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Abstract: Fault detection using the domain adaptation technique is one of the more promising
methods of solving the domain shift problem, and has therefore been intensively investigated in
recent years. However, the domain adaptation method still has elements of impracticality: firstly,
domain-specific decision boundaries are not taken into consideration, which often results in poor
performance near the class boundary; and secondly, information on the source domain needs to be
exploited with priority over information on the target domain, as the source domain can provide
a rich dataset. Thus, the real-world implementations of this approach are still scarce. In order to
address these issues, a novel fault detection approach based on one-sided domain adaptation for
real-world railway door systems is proposed. An anomaly detector created using label-rich source
domain data is used to generate distinctive source latent features, and the target domain features are
then aligned toward the source latent features in a one-sided way. The performance and sensitivity
analyses show that the proposed method is more accurate than alternative methods, with an F1 score
of 97.9%, and is the most robust against variation in the input features. The proposed method also
bridges the gap between theoretical domain adaptation research and tangible industrial applications.
Furthermore, the proposed approach can be applied to conventional railway components and various
electro-mechanical actuators. This is because the motor current signals used in this study are primarily
obtained from the controller or motor drive, which eliminates the need for extra sensors.

Keywords: data-driven approach; deep learning; domain adaptation; door systems; fault detection;
generative adversarial network; machine learning; railway

1. Introduction

Fault detection plays a vital role in maintenance tasks within the railway sector,
and has been defined as “the detection of a fault within a prescribed time by a safety
mechanism” [1]. Although railway machinery represents a complex industrial system
with a huge variety of components, a train door is a vital subsystem that can lead to
service interruptions or failures, resulting in higher operational and maintenance expenses.
One report has indicated that the door system accounts for 30–60% of all malfunctions
in railway vehicles [2]. To avoid such failures, predictive maintenance using data-driven
methods has recently gained interest from researchers, owing to the vast quantities of
monitoring data accessible.

Data-driven approaches for fault detection include traditional machine learning (ML)
and deep learning (DL) approaches. Traditional ML approaches necessitate multiple steps
such as data preprocessing and feature extraction prior to model development; however,
manual feature extraction requires specialised domain expertise, which complicates the
use of traditional machine learning methods. In contrast, DL methods allow for the
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development of fault detection models without the need for manually crafted features
by employing a deep network architecture. This represents a notable advantage over
traditional ML techniques.

Fault detection methods based on deep learning can be divided into supervised and
unsupervised learning approaches. Supervised DL methods require datasets with labels
to enable the training of the model. A significant proportion of prior research in the
area of fault detection has focused on supervised DL methods, including deep neural
networks (DNNs) [3], two-dimensional convolutional neural networks (2D CNNs) [4],
one-dimensional convolutional neural networks (1D CNNs) [5], gated recurrent units
(GRUs) [6], and long short-term memory (LSTM) [7]. However, the need for ample labelled
datasets represents a major limitation of supervised methods: faulty data are often scarce,
due to the use of conservative maintenance schedules to prevent major incidents. In
addition, the imbalance between faulty and healthy data is also problematic when building
a classifier. Unlike supervised approaches, unsupervised DL methods do not need datasets
with labels, and the aim is to extract the relevant characteristics of the input data. Previous
research based on unsupervised learning approaches has included stacked autoencoders [8],
denoising autoencoders [9], sparse autoencoders [10], variational autoencoders [11], and
deep belief networks [12].

Despite the successful outcomes of previous research, one significant drawback of
a data-driven fault detection approach is that the fault detection performance may be
considerably degraded when the model is applied to actual acquired data rather than
training data. The assumption underlying traditional ML and DL approaches is that
the distribution of the test data is identical to that of the training data; however, these
distributions may differ due to the different operating conditions, components, and detailed
specifications of the machinery. This is known as the domain shift problem [13], which
refers to the discrepancy in the feature distribution between two domains. In this case, the
training and test data are assumed to be the source and target domains, respectively. Due
to the discrepancy between the source and target domains, the accuracy of fault detection
in actual industrial data may be worse than anticipated. If the plan is to acquire many types
of data beforehand, under different operating conditions and for different components,
then the training of the model may be expensive and demanding, meaning that a huge
dataset would be required. This strategy is therefore impractical, given that the availability
of datasets that include sufficient faulty samples is always limited in industry.

The domain adaptation (DA) technique offers a promising solution for addressing the
domain shift problem. DA is an area of machine learning where models are designed to
execute tasks in a target domain, using knowledge gained from a similar but distinct source
domain. The aim is to address the challenge posed by the distribution shift between the
source and target domains. Research into DA has evolved over the years in several areas
of study, including computer vision, healthcare, speech recognition, and fault detection.
When applied in the context of fault detection, the aim of DA is to align the source and
target domain distributions. The aligned source and target features are then used to build a
fault detection model. As a result, faults can be detected with almost the same accuracy for
both the source and target domains.

Fault detection based on DA can be categorised at the methodological level into
network-based, instance-based, mapping-based, and adversarial-based approaches [14].
Network-based DA involves the direct transfer of certain network parameters that have
been pre-trained in the source domain to another model in the target domain, as partial
network parameters. The fine-tuning of the network parameters is then conducted using
a limited set of labelled data from the target domain [15,16]. However, sufficient labelled
target domain datasets are necessary for this method, which are often unavailable in the
context of fault detection. Instance-based DA involves adjusting the weights of instances
in the source domain to assist the classifier in label prediction or using instance statistics
to bring the target domain into alignment. These methods include DNNs with a batch
normalisation layer (BN) [17] and adaptive batch normalisation [18,19]. However, in order
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to train the BN layer and set appropriate parameters, a certain amount of normal and faulty
target samples is required beforehand.

The aim of mapping-based DA is to project the original features from both the source
and target domains into a new feature space, where the two domain features are aligned
using a feature extractor. There are many examples of fault detection using mapping-based
DA, including Kullback–Leibler divergence [20], correlation alignment (CORAL) [21], max-
imum mean discrepancy (MMD) [22,23], multi-kernel MMD [24,25], and joint distribution
adaptation [26]. In contrast, adversarial-based DA uses an adversarial method in which
a domain discriminator is used to minimise the discrepancy in the feature distribution
between the source and target domains created by a feature extractor. The adversarial
network architecture is called a generative adversarial network (GAN). This consists of a
pair of networks that are combined to form a generative system, and was initially proposed
by Ian Goodfellow in 2014 [27]. When carrying out domain adaptation with a GAN, the
generator is typically employed to map the raw features from both the source and target
domains to a new latent feature space, where the alignment of the feature distributions can
be achieved. A fault detection model can be built using the aligned features in the latent
feature space for both the source and target domains. Examples of adversarial-based DA
include the domain adversarial neural network (DANN) [28,29], the domain adversarial
transfer network [30], and the Wasserstein distance-based deep transfer network [31].

Adversarial-based DA can be integrated with mapping-based DA by employing
both the adversarial discriminator and an appropriate objective function to minimise the
discrepancy between the two domains. Research using both adversarial and mapping-
based DA is being widely conducted in relation to fault detection, due to its strong ability
to align two domains where only unlabelled target samples are available [31,32]. However,
these methods still have some impractical aspects, which can be research gaps, as follows:

1. In a GAN, the feature generator does not take domain-specific decision boundaries
into consideration, as the model simply tries to fool the discriminator [33]. This results
in poor performance in terms of detecting faulty samples near the class boundary.

2. In general, the DA method causes both the source and target domain to be the same in
the latent space, meaning that they are treated equally. However, the source domain
information needs to be considered with a higher priority than the target domain, as
the source domain tends to be a rich dataset that includes more faulty samples than
the target domain under actual industrial conditions. The reason for this is that the
fault detection model is initially built with a focus on the specific machinery, followed
by thorough validation in order to make the model applicable to the actual industrial
setting. The model is then applied to another domain.

3. Ensuring that DA techniques are robust and reliable for real-world applications is
challenging if the method is completely unsupervised. This is because the degree of
similarity between the two domains that is required in order to be able to apply the
DA method successfully is unclear. However, reliability is crucial for fault detection to
avoid catastrophic incidents; hence, real-world implementations of the DA technique
are still scarce.

These are major challenges, and few studies can be found that have attempted to
overcome these hurdles. In order to tackle these issues, a novel fault detection approach for
railway door systems is proposed, based on one-sided DA using GANs. In this study, the
source and target domains consist of data from a linear actuator test rig and a real-world
railway door, respectively. First, an anomaly detector and a feature generator are trained
using label-rich source domain data to generate distinctive source latent features. Next,
the target domain data are aligned with the source latent features in a one-sided way.
The proposed method enables the faulty target samples to be aligned with the source
samples and to be detected accurately by the same anomaly detector, which is built based
on rich source data. To the best of our knowledge, this paper is the first to introduce
a fault detection method utilising DA specifically for railway door systems. The main
contributions of the paper can be summarised as follows:



Sensors 2023, 23, 9688 4 of 18

1. A fault detection approach is proposed based on one-sided DA with GANs, which
can be used for real-world railway door systems.

2. The proposed one-sided DA from the target to the source domain enables the normal
and faulty samples in the target domain to be detected using the same fault detection
model, which is trained on a rich source dataset.

3. Our approach ensures that the two domains can be aligned, despite the low level of
similarity between different components, using only a few faulty target samples.

4. The proposed method is not only the most accurate and robust among comparative
models but also bridges the gap between theoretical domain adaptation research and
tangible industrial applications.

5. The proposed approach can also be applied to conventional railway components
and various electro-mechanical actuators. This is because the motor current signals
considered in this study are primarily obtained from the controller or motor drive,
thus eliminating the need for extra sensors.

The remainder of this article is organised as follows. Section 2 introduces the dataset
and the proposed methodology. Some results and a discussion are given in Section 3.
Finally, Section 4 concludes this article.

2. Materials and Methods
2.1. Dataset
2.1.1. Linear Actuator Experimental Dataset

The primary component of the test rig was a ball screw mechanism, featuring a
threaded shaft with a helical raceway that facilitated the movement of the bearing balls
contained within the nut [34,35]. Different loads were produced by connecting a secondary
actuator. The actuators were linked via a load cell, which supplied feedback to the controller.
This setup allowed for the generation of various operating conditions by altering the load
setpoint. In this case, the load setpoints used were 196.13 N, 392.3 N, and −392.3 N. Three
different types of fault were introduced, with increasing severity: a lack of lubrication,
spalling, and backlash. The tests were carried out using two types of motion profiles:
trapezoidal (for constant speed) and sinusoidal (for smooth acceleration and deceleration).
A 3D representation of the test rig, along with a side view, is presented in Figure 1. More
comprehensive information about the test rig and the introduced faults is available in [34],
and the raw data can be accessed and downloaded from [36].
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Figure 1. Three-dimensional model of the test rig and lateral view of the rig [36].

In our research, trapezoidal motion profiles were selected to construct the model, as
railway door systems typically exhibit relatively constant speed profiles, as explained in
Section 2.1.2. The measurement of the position and current signals involved both extension
and retraction processes, as illustrated in Figure 2. The current signals specific to the exten-
sion operation were extracted and used to build the model, as this operation represented
the closing mechanism of the railway door systems considered in this research, as explained
in detail in Section 2.1.2. To reduce noise, a low-pass filter with a window of 0.15 s was
applied. The current profiles that indicated a lack of lubrication were selected as the faulty
current signals. Both normal and faulty current profiles are shown in Figure 3, where the
various characteristics of the faulty signals can be observed; for instance, although there
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is some overshoot in the normal profiles, this overshoot is reduced in the faulty profiles.
The dataset comprises three distinct loading conditions, which are all considered under
the same class label. For example, normal profiles from these three loading conditions,
as illustrated in Figure 3, are classified as the normal class, and the same categorisation
applies conversely.
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2.1.2. Operational Datasets for Railway Door Systems

This research used extensive real-world datasets collected from railway door systems.
The focus was on an electric door system consisting of a voltage power source, a DC motor,
a door control unit (DCU), a transmission system, and the door leaves. The DC motor,
energised by the voltage source and regulated by the DCU, delivered the required shaft
angular velocity and torque, which were then conveyed to the transmission system to
enable the door leaves to move in a predetermined fashion [37]. The current signal from
the door was gathered via the communication port of the DCU at a frequency of 50 Hz. A
low-pass filter with a 0.25 s window, equivalent to five consecutive measurement periods,
was implemented to minimise the noise in the current signals.

Figure 4 presents some examples of signal profiles for both the opening and closing
operations. In the opening profile, there is a steady increase in both the speed and current
up to a peak, and then a gentle curve and a decline to zero. The closing profile exhibits a
pattern similar to the opening profile, but with two notable differences in the current: firstly,
the peak current for the closing process is lower than that for the opening process, and
secondly, there is a sharp change towards the end of the closing profile. This is accompanied
by a minor increase in the speed, which enables the door to reach its fully closed position,
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where the locking mechanism can be activated [38]. It should be noted that specific types
of faults cannot be identified in this dataset [37]. The experimental current signals from
the linear actuator in the three fault modes (lack of lubrication, spalling, and backlash)
were compared with the faulty signals from railway door systems. However, none of these
fault modes showed a similarity to the faulty signals observed in railway door operations.
This suggests that the faulty behaviour detected in train doors could be attributed to the
multiple fault modes of the numerous components in the train door system.
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In this study, current signals from closing operations were employed to detect faults.
Examples of normal and faulty signals for the closing operation are shown in Figure 4. In
the normal current signal, there are flat curves between 3.2 s and 4.0 s, in contrast to the
negative peaks and variations observed in the plot of the faulty data. It is noteworthy that
the characteristics of the faults in these door systems are different from those observed in
a linear actuator test rig, as explained in Section 2.1.1. Although a specific faulty mode
is used as an example, it is noteworthy that the proposed method aims to be universally
applicable across various types of fault modes, as it does not rely on assumptions specific
to any particular fault mode.

2.2. Proposed Methodology

The workflow for the proposed methodology for railway door systems, based on one-
sided DA with a GAN, is shown in Figure 5. The workflow is divided into two procedures,
marked Steps 1 and 2. The source and target domain datasets can be described as follows:

Ds = {(xs
i , ys

i )}
ns
i=1 (1)

Dt =
{(

xt
i , yt

i
)}nt

i=1 (2)

where Ds and Dt are the source and target domain datasets, xs and xt are the source and
target feature vectors, ys and yt are the source and target labels (which are used to categorise
the data into two states: normal or faulty), and ns and nt are the numbers of the source and
target samples, respectively.

2.2.1. Step 1: Train a Feature Extractor and an Anomaly Detector on the Source Dataset

A feature extractor and an anomaly detector, with the network architectures and
hyperparameters given in Tables 1 and 2, were trained using only the source domain
dataset. In order to train the models, a binary cross-entropy (BCE) loss was used as a loss
function for both the feature extractor and the anomaly detector. The BCE loss and the
optimisation objective are expressed as follows:

La = −
1
ns

ns

∑
i=1

[ys
i ln{ fa( fe(xs

i ))}+ (1− ys
i )ln{1− fa( fe(xs

i ))}] (3)
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(θ∗e , θ∗a ) = argminθ∗e ,θ∗a (La) (4)

where La is a loss function for both the feature extractor and anomaly detector; fe and fa
are functions of the feature extractor and the anomaly detector, respectively, which are
parameterised by θe and θa; and θ* is the optimised value of θ. Notably, fe is a mapping
function, whereas fa is a classifier. As shown in Equation (4), the optimisation objective
for both the feature extractor and the anomaly detector is to minimise La. In view of this
optimisation objective, the feature extractor is forced to generate features that are separable
by the anomaly detector. It is therefore assumed that faulty samples can be detected by the
anomaly detector with high accuracy, meaning that the extracted features of the normal
and faulty source samples should be distinct in the latent space. Hence, these features are
useful in classifying samples into normal or faulty classes.
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Figure 5. Workflow for the proposed methodology.

Table 1. Network architecture and numbers of learnable parameters.

Model Layer Output Shape Parameters

Feature extractor Linear 1 × 100 20,000
ReLU 1 × 100 -
Linear 1 × 50 5050
ReLU 1 × 50 0.0001
Linear 1 × 10 510

Anomaly detector Linear 1 × 5 55
ReLU 1 × 5 -
Linear 1 × 1 6
Sigmoid 1 × 1 -

Feature generator Linear 1 × 100 20,000
ReLU 1 × 100 -
Linear 1 × 50 5050
ReLU 1 × 50 0.0001
Linear 1 × 10 510
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Table 1. Cont.

Model Layer Output Shape Parameters

Discriminator Linear 1 × 3 33
ReLU 1 × 3 -
Linear 1 × 1 4
Sigmoid 1 × 1 -

Table 2. Hyperparameters for the models.

Model Hyperparameter Name Hyperparameter

Feature extractor Optimiser Adam
Learning rate 0.001
Max epoch 5000

Anomaly detector Optimiser Adam
Learning rate 0.001
Max epoch 5000

Feature generator Optimiser Adam
Learning rate 0.001
Max epoch 8000

Feature generator Optimiser Adam
Learning rate 0.1
Max epoch 8000

2.2.2. Step 2: One-Sided DA from the Target Domain to the Source Domain

Once Step 1 is complete, a feature generator and a discriminator are trained in an
adversarial manner. The loss function for the feature generator includes three loss items:
MMD loss, a fault detection loss, and an adversarial loss, as follows:

Lg = LMMD + LFD + LAD (5)

θ∗g = argminθg

(
Lg
)

(6)

where LMMD, LFD, and LAD are the MMD loss, the fault detection loss, and the adversarial
loss, respectively. θg is a learnable parameter of the feature generator fg.

The MMD is a statistical measure that is used to quantify the dissimilarity between
two distributions, and was initially introduced by Gretton et al. [39]. The concept of MMD
is closely related to kernel methods, and it has been used in various areas of machine
learning, including domain adaptation and generative modelling. The MMD is defined as
a squared distance in the reproducing kernel Hilbert space (RKHS), and can be expressed
as follows:

LMMD = MMD
(

fe(xs), fg
(
xt)) = ∥∥∥E fe(xs)∼P[ϕ( fe(xs))]−E fg(xt)∼Q

[
ϕ
(

fg
(
xt))]∥∥∥2

H
(7)

k(x, y) = 〈ϕ(x), ϕ(y)〉H = exp

(
−‖x− y‖2

σ

)
(8)

∥∥∥E fe(xs)∼P[ϕ( fe(xs))]−E fg(xt)∼Q
[
ϕ
(

fg
(
xt))]∥∥∥2

H
= E fe(xs), fe(xs′)∼Pk( fe(xs), fe(xs′)) +E fg(xt), fg(xt′)∼Qk

(
fg
(
xt), fg

(
xt′))− 2E fe(xs)∼P, fg(xt)∼Q,k

(
fe(xs), fg

(
xt)) (9)

where fe(xs) and fg(xt) are the latent features from the distributions P and Q,H represents
RKHS using kernel k, and ϕ is a mapping function to RKHS. A radial basis function (RBF)
kernel, also known as a Gaussian kernel, is chosen as k in this research, and σ is set to
one. The RBF kernel enables computing the kernel function k directly without explicitly
knowing the form of ϕ, which is known as the kernel trick.
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It is noteworthy that the MMD loss measures the discrepancy between the two latent
feature distributions of the source and target domain, which are fe(xs) and fg(xt). The latent
features of the source domain are extracted by the feature extractor, which is built in Step 1
and fixed during the training process in Step 2. This means that the source latent features
remain invariant in Step 2. In contrast, the feature generator is trained to generate target
latent features that are as identical as possible to the source latent features, in order to
minimise the MMD loss.

The fault detection loss in Step 2, on the other hand, is calculated using the BCE
loss in Equation (10), using the anomaly detector with only target data, as shown in the
following equation:

LFD = − 1
nt

nt

∑
i=1

[
yt

i ln
{

fa
(

fg
(
xt

i
))}

+
(
1− yt

i
)
ln
{

1− fa
(

fg
(
xt

i
))}]

(10)

The anomaly detector fa built in Step 1 is employed and fixed while training the feature
generator, meaning that only the feature generator is trained to minimise LFD. Hence, once
training has been conducted, the anomaly detector should also accurately classify normal
and faulty target samples.

The discriminator model is a classifier, and aims to distinguish whether the input
sample is a source or target sample. It is trained using both the latent source and target
features. A unified dataset D′ is defined, which encompasses both the source and target
latent features, as follows:

D′ =
{(

zj, lj
)}ns+nt

j=1 (11)

(
zj, lj

)
=


(

fe

(
xs

j

)
, ls
)

i f j ≤ ns, where ls denotes the label ‘source′(
fg

(
xt

j

)
, lt
)

i f j > ns, where lt denotes the label ‘target′
(12)

The discriminator loss for the discriminator and the adversarial loss for the generator
are expressed as in the following equations:

LD = − 1
ns + nt

ns+nt

∑
j=1

[
ljln
{

fd
(
zj
)}

+
(
1− lj

)
ln
{

1− fd
(
zj
)}]

(13)

LAD = − 1
ns + nt

ns+nt

∑
j=1

[
ljln
{

1− fd
(
zj
)}

+
(
1− lj

)
ln
{

fd
(
zj
)}]

(14)

θ∗d = argminθd
(LD) (15)

where LD is the discriminator loss, and fd is a discriminator function parameterised by
θd. The objective of the discriminator is to minimise the BCE loss for the discriminator,
as described in Equation (15). In contrast, Equations (6) and (14) show that the feature
generator is trained to maximise the discriminator loss, as LD should be a maximum when
LAD is minimised. Thus, the optimisation goal for the feature generator is to fool the
discriminator, whereas the discriminator is trained to distinguish between the source and
target samples in an adversarial manner. The purpose of employing the adversarial loss is
to ensure that the latent source and target features are identical to each other.

To summarise, the purposes of each loss item described in Equation (5) are as follows:

- LMMD forces the feature generator to create target latent features that are as identical
as possible to the source latent features as a DA capability.

- LFD enables normal and faulty target samples to be distinctive and to be detected by
the same anomaly detector trained on a rich source domain dataset.

- LAD ensures that the latent source and target features are identical.
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The model built using the proposed method was a simple neural network-based
model, as shown in Tables 1 and 2; however, any other DL model architecture, such as
CNN and LSTM, could be employed as long as they have equivalent loss functions. The
optimisation of each type of DL model architecture falls outside the scope of this paper.

As a DA method, the proposed methodology offers tremendous advantages from the
perspective of fault detection as follows:

1. The latent features of the normal and faulty source samples can be distinguished
because the anomaly detector is used to train the feature extractor using normal and
faulty source data, which is beneficial for a subsequent one-sided DA.

2. The target domain distribution is aligned toward the source domain distribution on
the latent space in a one-sided way, using the anomaly detector built in Step 1.

3. The one-sided DA using the anomaly detector enables normal and faulty target
samples to be distinctive, and to be detected by the same anomaly detector trained on
a rich source domain dataset.

4. Our approach ensures that the latent source and target features are identical to each
other by employing the adversarial training process and a few faulty samples.

The identification of three key research gaps is detailed in Section 1. The resolution of
the first and second gaps is achieved through the first, second, and third advantages of our
proposed method. The fourth advantage specifically addresses the challenges presented
by the third research gap. A quantitative validation of how these advantages effectively
address the respective gaps is provided in Section 3. Therefore, the advantages described
above enable fault detection across different domains with high reliability and bridge the
gap between theoretical domain adaptation research and tangible industrial applications.

2.3. Training and Test Datasets

The training and test datasets are summarised in Table 3. The training dataset was
used to build the feature extractor, feature generator, and anomaly detector, as described in
Section 2.2; the test dataset was then employed to validate the proposed DA method. The
training and test samples were selected randomly from the dataset. It is notable that only
10 normal and 5 faulty target samples were used to train the models.

Table 3. Training and test datasets.

Training/Test Domain Normal Faulty Total

Training Source 50 50 100
Training Target 10 5 15

Test Target 50 50 100

2.4. Validation Performance Metrics

A confusion matrix can be used to evaluate the effectiveness of a fault detection system.
This is a two-dimensional table containing the frequencies at which samples in each category
are accurately identified or incorrectly labelled as belonging to another category. For binary
classification in fault detection, the confusion matrix represents four scenarios: positive
(faulty) cases can be either correctly identified or missed, and negative (normal) cases may
be accurately identified or missed. These outcomes are characterised as true positive (TP),
false negative (FN), true negative (TN), and false positive (FP) rates. These rates make up
the confusion matrix, which is then used to calculate three performance indicators that are
widely used in the industrial sector [40], as given in the following equations:

Precision (P) =
TP

TP + FP
(16)

Recall (R) =
TP

TP + FN
(17)
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F1 score =
2PR

P + R
(18)

In general, the precision quantifies the proportion of samples correctly predicted
as positive, while the recall represents the extent to which positive predictions correctly
capture positive samples. Optimising precision and recall involves a trade-off [41]; for
example, perfect recall can be achieved by predicting all samples as positive, but this results
in very low precision due to numerous false alarms. In contrast, the precision will be perfect
if a model predicts only the most likely positive sample as positive and the rest as negative,
but this approach will result in a very low recall. One method of considering both precision
and recall simultaneously is to compute their harmonic mean, referred to as the F1 score,
as given in Equation (18). In this research, the F1 score, which varies from zero to one, is
used to assess the fault detection accuracy. A higher F1 score indicates greater accuracy in
detecting faults; the opposite is true for a lower score.

2.5. Alternative DA Models for Comparison Purposes

In this study, other types of DA models were built for comparison purposes. The
following approaches were implemented:

(1) Transfer component analysis (TCA): The primary goal of this approach is to search
the feature subspace of different domains (or the source and target domains), where
the domain shift between them is minimised [42]. The TCA algorithm tries to learn
some transfer components across domains in an RKHS. Within the subspace defined
by these transfer components, the characteristics of the data are preserved, and the
data distributions across various domains are closely aligned. Logistic regression is
selected as the classification method.

(2) DANN: The aim of this approach is to find a new representation of the input features
in which the source and target data cannot be distinguished by any discriminator
network [28]. This new representation is learned by an encoder network in an ad-
versarial fashion. A task network is trained on the encoded space in parallel to the
encoder and discriminator networks.

These models are well-known DA methods, and have been used in many previous
research papers as benchmark models. In order to build these two models, a publicly
available library called the Awesome Domain Adaptation Python Toolbox (ADAPT) [43]
was used. A labelled source dataset and an unlabelled target dataset were used for training,
as these two models are based on an unsupervised DA method. In contrast, labelled source
and target datasets, which included a few faulty samples, were used to build the proposed
model, as shown in Table 3. It could be argued that comparing the proposed model with
unsupervised DA methods is unfair; however, to the best of our knowledge, there is no
representative DA model similar to ours. In order to make the comparative study fairer, the
number of available target samples were increased, as shown in Table 4, compared to the
dataset for the proposed method, shown in Table 3. The cross-validation, which typically
relies on labelled data for evaluating model performance, is not applicable as target training
data is unlabelled, as given in Table 4. Therefore, the randomly selected training and test
samples were used, as is explained in Section 2.3.

Table 4. Training and test datasets for comparison models.

Training/Test Domain Label Normal Faulty Total

Training Source Labelled 50 50 100
Training Target Unlabelled 100 100

Test Target Labelled 50 50 100

A third model was also built, as follows:
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(3) DL model from scratch: This model was trained using only the target training dataset
summarised in Table 3, in which there were 10 normal and five faulty samples.
Figure 6 and Table 5 show the network architecture and hyperparameters for the
model, which was previously used as a comparative model in [44].

Table 5. Hyperparameters of a fault detection model for the DL model from scratch [44].

Layer Hyperparameter Name Hyperparameter

Whole layers Optimiser Adam
Max epoch 3000
Mini-batch size 120
Learning rate 0.0001

LSTM Activation function for the hidden state Tanh
Activation function for the gates Sigmoid
Number of activation units 40

FC Number of hidden units 2
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Figure 6. DL model from scratch [44].

2.6. Sensitivity Analysis

Sensitivity analysis is a common practice in technological fields, and is carried out to
examine how variations in model parameters affect the output of a model [45]. To explore
the sensitivity of the model to the probability threshold, a receiver operating characteristic
(ROC) curve is employed. A ROC gives a comprehensive overview of the trade-off between
the false positive rate (FPR) and true positive rate (TPR). The optimal ROC curve has an
FPR of zero and a TPR of one. A metric known as the area under the ROC Curve (AUC) is
determined by calculating the area under the complete ROC curve between (0, 0) and (1, 1).
The AUC offers a single-value overview of the ROC curve, and has a value of one in the
case of an ideal ROC curve. In this research, the ROC curve was plotted to correspond to
the probability threshold to detect faulty samples. The probability was determined using
the sigmoid function of the anomaly detector, as given in Table 1.

3. Results and Discussion
3.1. Performance Metrics and Sensitivity Analysis

The performance metrics and confusion matrices are given in Table 6 and Figure 7.
The highest fault detection accuracy was achieved by the proposed method, with an F1
score of 97.9%, while DANN and the DL model from scratch had considerably lower fault
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detection accuracies, with F1 scores of 66.6% and 73.4%, respectively. The precision and F1
score for TCA could not be calculated, as all of the predictions were normal, as shown in
Figure 7. The results reveal that a fault detection model for the target domain, which in this
paper was a railway door system, can be built accurately by our DA method using source
domain data from a linear actuator test rig dataset.

Table 6. Fault detection accuracy.

Model Precision (%) Recall (%) F1 Score (%)

Proposed DA model 100 96 97.9
TCA NaN 50 NaN
DANN 50 100 66.6
DL model from scratch 75.0 72.0 73.4
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However, it is also necessary to ensure that the fault detection model does not have
a high sensitivity to the probability threshold that is used to determine whether or not a
sample is faulty. A sensitivity analysis was performed only for the proposed DA method
and the DL model from scratch, as there was no need for a sensitivity analysis of TCA
and DANN in view of the low fault detection accuracy (Table 6). As shown in Figure 8
and Table 7, the ROC curve for the proposed DA model was much closer to the ideal ROC
curve than that of the DL model from scratch. The values of AUC for the proposed DA and
DL models from scratch were 0.9976 and 0.8484, respectively. The ROC and AUC results
indicate that the proposed DA method was the most accurate and the least sensitive to the
threshold, and hence the most robust against variation in the input features. The proposed
DA model was therefore the most accurate and robust of all the alternative models.
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Table 7. AUC values.

Model Proposed Method DL Model from Scratch

AUC 0.9976 0.8484

3.2. t-SNE Visualisation

The feature distributions of the test dataset were visualised with t-SNE, as shown in
Figure 9. Four distinct distributions (relating to the source normal, source faulty, target
normal, and target faulty samples) can be found in the original feature space, as illustrated
in Figure 9, due to the domain shift. Suppose a fault detection model is built based on
traditional ML and DL by using source domain data. In that case, fault detection accuracy
should be considerably degraded when the model is applied to target domain data due
to domain shift. The assumption underlying traditional ML and DL approaches is that
the distribution of the test data is identical to that of the training data; however, these
distributions may differ due to the different components and detailed specifications of
the machinery, as clearly seen in Figure 9. In addition, traditional ML and DL typically
do not possess DA capabilities. In contrast, the latent features of the normal and faulty
target distributions were aligned toward the normal and faulty source distributions in
the proposed method, as can be seen from Figure 9. A significant finding was that the
aligned normal and faulty samples were sufficiently distinctive to be classified by the fault
detection model. This clear distinction between the normal and faulty samples can be
attributed to the anomaly detector that was employed to separate the two distributions,
while the feature generator was trained to align the source and target data. Thus, the
anomaly detector can detect faulty target samples with a high level of accuracy, as shown
by the qualitative performance validation in Table 6.

However, although each feature distribution of TCA could be closer than the original
features, these were unaligned, as shown in Figure 9. The poor fault detection accuracy of
TCA, as shown in Table 6, may be due to this misalignment between the two domains. The
misalignment of TCA and DANN may also be related to the level of similarity between
the source and target domain, which might be insufficient for these models. The low
similarity can be attributed to the different components involved, and specifically to
railway door systems and the linear actuator test rig. These methods are therefore incapable
of correctly adapting the source and target domains to become identical, despite being
successful candidates as representative DA methods. Thus, the proposed DA method
enables alignment between two distributions as well as clear separation between normal
and faulty samples, even though the similarity is relatively low, whereas other models are
unable to align the two.



Sensors 2023, 23, 9688 15 of 18
Sensors 2023, 23, x FOR PEER REVIEW  16  of  19 
 

 

 

Figure 9. t-SNE visualisation: (i) original features; (ii) latent features for the proposed method; (iii) 

latent features for TCA. 

However, although each feature distribution of TCA could be closer than the original 

features, these were unaligned, as shown in Figure 9. The poor fault detection accuracy of 

TCA, as shown in Table 6, may be due to this misalignment between the two domains. 

The misalignment  of  TCA  and DANN may  also  be  related  to  the  level  of  similarity 

between the source and target domain, which might be insufficient for these models. The 

low similarity can be attributed to the different components involved, and specifically to 

railway  door  systems  and  the  linear  actuator  test  rig.  These  methods  are  therefore 

incapable of correctly adapting the source and target domains to become identical, despite 

being  successful  candidates  as  representative  DA methods.  Thus,  the  proposed  DA 

method enables alignment between two distributions as well as clear separation between 

normal and  faulty samples, even  though  the similarity  is relatively  low, whereas other 

models are unable to align the two. 

3.3. Limitations 

It should be emphasised  that a  small number of  target  faulty samples need  to be 

employed  with  the  proposed  method,  which  means  that  our  methodology  is  not 

unsupervised DA. In addition, only one application was used to validate the performance 

of the model, and further validation may be needed in the future. However, this research 

shows that the two domains can be aligned even when the level of similarity is low and 

only a few faulty samples in the target domain are used. Thus, our method is reliable and 

applicable to real-world industrial settings. 

   

Figure 9. t-SNE visualisation: (i) original features; (ii) latent features for the proposed method;
(iii) latent features for TCA.

3.3. Limitations

It should be emphasised that a small number of target faulty samples need to be em-
ployed with the proposed method, which means that our methodology is not unsupervised
DA. In addition, only one application was used to validate the performance of the model,
and further validation may be needed in the future. However, this research shows that
the two domains can be aligned even when the level of similarity is low and only a few
faulty samples in the target domain are used. Thus, our method is reliable and applicable
to real-world industrial settings.

4. Conclusions

A novel fault detection approach based on one-sided DA using GANs for railway
door systems has been proposed. In this study, the source and target domain data were
drawn from a linear actuator test rig and a real-world railway door, respectively. Firstly, the
anomaly detector and feature generator were trained using the label-rich source domain
data to generate distinctive source latent features, and the target domain data were then
aligned with the latent source features in a one-sided way. To the best of our knowledge,
this is the first paper to propose a fault detection approach based on DA for railway
door systems.

As a result, the performance metrics and sensitivity analysis results showed that the
proposed method is the most accurate, with an F1 score of 97.9%, and is also the most
robust against variation in the input features. Thus, the proposed method enables faulty
target samples to be aligned with the source samples and detected accurately by the same
anomaly detector, which is built with rich source data. This results in high reliability of fault
detection for real-world applications despite the low level of similarity between different
domains. Hence, the proposed method is not only the most accurate and robust compared
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to alternative models but also bridges the gap between theoretical domain adaptation
research and tangible industrial applications.

In future research, it would be valuable to quantify the similarity between domains in
order to be able to apply DA methods while maintaining high reliability. This is because the
degree of similarity between the two domains that is required in order to be able to apply
the DA method successfully is unclear. The method proposed in this research used a few
faulty samples from a target domain to tackle this issue; however, even a few faulty samples
from a target domain may sometimes be unavailable. An unsupervised DA method would
then need to be employed, in which case the required degree of similarity between the
two domains would be unknown. Addressing these issues could represent a direction for
future work.
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