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Abstract: The problem of registering point clouds in scenarios with low overlap is explored in this
study. Previous methodologies depended on having a sufficient number of repeatable keypoints
to extract correspondences, making them less effective in partially overlapping environments. In
this paper, a novel learning network is proposed to optimize correspondences in sparse keypoints.
Firstly, a multi-layer channel sampling mechanism is suggested to enhance the information in point
clouds, and keypoints were filtered and fused at multi-layer resolutions to form patches through
feature weight filtering. Moreover, a template matching module is devised, comprising a self-
attention mapping convolutional neural network and a cross-attention network. This module aims to
match contextual features and refine the correspondence in overlapping areas of patches, ultimately
enhancing correspondence accuracy. Experimental results demonstrate the robustness of our model
across various datasets, including ModelNet40, 3DMatch, 3DLoMatch, and KITTI. Notably, our
method excels in low-overlap scenarios, showcasing superior performance.

Keywords: point cloud registration; deep learning; attention mechanism

1. Introduction

Point cloud registration is a crucial task within computer vision and robotics, fre-
quently applied in significant domains like autonomous driving [1], 3D reconstruction [2],
and simultaneous localization and mapping (SLAM) [3]. In recent years, with the devel-
opment of point cloud processing technology and deep learning technology, point cloud
coding algorithms such as [4,5] have further optimized the processing of large-scale point
cloud data and improved the accuracy of point cloud registration in large-scale scenes.
However, registration in low-overlap environments remains a challenging task.

A classical point cloud registration method is Iterative Nearest Point (ICP) [6]. It
starts with an initial transform guess, and then iteratively updates the transform matrix
to minimize the distance between corresponding points until convergence or a certain
number of iterations is reached. The disadvantage is that it is sensitive to initial transforma-
tions and local minima. The Fast Global Registration (FGR) [7] algorithm addresses the
drawbacks of the ICP algorithm through global alignment, but is still prone to failure in
noisy environments.

Deep learning-based methods can be divided into three categories: the first category [8,9]
is based on the global features of the point cloud, which is treated as a whole to regress
the transformation parameters. Although this type of method has good robustness to
noise, it is not effective for the registration task of partially overlapping point cloud. The
second class of methods [10,11] based on correspondence learning form correspondences
by means of high-dimensional features of the points and iteratively minimize the feature
distances to optimize the pose. This type of approach extracts the correspondences of
the points, so it is more robust in partially overlapping point cloud registration, but it
is still susceptible to noise interference. The last class [12–14] uses a two-stage approach
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to the point cloud correspondences, where they first learn the local descriptors of the
downsampled keypoints for matching, and then use a pose estimator to recover the relative
transformations. Their strategy allows them to achieve state-of-the-art performance in
the dataset, but the downsampling method they use inherently introduces sparsity point
cloud features, which reduces the reproducibility of the correspondences and thus loses its
advantage in low overlap regions.

A recently discovered approach [15] bypasses direct keypoint detection. It mitigates
the limitations of keypoint detection by employing a coarse-to-fine strategy similar to the
two-dimensional correspondence approach [16,17] to address the problem of keypoint
sparsity. It achieves correspondence extraction by employing a superpoint patch-to-point
path. Essentially, the method extracts superpoint features from the original point cloud,
merges them into superpoint patches for matching, and then extends the matched corre-
spondences to include dense points. The advantage of the method is that it transforms
the strict point matching requirement into a more relaxed patch overlapping environment.
This shift effectively reduces the requirement for a large number of repeatable keypoints.
However, it also emphasizes the importance of keypoint reliability. Furthermore, while this
approach reduces the need for a large number of keypoints, its sparsity remains unchanged.
Therefore, in this paper, more emphasis is placed on compensating for this inherent sparsity
by capturing contextual features.

Taking inspiration from references [15,18], our initial focus lies in optimizing the en-
hancement of the patch context function. With the objective in mind, a matching module
based on a graph convolutional neural network was designed, the core of which is con-
stituted by two modules: the self-attention graph convolutional neural network and the
cross-attention module. Graph convolutional networks focus on different points when
processing point cloud data and dynamically adjust weights based on the relationship be-
tween them. This adaptability enables the model to better capture local and global features
in point cloud, thereby improving the modeling ability of template points. Secondly, the
cross-attention module enables the model to effectively capture the information interaction
in point cloud between different channels by introducing cross-channel correlation. This
helps integrate multi-channel information to more fully understand feature relationships
in point cloud. Through this cross-channel interaction, the model is better able to adapt to
complex structures in point cloud data. In addition, previous methods use grid-sampled
superpoints as nodes and divide patches through a point-to-node grouping strategy. Since
the grid-sampled superpoints are sparse and loose, the local neighborhoods between point
cloud pairs are inconsistent, which adversely affects subsequent point matching. To this
end, it is recommended to extract points characterized by a more uniform visual field
distribution and high repeatability as nodes. The utilization of the feature pyramid effect is
suggested for scoring nodes across various receptive fields. Additionally, incorporating
multi-level point cloud sampling is advised during the process of patch fusion. During
the sampling of point cloud at different levels, the density of sampled points is regulated
through non-maximum suppression. Utilizing multi-channel sampling and point matching
comparison allows for the acquisition of more comprehensive point cloud information,
resulting in improved correspondence with template points.

2. Related Work
2.1. Traditional Point Cloud Registration Methods

The Iterative Closest Point (ICP) [6] algorithm has retained its practical importance
since it became established. Its straightforward logic and ease of implementation have
solidified its position as a staple method for aligning rigid-body transformations. It shows
strong convergence when the initial deviation is relatively small. However, its accuracy
decreases when the initial bias is large, resulting in local optima and sensitivity to noise.
Consequently, an array of ICP-based variants [19–21] have emerged.These ICP-based
variations expand upon the original concept to address its limitations. They offer enhanced
flexibility by accommodating multiple constraints such as distance, geometry, and normals,



Sensors 2023, 23, 9651 3 of 14

leading to improved robustness against initial deviations. However, this enhancement
often comes at the cost of increased computational complexity.

Among alternative strategies, feature-based registration methods like Fast Point Fea-
ture Histograms (FPFH) [22] and Signature of Histograms of Orientations (SHOT) [23]
have been developed to adapt to complex environments and noise by extracting local
features. The Random Sample Consensus (RANSAC) [24] divides the point cloud into
random subsets for local registration, effectively eliminating outliers, albeit at the expense
of computational time. Conversely, the Fast Global Registration (FGR) [7] transforms the
non-convex problem into a convex one through a smoothing mechanism, enabling rapid
global registration. However, this method exhibits heightened sensitivity to errors.

2.2. Deep Learning-Based Methods

PointNet [25] is the first deep learning model that can directly process raw point cloud
data without converting the point cloud into voxels or meshes. Thus, PointNetLK [8]
uses PointNet’s ability to extract global features from point cloud to achieve alignment via
the LK optical flow method in classical image alignment. PCRNet [9], on the other hand,
uses a multilayer perceptron (MLP) to solve the transformation parameters by treating
the registration task as a regression problem after extracting features using PointNet. But
PointNet, although it is easy to extract global features of the point cloud, loses the value of
local features, so it is not robust to noisy and partially overlapping environments.

In contrast to approaches relying on PointNet, DCP [10] uses a Dynamic Graph
Convolutional Neural Network (DGCNN) [26] to extract local features from the original
point cloud. The rotation matrix and translation parameters are then computed by Singular
Value Decomposition (SVD). RPMNet [27] introduces an auxiliary network to predict the
optimal asymptotic annealing parameters to derive soft matches for point correspondences
in integrating spatial coordinates and local geometric features. These approaches based
on local correspondence learning solve part of the point cloud matching problem to some
extent, but the network fails to converge when the rotation angle is too large. In the
method of correlated feature point detection, D3Feat [14] utilizes a fully convolutional
network architecture for joint dense detection and description. Predator [12] predicts dense
overlap scores on top of jointly estimating significant scores and learning local descriptors,
and analyses the confidence level of whether a point is located on an overlapping region.
However, they show low robustness in low overlap scenarios. This is due to the fact that
they still inherently rely on repeatable keypoints.

A facet-to-point correspondence strategy is employed, and the establishment of point
cloud correspondence is carried out in a coarse-to-fine manner. The dependence on repeat-
able key points is reduced by composing patches. Meanwhile, the multi-channel sampling
strategy has a denser set of correspondence points, while the attention mechanism-based
graph convolutional neural network enriches the correspondence of template points by in-
teracting with contextual features. The performance of various algorithms will be compared
in Section 4.

3. Methods

Point cloud registration involves aligning point cloud data of an object from distinct
viewpoints or sensors onto the same coordinate system. The objective is to fit multi-frame
images, enhance visual perception to facilitate understanding of the environment, and
provide assistance in subsequent tasks.

The central challenge of point cloud registration revolves around aligning two distinct
point clouds, P = {pi ∈ R3 | i = 1, ..., N} and Q = {qi ∈ R3 | i = 1, ..., M}, while opti-
mizing their alignment within the shared coordinate system. This task can be represented
through the subsequent model: how can we determine a transformation matrix, denoted as
T = {R, t}, which effectively reposition point cloud Q to attain optimal conformity with
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the spatial orientation of point cloud P? This issue can be effectively characterized as an
optimization problem:

arg min
R,t

N

∑
i=1

M

∑
i=1
‖Rpi + t− qi‖2

2 (1)

where R denotes the rotation matrix and t denotes the translation parameter. We estimate
the alignment transformation by finding point correspondences.

The point cloud registration model is illustrated in Figure 1. KPConv and FPN are
utilized simultaneously to downsample the input point cloud and extract features (refer
to Section 3.1). The downsampled points of the three different levels of the three layers
are also selected as the reference and feature points of the correspondences to be matched,
respectively. The graph convolutional neural matching module is used to extract the
correspondences of the feature points (Section 3.2). Subsequently, the point matching
module employs these correspondences to extend the alignment from feature points to
encompass the entire dense point cloud (Section 3.3). At last, the local-to-global alignment
method estimates the transformation matrix.

 Self-gnn
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Figure 1. Given two partially overlapping point clouds P and Q, we first adopt KPConv-FPN to
learn point cloud features at different levels. F̄P or F̄Q are connected to the centroid features through
the K-NN algorithm and then imported into the graph convolutional neural network matching
module. Their contextual features are further aggregated and enhanced through the self-attention
graph convolution network (Self-gnn) and cross-attention (CA) block. Subsequently, the patch
correspondences is mapped to the real point set through the point matching module. Finally, a
local-to-global registration method is used to calculate the transformation matrix.

3.1. Feature Extraction

The KPConv-FPN [28] technique is utilized to downsample the initial point cloud
and obtain features at the individual point level. Multiple resolution levels are sampled
from the original point cloud P . These layers of sampled point cloud exhibit progressively
diminished resolution connections, necessitating a coarse-to-fine methodology to master
correspondences. The points corresponding to the most rudimentary resolution, desig-
nated as P̂ , are regarded as the reference points to be aligned. Both multi-level transition
points, denoted as P̄ , and dense points, denoted as P̃ , are independently extracted, and
their respective acquired features are labeled as F̄P ∈ R|P̄ |×d̄ and F̃P ∈ R|P̃ |×d̃. d is the
corresponding sampling scale, determined by the resolution factor. For each modal point, a
point-to-node grouping strategy is employed, thereby constructing localized point patches
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around it. The features in F̄ and F̃ are assigned to the nearest modal point, and the ensuing
equation validates the assigned weights:

w = ‖p̃− p̂‖2/‖p̄− p̂‖2 (2)

Based on the weights, for different levels, the nearest points will be attributed to the
modal points closest to them and the resulting patch is shown below:

GPi =

{
i = argminj(‖p̄− p̂j‖2), p̂j ∈ P̂ w > 1,
i = argminj(‖p̃− p̂j‖2), p̂j ∈ P̂ w ≤ 1,

(3)

3.2. Graph Convolutional Neural Network Matching Module

Obtaining a global field of view is critical in a variety of computer vision tasks.
Therefore, we employ an attention mechanism that utilizes broader contextual information
to augment global properties. This yields enhanced geometric differentiation within the
acquired features, consequently mitigating pronounced matching ambiguities and a surplus
of aberrant matches, particularly in scenarios characterized by limited overlap. Through
the utilization of the cross-focusing mechanism, feature details from the point cloud can
be adeptly interchanged and amalgamated, leading to the identification of pivotal points
connected with regions of overlap. This innovative approach effectively solves the problem
of redundant point accumulation while simplifying the process of selecting point sets
during the alignment process. In the cross-focus module, the initial embedding contains
features from both the source and target point cloud.

Before connecting the feature codes of the two inputs, a graph neural network (GNN)
is first used to further aggregate and strengthen their contextual relationships, respectively.
The point sets P or Q are connected into a graph within the Euclidean space through the
employment of the K-Nearest Neighbors (K-NN) algorithm. Subsequently, utilizing K-NN
searches based on coordinates, the features are linked to centroid features.

fi = cat(xn
i , xn

j − xn
i ) (4)

In the aforementioned equation, xn signifies the feature encoding corresponding to
the point set P , while “cat” denotes concatenation.

hi = LeakyRLU(norm(conv( fi))) (5)

xn+1
i = max

(i,j)∈ε
hi( fi) (6)

where hi denotes the linear layer, norm denotes the activation function, max denotes
the elemental channel maximum pooling layer, and (i, j) ∈ ε denotes the two edges of
the graph.

xsel f−GNN
i = hi(cat(x0

i , x1
i , x2

i )) (7)

Cross-attention stands as a prototypical module within point cloud registration tasks,
fostering the exchange of features between two input point clouds. We apply self-attention
processing to the three-channel point cloud data, combining the resultant data with con-
volved point cloud information, and subsequently activate the aggregated point cloud using
a Multi-Layer Perceptron (MLP). The computation of the Cross-Attention (CA) module is
detailed as follows:

mi = att(xi, xj, xj) (8)

Here, att denotes Multi Head Attention. xi = xsel f−GNN
i ,xj = xsel f−GNN

j .

XCA
i = xsel f−GNN

i + MLP(cat(xsel f−GNN
i , mi)) (9)
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In the sampling of correspondences, considering patch correspondences at different
levels helps to obtain more robust point correspondences in the point matching stage. How-
ever, due to the sparse and loose nature of block matching, many correct correspondences are
often overlooked in the screening process. Our proposed multi-channel convolutional network
can complement more effective point correspondences for accurate point cloud registration.

3.3. Point Matching Module

After obtaining the template point correspondence, the dense point correspondence
will be derived based on the patch correspondence. Subsequently, the local-to-global reg-
istration (LGR) mechanism derives candidate matrices from the point correspondences
engendered by each pairing of matching patches. From these candidates, the globally
optimal transformation matrix is selected. Pertaining to the point-level, our approach
exclusively employs localized point features gleaned from the backbone network. The
underlying principle is that, upon resolving global ambiguity through template point match-
ing, point-level matching is predominantly influenced by the proximity of the matched
points. This strategic design enhances the overall robustness of the process.

For each template point correspondence, the optimal transport layer is employed to
derive localized dense point correspondences between the point clouds. The process begins
by calculating the cost matrix:

Ci = FPxi
(FQyi

)T/
√

d̃, (10)

Following this, the cost matrix undergoes expansion through the addition of new rows
and columns, infused with learnable bin parameters. Subsequently, the Sinkhorn algorithm
is employed to compute the soft assignment matrix. This matrix is then reinstated to its
original form by discarding the last row and column. This resultant matrix serves as a
confidence measure for prospective matches. Point correspondences are subsequently
culled through mutual top-k selection, whereby a point match is affirmed if it falls within
the k largest entries within its respective row and column. The point correspondences
computed from each template point match are then collected together to form the final
global dense point correspondence: C = ⋃Nc

i=1 Ci.

3.4. Loss Functions

The loss functions of the Graph Convolutional Neural Matching Module and the Point
Matching Module are divided into the following two points.

A metric learning approach is chosen to cultivate a feature space that facilitates
the assessment of the similarity of samples. This approach is tailored to more effectively
evaluate the matching interrelation between patches, facilitating the convergence of matches
and divergence of mismatches. We meticulously select patches within P , ensuring each
belongs to a group of anchor point patches denoted as N , where a positive patch in Q
is present. Pairs of patches are categorized as positive if they display a minimum of
10% overlap, and conversely as negative if they lack overlap. All other pairs are omitted
from consideration. For each anchor patch Gi ∈ N , a corresponding loss takes on the
following format:

Lc = ∑
GPi ∈N

[
‖ f (xa

i )− f (xp
i )‖

2
2 − ‖ f (xa

i )− f (xn
i )‖2

2 + α
]
+

(11)

where xa
i symbolizes the feature representation of the anchor, while xp

i signifies the feature
representation of the positive example that aligns with the anchor patch. Correspondingly,
xn

i stands for the feature representation of the negative example, which does not align
with the anchor patch. The parameter α functions as a constant threshold, integral to
guaranteeing that the disparity in distance between the positive and negative examples
remains surpassing a predefined threshold. The function [z]+ = max(z, 0) corresponds
to the Rectified Linear Unit (ReLU) function. By cultivating a suitable feature space and
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employing these strategies, we optimize the discernment of matching relationships among
patches, thereby enhancing the precision of point cloud registration.

The correspondence relationship of the real point set is sparser than that of the down-
sampled template points. The correspondence matrix Z in point matching is classified
using a negative log-likelihood loss.

During training, true point correspondences Ĉi are randomly sampled. For each Ĉi,
a set of true point correspondencesM is extracted using the matching radius r. The set
of unmatched points in the two patches is denoted as Ii and Ji. The individual point
matching loss of Ĉi is computed as:

Lp = − ∑
(x,y)∈M

log z̄i
x,y − ∑

x∈I
log z̄i

x,mi+1 − ∑
y∈J

log z̄i
ni+1,y (12)

The final loss function X consists of three loss functions together: L = Lc + Lm + Lp,
where Lm is different from Lp. The intermediate layer P̄ is used as the real point set.
This approach establishes a link between multiple levels of point correspondences, and
by exploiting these multiple levels of point correspondences, our method can compute
point cloud feature parameters from a comprehensive perspective. This strategy not only
improves the accuracy of point cloud alignment, but also enriches the representation
learning process by exploiting the hierarchical structure inherent in the data.

4. Results

This section is dedicated to the experimental validation and performance comparison
of our proposed method. The efficacy of the model is meticulously assessed through
comprehensive experimentation. To establish a robust basis for evaluation, comparisons
are conducted against several established methods, namely ICP, FGR, PointNetLK, DCP,
and RPMNet. For the evaluation process, the ModelNet40 dataset [29] is employed as a
benchmark. Through testing and analysis, distinctive advantages offered by our model
in contrast to these existing methodologies are elucidated. Furthermore, to ascertain
the generalizability of our approach in real-world scenarios, the evaluation is extended
to encompass actual data. Engagement with the 3DMatch [30], 3DLoMatch [31], and
KITTI [32] datasets is carried out to test the adaptability and reliability of our model within
practical contexts.

4.1. ModelNet40

Our algorithm undergoes a thorough evaluation process on the ModelNet40 dataset,
which encompasses computer-aided design (CAD) models representing 40 diverse classes
of human-made objects. The evaluation strategy involves training on a set of 9756 models
and testing on a separate collection of 2555 models. In alignment with the experimental
framework established by RPMNet, adherence to specific guidelines is maintained. For
each given shape, 1024 points are selected to constitute a point cloud. Additionally, an
element of randomness is introduced into the evaluation process. Specifically, three Euler
angles per point cloud are generated, each within the range of [0, 90°]. Furthermore,
translations are introduced within the range of [−0.5, 0.5]. The original and target point
clouds are distinguished in red and green.

A consistent metric framework is adopted, aligning with the assessment criteria
employed by RPMNet [11] to evaluate the performance of our algorithm. This approach
ensures comparability with previous research and underscores the reliability of our results.
In this metric framework, the evaluation of alignment is performed by calculating the
average isotropic rotation and translation errors, along with the average absolute errors of
the Euler angles and translation vectors. If the overlapping regions of the two point clouds
are identical, then all error parameters should be close to zero.

The performance of the algorithm is thoroughly evaluated across various point cloud
scenarios, including clean point cloud, environments with noise, and instances of partially
visible point cloud. The experimental outcomes are graphically presented in Figure 2 and
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Tables 1–3. Since some algorithms do not have reliable open source implementations, some
data come from their papers.

Initial

ICP

PointNetLK

Ours

GeoTransformer

(a) (b) (d)(c) (e)

Figure 2. Examples of qualitative registration: (a,b) clean data, (c) noisy data, (d,e) partially visible
noisy data.

Table 1. Performance on clean data.

Model Isotropic
R(°)

Isotropic
t(m)

Anisotropic
R(°)

Anisotropic
t(m) Time (s)

ICP 5.478 0.0765 11.443 0.1625 0.013
FGR 0.010 0.0001 0.022 0.0002 0.086

PointNetLK 0.418 0.0241 0.847 0.0054 0.157
DCP 2.074 0.0143 3.992 0.0292 0.009
PCR 2.691 0.0346 5.682 0.0735 0.059

GeoTransformer 0.072 0.0025 0.091 0.0023 0.023
Ours 0.034 0.0003 0.074 0.0005 0.052

Table 2. Performance on data with Gaussian noise.

Model Isotropic
R(°)

Isotropic
t(m)

Anisotropic
R(°)

Anisotropic
t(m) Time (s)

ICP 5.863 0.0823 12.145 0.1726 0.024
FGR 2.483 0.0325 4.274 0.0631 0.118

PointNetLK 1.528 0.0128 2.926 0.0262 0.214
DCP 4.528 0.0345 8.922 0.0707 0.020
PCR 2.943 0.0417 6.255 0.0804 0.122

GeoTransformer 1.156 0.0097 1.437 0.0213 0.045
Ours 0.525 0.0072 1.325 0.0127 0.083

Table 3. Performance on partially visible data with noise.

Model Isotropic
R(°)

Isotropic
t(m)

Anisotropic
R(°)

Anisotropic
t(m) Time (s)

ICP 13.719 0.132 27.250 0.280 0.017
FGR 19.266 0.090 30.834 0.192 0.124

PointNetLK 15.931 0.142 29.725 0.297 0.176
DCP 6.380 0.083 12.607 0.169 0.014
PCR 4.437 0.065 9.218 0.135 0.146

GeoTransformer 1.332 0.015 2.213 0.052 0.067
Ours 0.917 0.012 1.577 0.018 0.101
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From Figure 2, it can be concluded that traditional methods such as ICP are susceptible
to initialization, which is particularly obvious when the rotation angle is large. On the other
hand, the efficacy of FGR is weakened in noisy environments because FPFH is sensitive to
the noise problem under different point cloud conditions. In contrast, PointNetLK performs
well in noisy environments, but still faces challenges in partially visible data. The reason for
this phenomenon is that global feature methods emphasize the overall features of the point
cloud rather than the specific local features of individual points. GeoTransformer works
well in clean and noisy point clouds. Even in cases involving partially visible noise, superior
registration results are observed for point clouds with simple structures (d). However, in
the case of point cloud (e), our algorithm outperforms GeoTransformer. This is because
injecting geometric information can improve performance, but the estimation method
based on the geometric transformer does not rely on a stable estimator like RANSAC,
which increases the difficulty in the estimation of actual super points, and GNN contains
the transformation of the kNN graph, invariance, and better performance in transformation
estimation. Therefore, our method improves the registration effect more significantly.

The tabular data in Tables 1–3 is further analyzed. Table 1 shows that FGR performs
better than us in clean data, and then its performance in noisy data reflects the previous
inference. The following focuses on comparing some visible noise point cloud data in
Table 3. The PointNetLK algorithm, which performs well in Table 2, meets its Waterloo,
and the DCP also suffers more in the absence of point clouds. Our algorithm still maintains
a relatively excellent score, while still improving compared to the data of GeoTransformer.
In terms of registration efficiency, ICP boasts the simplest algorithm structure. Given
the small point cloud base in this experiment, it highlights the superiority of geometric
algorithms. Neither FGR nor ICP utilizes the GPU, resulting in FGR’s efficiency not being
significantly enhanced after adding normal vector calculations. DCP adopts an end-to-end
design model, eliminating the disadvantages of multi-stage calculation iterations seen in
other algorithms, and it performs exceptionally well in computational efficiency due to
GPU utilization. However, as the size of the point cloud increases, the performance of
the end-to-end algorithm will experience nonlinear decline. GeoTransformer, utilizing
geometric information to improve registration speed, achieves faster transformation estima-
tion by omitting RANSAC. In contrast, our method utilizes multi-level feature extraction
which, although it reduces part of the registration speed, increases the accuracy of feature
extraction. Furthermore, the introduction of template points through hybrid sampling
enhances the effectiveness of plane segmentation and feature matching.

4.2. Indoor Benchmarks: 3DMatch and 3DLoMatch

The point cloud data of the real environment is more complex than ModelNet40. The
larger number of point cloud and lower overlap area will make many algorithms effective
on ModelNet lose their advantages. The robustness of our algorithm is assessed in real
environments with low overlap, specifically on the 3DMatch and 3DLoMatch datasets.

The 3DMatch dataset comprises a total of 62 scenes, distributed for training (46 scenes),
validation (8 scenes), and testing (8 scenes) purposes. The 3DLoMatch dataset is a more
challenging dataset derived from 3DMatch. In the original 3DMatch dataset, only point
cloud pairs with an overlapping rate greater than 30% are employed for testing. In contrast,
the testing set of 3DLomatch includes point cloud pairs with an overlapping rate ranging
between 10% and 30%. Preprocessed training data are utilized, and its performance is
evaluated using the established 3DMatch protocol.

In line with previous assessments, the performance of our algorithm is measured
using three distinct metrics:

• Interior Point Ratio (IR): this metric quantifies the proportion of hypothetical corre-
spondences with residuals falling below a predetermined threshold (e.g., 0.1 m) under
the ground truth transformation;

• Feature Matching Recall (FMR): FMR denotes the fraction of point cloud pairs wherein
the interior point ratio surpasses a specified threshold (e.g., 5%);
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• Matching Recall (RR): RR involves evaluating the fraction of point cloud pairs ex-
hibiting transformation errors below a given threshold (e.g., Root Mean Square
Error < 0.2 m).

Experiments were performed identically on data from FCGF [33], D3feat, Predator,
Cofinet and GeoTransformer (data obtained from the paper). As can be seen from Table 4,
our model achieves the best performance in all three indicators. In 3DLoMatch (Table 5),
compared to GeoTransformer, the FMR indicator is slightly insufficient. This is because
when the point cloud overlap rate is too low, although multi-level sampling increases
the number of point cloud pairs, the number of tasks with high confidence in the total
registration tasks will decrease. Figure 3a,b represents the registration results of 3DMatch,
and Figure 3c–e represents the registration results of 3DLoMatch. The algorithm achieves
good registration results in both data sets.

Table 4. Registration results on 3DMarch.

Model IR (%) FMR (%) RR (%)

FCGF [33] 48.7 97.0 83.3
D3feat [14] 40.4 94.5 83.4

Predator [12] 57.1 96.5 90.6
CoFiNet [15] 51.9 98.1 88.4

GeoTransformer [18] 70.3 97.7 91.5
ours 72.5 98.5 93.0

Table 5. Registration results on 3DLoMarch.

Model IR (%) FMR (%) RR (%)

FCGF [33] 17.2 74.2 38.2
D3feat [14] 14.0 67.0 46.9

Predator [12] 28.3 76.3 61.2
CoFiNet [15] 26.7 83.3 64.2

GeoTransformer [18] 43.3 88.1 74.0
ours 45.6 87.2 75.3

(a) (b) (c) (d) (e)

Figure 3. Results of 3DMatch and 3DLoMatch experiments. (a,b) are from 3DMatch, while (c–e) are
from 3DLoMatch.

4.3. Outdoor Benchmark: KITTI Odometry

The KITTI odometry dataset encompasses 11 sequences capturing diverse outdoor
driving scenarios, all of which are captured using LiDAR technology. Our utilization of
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this dataset is distributed as follows: sequences 0 to 5 are designated for training purposes,
sequences 6 and 7 serve as validation sets, and sequences 8 to 10 constitute the testing
data. In alignment with established practices in prior research, we adhere to the stipulation
that only point cloud pairs separated by a minimum distance of 10 m are considered
for evaluation.

Consistent with established practices in earlier studies, our performance evaluation
hinges on three critical metrics:

• Relative Rotation Error (RRE): this metric quantifies the geodesic distance between
the rotated matrix derived from our method and the corresponding ground truth
rotated matrix;

• Relative Translation Error (RTE): RTE computes the Euclidean distance between the
rotated matrices and the ground truth translation vectors;

• Recall to Alignment (RR): RR is a comprehensive metric reflecting the fraction of
point-cloud pairs wherein both the RRE and RTE fall below specified thresholds
(e.g., RRE < 5° and RTE < 2 m).

As shown in Table 6, our model is compared with [12,14,15,18,33]. In comparison to the
real environment on the ground, we ensured similar displacement errors and rotation errors.
Compared to other models, our metrics do not open a large gap, but still demonstrate the
good generalizability of our model in outdoor environments. The registration effect is
shown in the Figure 4.

Table 6. Registration results on KITTI odometry.

Model RRE (°) RTE (m) RR (%)

FCGF [33] 0.30 9.5 96.6
D3Feat [14] 0.30 7.2 99.8

Predator [12] 0.27 6.8 99.8
CoFiNet [15] 0.41 8.2 99.8

GeoTransformer [18] 0.24 6.8 99.8
ours 0.218 5.4 99.8

Figure 4. Results of KITTI experiments. (a,b) Point clouds collected using different radar positions
and (c) is the result after registration.
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4.4. Ablation Experiment

To illustrate the influence of each component on network performance, an ablation
study is conducted in this section. Various modules within the network are systematically
added and removed, allowing for an evaluation of their respective contributions to the final
matching performance. Experiments are conducted on partially visible point cloud with
noise. For easier comparison of results, we selected relative rotation error (RRE), relative
translation error (RTE), and root mean square error (RMSE) as measurement standards.
Experimental results (Table 7) show that a single graph convolution module can improve
some accuracy, but there is still a gap with Transformer. After adding the cross-attention
mechanism, our module indicators are already better than Transformer. The addition of
Multi-channel further increased the rotation error and translation error by 7.3% and 5.8%.
In addition, experimental results prove that our improved method achieves performance
improvement compared to the baseline model and has good versatility.

Table 7. Ablation experiments.

Baseline Trans-Former Self-gnn CA Blocks Multi-Channel RRE (°) RTE (m) RMSE

X 2.154 0.033 0.026
X X 1.577 0.018 0.017
X X 1.723 0.029 0.021
X X X 1.554 0.017 0.016
X X X X 1.44 0.016 0.015

5. Conclusions

This paper proposes a novel network to solve the problem of point cloud registration
in low-overlap environments. Compared with previous work, our model uses multi-
layer patches to enrich correspondences and can still extract reliable correspondences
from disordered point clouds in the environment of sparse keypoints. In addition, the
template point matching module enhances the contextual features of patches through
graph convolutional neural networks and multiple sub-attention mechanisms, guiding the
model to match nodes with nearby regions and narrowing the search space for subsequent
refinement. Experiments on multiple datasets show that our proposed method is very
robust and still has high general-purpose capabilities on outdoor datasets.
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