Z−
S

∑
j=1

β jgj

∥∥∥∥∥
2

(9)

Continue to increase the hidden nodes, and repeat Equation (6) to Equation (8) until
the model residual ‖eS‖ reaches the expected error tolerance χ or the number of hidden
nodes reaches the maximum number of hidden nodes Smax, and the optimal model is finally
output. To facilitate the understanding of the SCN model, the basic structure diagram of
the SCN model is shown in Figure 1.
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2.3. Recursive Multistep Prediction Strategy

Constructing a multistep prediction model of the HGU’s vibration trends is of great
significance to maintain the safe and stable operation of HGUs. This paper uses the slid-
ing window concept to construct a recursive multistep prediction model. As shown in
Figure 2, the recursive multistep prediction model is essentially based on the recursive use



Sensors 2023, 23, 9762 6 of 19

of the single-step model, and the rolling prediction of the model is realized by continu-
ously adding the predicted values to the training model. For example, given a historical
data set [X(1), X(2), · · · · · · , X(q)]T of vibration signals with equal time step length, the
2-step prediction model uses the prediction results of the single-step prediction model
to reconstruct the training set sample, and predicts the vibration trend value of the unit
at the (q + 2)-th moment according to the single-step prediction value Y(q + 1) plus the
last (q− 1) values in the set. By analogy, the 5-step prediction model uses the prediction
results Y(q + 1),Y(q + 2),Y(q + 3), and Y(q + 4) of the 4-step prediction model plus the
last (q− 4) values in the set to predict the vibration signal value at the (q + 5)-th moment.
In this paper, q is set as 20, and a 5-step prediction model of the vibration tendencies of
HGUs is constructed by using a recursive multistep prediction strategy.
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2.4. Model Prediction Performance Evaluation Indicator

In this paper, four indexes, including root mean square error (RMSE), mean square
error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), are
introduced to evaluate the prediction performance of the model. The calculation formulas
are as follows:

RMSE =
√

1
m1

∑m1
i=1 (ŷi − yi)

2 MSE = 1
m1

∑m1
i=1 (ŷi − yi)

2

MAE = 1
m1

∑m1
i=1 |ŷi − yi| MAPE = 100%

m1
∑m1

i=1

∣∣∣ ŷi−yi
yi

∣∣∣ (10)

where m1 is the total number of sample points, ŷ is the predicted value, and y is the
true value.

3. Process of Vibration Trend Prediction Method for HGU Based on VMD and SCN

The flow chart of the vibration trends prediction for the HGU based on VMD and
the SCN model is shown in Figure 3. The steps of the method used in this paper can be
summarized as follows:

(1) Data acquisition and storage. The vibration signals from the hydraulic turbine are
detected by vibration sensors and swing sensors installed at the power station. The
online monitoring system collects, records, and stores long-term operational data of
the hydropower unit using the data acquisition system and storage server for data
collection, display, and storage.

(2) Signal decomposition. Clean and screen the unit state operation data and divide them
into training set and test set according to a certain ratio. Then the VMD algorithm
discussed in Equations (1)–(5) is utilized to decompose the samples of the test set and
the training set to obtain the IMF components of different frequencies.
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(3) Single-step vibration trend prediction. At first, the input and output data of different
IMF components of the samples of the training set are obtained using the form of
sliding window. Then, train the SCN model using all the IMF components of the
training set (see Equations (6)–(9) for the specific algorithmic process) and apply them
to the corresponding IMF components of the test set. Finally, the predicted values of
all IMF components are summarized to obtain the single-step prediction results of the
vibration trend of the hydropower unit.

(4) Multistep vibration trend prediction. In accordance with the recursive multistep
prediction strategy in Section 2.3, this paper adopts the rolling prediction method to
construct a multistep prediction model to realize the five-step forward prediction of
the vibration trend of the unit, and measures the performance of the prediction model
by the prediction performance evaluation index mentioned in Section 2.4.
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4. Single-Step Prediction Experiment of Vibration Tendency for HGU Based on VMD
and SCN

In this section, the single-step prediction research of the vibration trends for the HGU
based on VMD and the SCN model is carried out. The VMD algorithm contains two
important parameters, the number of IMF components K and the penalty factor α. In
this paper, the penalty factor α is set as 2000, and the center frequency method is used to
determine the optimal decomposition level K of VMD. Meanwhile, the scale factor λ1 of the
input weight and bias of the SCN model is set as {0.5, 1, 5, 10, 30, 50, 100, 150, 200, 250}, the
regularization parameter r is set as {0.9, 0.99, 0.9999, 0.99999, 0.999999}, the error tolerance
χ is set as 0.01, and the maximum number of hidden nodes Smax is set as 30.

4.1. Experimental Data Description

The experimental data in this paper are from the No. 1 unit of a hydropower station
in China, whose unit model is LJ267-LJ-175. In this experiment, vibration signals in the
X-direction of the turbine upper frame and swing signals in the X-direction of the turbine
guide bearing are taken as the research objects. The monitoring data of the unit from
1 August 2021 to 31 August 2021, are selected and the monitoring interval of the data is 1 h.
The specific situation of the unit is shown in Figure 4.
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Figure 4. Basic situation of the unit. (a) Appearance of HLJ267-LJ-175 hydraulic turbine; (b) location
of sensor installation.

The monitoring data of the unit are processed through data cleaning methods such
as deleting null fragments, deleting abnormal values, and interpolation, and 600 sets of
X-direction vibration data of the turbine upper frame and X-direction swing data of the
turbine guide bearing are finally obtained. The specific waveforms are shown in Figure 5.
As shown in Figure 5, the vibration signals of the turbine upper frame and the swing signals
of the turbine guide bearing show strong nonlinear variation trends, which brings certain
challenges to the accurate prediction of the unit vibration trends. Meanwhile, the data are
divided into a training set and a test set according to a ratio of 2:1.
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4.2. Prediction Results Analysis

According to Section 2.1, VMD is used to decompose the unit vibration signals into
IMF components of different frequencies. To eliminate the influence of mode aliasing on the
prediction results, the center frequency method is used to determine the optimal decompo-
sition level K. In this paper, the IMF central frequency under different decomposition levels
K is analyzed and refers to the mode aliasing determination method; that is, when the
central frequencies of three adjacent IMF components are on the same order of magnitude,
mode aliasing occurs. Taking the X-direction vibration signal of the turbine upper frame as
an example, it is found from Table 1 that when K is 8, the center frequencies of the three
adjacent IMF components are all on the order of 0.2, so the optimal decomposition level of
the vibration signal is 7. According to the same method, the optimal decomposition level
of the swing data of the turbine guide bearing in the X-direction is eight.

Table 1. Normalized center frequencies of IMF components at different decomposition levels.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

K = 3 4.78 × 10−6 0.074 0.243
K = 4 1.71 × 10−6 0.067 0.181 0.270
K = 5 6.51 × 10−7 0.032 0.078 0.162 0.268
K = 6 7.43 × 10−7 0.036 0.088 0.152 0.212 0.269
K = 7 6.06 × 10−7 0.031 0.072 0.128 0.170 0.222 0.272
K = 8 5.94 × 10−7 0.030 0.070 0.124 0.164 0.211 0.237 0.277
K = 9 5.89 × 10−7 0.030 0.070 0.123 0.162 0.197 0.225 0.254 0.285
K = 10 5.87 × 10−7 0.030 0.070 0.123 0.162 0.197 0.224 0.255 0.274 0.312

In this paper, VMD is used to decompose the training set and test set of vibration
signals into IMF components of different frequencies, and the input and output values of
the training set and test set are constructed based on these IMF components. Then, SCN
models of different IMF components are trained through the training set samples, and
the test set samples of different IMF components are predicted through the trained SCN
models. The prediction results of different IMF components are shown in Figures 6 and 7.
From Figures 6 and 7, it can be seen that there are no significant deviations between the
predicted results of the SCN model and the actual values for the different IMF components,
and the overall trend of predicted and actual values is consistent, which shows that the
SCN model has good predictive performance.
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Figure 7. Prediction results for the different IMF components of turbine guide bearing X-direction
swing signal.

The predicted values of the different IMF components are superimposed to obtain
the final prediction results. As shown in Figure 8, the VMD–SCN model performs well
in predicting the vibration signals of two different parts of the unit. Meanwhile, the
error diagram and prediction correlation analysis diagram are introduced to evaluate
the prediction results. The results show that the VMD–SCN model has an error of less
than 3 µm in predicting the turbine upper frame vibration signal, with a coefficient of
determination (R-squared) of 98.1% between the actual and predicted values. Similarly,
for the turbine guide bearing swing signal, the prediction error is less than 5 µm, and the
R-squared between the actual and predicted values reaches 98.5%.
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4.3. Comparative Experiment

To verify the superiority of the VMD–SCN model in the single-step prediction of the vi-
bration trends of the HGU, the VMD–DBN, VMD–BPNN, BPNN, SCN, DBN, EEMD–SCN,
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and EEMD–DBN models are introduced for comparative experiments. The single-step pre-
diction research of the vibration trends of the HGU is carried out by using the above models.
The prediction results of the above models on the vibration signals in the X-direction of the
turbine upper frame are shown in Figure 9, and the prediction results of the models on the
first and last day are also given. It can be seen from Figure 9 that the results predicted by
the VMD–SCN model are closer to the actual values compared with other models, which
preliminarily verifies that the VMD–SCN model has good predictive performance.
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Meanwhile, to quantitatively analyze the prediction results of different models, RMSE,
MAE, MAPE, and MSE indicators are introduced to evaluate the predictive performance of
the models. The specific results are shown in Figure 10. As can be seen from Figure 10, com-
pared with the other models (VMD–DBN, VMD–BPNN, BPNN, SCN, DBN, EEMD–SCN,
and EEMD–DBN), the RMSE indicator of the VMD–SCN model decreased by 1.071, 1.709,
3.455, 2.119, 2.341, 0.861 and 1.094, respectively. The MAE indicator decreased by 0.890,
1.422, 2.817, 1.731, 1.870, 0.724, and 0.850, respectively. The MAPE indicator decreased
by 0.615, 0.977, 1.930, 1.178, 1.278, 0.504, and 0.588, respectively, and the MSE indicator
decreased by 2.997, 5.870, 17.902, 8.146, 9.521, 2.228, and 3.086, respectively. Based on
the above results, the VMD–SCN model achieves the best predictive performance for the
X-direction vibration signals of the turbine upper frame.

Similarly, the prediction results of the VMD–SCN and other models on the swing
signals in the X-direction of the turbine guide bearing are shown in Figure 11, and the
prediction results of the models on the first and last day are also shown. It can be seen from
Figure 11 that the results predicted by the VMD–SCN model are closer to the actual value
compared with other models, which indicates that the VMD–SCN model is also applicable
to the prediction of the swing signal trends of HGUs.
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Figure 10. One-step prediction performance indicators of different models (X-direction vibration
signal of upper frame).
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Figure 11. Comparison diagram of different model forecasting (turbine guide bearing X-direction
swing signal).

The prediction performance indicators of different models are provided in Figure 12.
As can be seen from Figure 12, compared with other models (VMD–DBN, VMD–BPNN,
BPNN, SCN, DBN, EEMD–SCN, and EEMD–DBN), the RMSE indicator of the VMD–SCN
model decreased by 2.182, 6.393, 5.513, 2.441, 4.853, 0.915, and 3.056, respectively; the MAE
indicator decreased by 1.730, 4.856, 4.200, 2.095, 4.151, 0.763, and 2.566, respectively; the
MAPE indicator decreased by 1.892, 5.330, 4.492, 2.296, 4.565, 0.862, and 2.793, respectively;
and the MSE indicator decreased by 11.187, 59.692, 46.623, 13.146, 37.838, 3.533, and 18.337,
respectively. Based on the above results, the VMD–SCN model still achieves the best
predictive performance on the X-direction swing signals of the turbine guide bearing.

Through the analysis of the prediction results of the two sets of data, it is effectively
verified that the VMD–SCN model has great potential in the single-step prediction of
vibration signals of HGUs.
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Figure 12. One-step prediction performance indicators of different models (turbine guide bearing
X-direction swing signal).

5. Multistep Prediction Experiment on the Vibration Tendency of HGU Based on
VMD and SCN

The single-step prediction experiment in Section 4 effectively verifies that the VMD–
SCN model has good single-step predictive performance, but single-step prediction has
limited practical utility. The multistep prediction of unit vibration trends can provide
more support for maintaining the safe and stable operation of units. According to the
multistep prediction strategy described in Section 2.3, a recursive multistep prediction
model is constructed in this paper, and multistep prediction experiments on the vibration
trends of HGUs based on VMD and the SCN model are carried out. All experimental
data are consistent with the X-direction vibration data of the turbine upper frame and the
X-direction swing data in Section 4. Meanwhile, all comparative experiments are kept
consistent with those in Section 4.

The multistep prediction (two-step to five-step prediction) results of the different
models on the vibration signals in the X-direction of the turbine upper frame are shown in
Figure 13. As can be seen from Figure 13, with the increase of the number of prediction
steps, the models’ prediction errors continue to accumulate, resulting in different degrees
of degradation in the predictive performance of the models. Single models such as the
BPNN, DBN, and SCN models, show poor predictive performance in multistep prediction,
with significant fluctuations occurring during the prediction process leading to decreased
prediction accuracy. The prediction accuracy of VMD–DBN, EEMD–DBN, and other
combined models is improved compared with the single model, but the prediction results
of these models have significant errors in some time periods. Moreover, this phenomenon
becomes more obvious as the number of predicted steps increases. Based on the prediction
results of all the models, it can be seen that the multistep prediction results of the VMD–SCN
model are closer to the actual values than the other models.

Similar to Section 4, to quantitatively analyze the prediction results of different models,
RMSE, MAE, MAPE, and MSE indicators are used to evaluate the multistep prediction
performance of the models. The specific prediction results are shown in Figure 14. As
can be seen from Figure 14, the performance indicators (RMSE, MAE, MAPE, and MSE)
of the two-step prediction model of the VMD-SCN are 1.248, 1.024, 0.706, and 1.557; the
performance indicators of the three-step prediction model reach 1.782, 1.439, 0.990, and
3.176; the performance indicators of the four-step prediction model reach 2.527, 2.003, 1.378,
and 6.388; and the performance indicators of the five-step prediction model reach 3.301,
2.630, 1.813, and 10.899. Compared with other models (VMD–DBN, VMD–BPNN, BPNN,
SCN, DBN, EEMD–SCN, and EEMD–DBN), the VMD–SCN model has the most effective
multistep predictive performance.
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Figure 13. Comparison diagram of different models’ multistep forecasting (X-direction vibration
signal of upper frame).
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Figure 14. Multistep prediction performance indicators of different models (X-direction vibration
signal of upper frame).

The multistep prediction (two-step to five-step prediction) results of different models
for the swing signals in the X-direction of the turbine guide bearing are shown in Figure 15.
Similar to the previous analysis, it can be concluded from Figure 15 that with the increase
of the number of prediction steps the models’ prediction errors continue to accumulate,
resulting in different degrees of degradation in the prediction performance of the models.
Comparing the prediction results of the combined model with the single model, it is
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also verified that the combined model can improve the prediction performance of the
model to a certain degree. However, the VMD–SCN model has some deviation in the
four-step and five-step predictions, with errors reaching up to 20 µm in certain time periods.
Nevertheless, the VMD–SCN model can capture the overall trends of the vibration signals
and demonstrates good overall prediction performance. Combining all the prediction
results, it can be concluded that the multistep prediction results of the VMD–SCN model
are closer to the actual values compared with the other models.
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X-direction swing signal).

Similarly, the multistep prediction performance indicators of the different models
are shown in Figure 16. As can be seen from Figure 16, the two-step prediction model
performance indicators (RMSE, MAE1, MAPE, and MSE1) of the VMD–SCN are 2.024, 1.542,
1.697, and 4.095; the performance indicators of the three-step prediction model reach 3.577,
2.850, 3.116, and 12.793; the performance indicators of the four-step prediction model reach
5.129, 4.013, 4.412, and 26.309; and the performance indicators of the five-step prediction
model reach 7.436, 5.801, 6.403, and 55.697. Compared to the other models (VMD–DBN,
VMD–BPNN, BPNN, SCN, DBN, EEMD–SCN, and EEMD–DBN), the VMD–SCN model
has the most effective performance in multistep prediction.
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Figure 16. Multistep prediction performance indicators of different models (turbine guide bearing
X-direction swing signal).

Based on the above two sets of multistep prediction experiments and comparing the
prediction performances of the different models, the following conclusions can be drawn:

(1) As the number of prediction steps increases, the RMSE, MSE, and other prediction
indicators of the different models show an upward trend. This indicates that with
the accumulation of prediction errors, the prediction performance of the models will
decrease. It indirectly verifies that the prediction range of multistep prediction is
limited. The reference value of a model’s prediction results becomes small when the
prediction time exceeds a certain range.

(2) Comparing the prediction indicators of combined models such as the VMD–SCN and
single models such as the SCN, it is observed that the prediction indicators of single
models are higher, indicating lower prediction accuracy. Moreover, the prediction
accuracy of single models significantly decreases with an increase in the number of
prediction steps. To a certain extent, combined models overcome the limitation of low
prediction accuracy in single models and hold significant importance in predicting the
vibration trends of HGUs.

(3) From the prediction performance of the VMD–SCN and EEMD–SCN models, it can
be observed that the model using the VMD method of decomposition achieves better
prediction results. Similarly, comparing the prediction evaluation indicators of the
VMD–DBN and EEMD–DBN models, it is found that the prediction performance of
the VMD–DBN is stronger than that of the EEMD–DBN model. Therefore, the VMD
method adopted in this paper is more suitable for the analysis of unit vibration data.

(4) Comparing the prediction results of the VMD–SCN model with the other seven models,
it is found that the VMD–SCN model shows the best prediction performance on both
datasets, which strongly verifies that the VMD–SCN model has a great multistep
prediction performance of HGU vibration trends.

6. Conclusions

To accurately predict the vibration trends of HGUs, this paper proposes a combined
multistep prediction model based on VMD and an SCN model. Firstly, considering the
significant fluctuations in the vibration signals of HGUs, VMD is used to decompose the
vibration signals into IMF components of different frequencies, which effectively alleviates
the instability of vibration signal fluctuations. Secondly, the SCN model is used to predict
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the different IMF components separately. Then, the predicted values of the different
IMF components are superimposed to form the prediction results. Finally, according to
the recursive strategy, the prediction results are input as new input values, achieving
multistep prediction of the vibration trends in HGUs. The VMD–SCN model is applied
to two different types of datasets of the upper frame vibration signals and the turbine
guide bearing swing signals of a unit, and seven models are introduced for comparative
experiments. The main conclusions are as follows:

(1) To a certain extent, the hybrid model overcomes the shortcomings of the single models
and their low prediction accuracy, which is of great significance for the prediction of
unit vibration trends.

(2) Comparing the prediction results of the VMD—SCN, VMD–DBN, EEMD–SCN, and
EEMD–DBN, it is verified that using the VMD decomposition method is more suitable
for the analysis of unit vibration data.

(3) By comparing the prediction results of the VMD–SCN model with the other seven
models, it is found that the VMD–SCN has the best prediction effect among all the
models, showing strong prediction performance, which is helpful for assisting the
decision makers at the power plant to formulate more reasonable operation and
maintenance strategies.

Although the proposed method has achieved notable prediction results, there are still
some pressing issues that require urgent investigation: (1) The operating state of the hy-
dropower unit undergoes a gradual deterioration process, and it is possible that the known
training samples and the unknown test samples may not belong to the same distribution.
Therefore, the introduction of transfer learning theory into trend prediction has become one
of our future research directions. (2) This paper solely addresses trend prediction research.
Our next step involves leveraging the developed model for fault warning.
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