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Abstract: Problem: Phonetic transcription is crucial in diagnosing speech sound disorders (SSDs) but
is susceptible to transcriber experience and perceptual bias. Current forced alignment (FA) tools,
which annotate audio files to determine spoken content and its placement, often require manual
transcription, limiting their effectiveness. Method: We introduce a novel, text-independent forced
alignment model that autonomously recognises individual phonemes and their boundaries, ad-
dressing these limitations. Our approach leverages an advanced, pre-trained wav2vec 2.0 model
to segment speech into tokens and recognise them automatically. To accurately identify phoneme
boundaries, we utilise an unsupervised segmentation tool, UnsupSeg. Labelling of segments employs
nearest-neighbour classification with wav2vec 2.0 labels, before connectionist temporal classification
(CTC) collapse, determining class labels based on maximum overlap. Additional post-processing,
including overfitting cleaning and voice activity detection, is implemented to enhance segmentation.
Results: We benchmarked our model against existing methods using the TIMIT dataset for normal
speakers and, for the first time, evaluated its performance on the TORGO dataset containing SSD
speakers. Our model demonstrated competitive performance, achieving a harmonic mean score of
76.88% on TIMIT and 70.31% on TORGO. Implications: This research presents a significant advance-
ment in the assessment and diagnosis of SSDs, offering a more objective and less biased approach
than traditional methods. Our model’s effectiveness, particularly with SSD speakers, opens new
avenues for research and clinical application in speech pathology.

Keywords: forced alignment; wav2vec 2.0; phoneme segmentation; speech sound disorders; phonological
disorders; speech therapy

1. Introduction
1.1. Problem Statement

Speech sound disorders (SSDs) is used to describe a heterogeneous group of indi-
viduals who have difficulties producing speech, which interferes with communication [1].
It is the most prevalent communication disorder in young children, affecting approx-
imately 3–6% of Australian preschoolers and representing up to 75% of a paediatric
speech-language pathologists’ (S-LPs) caseload [2,3]. SSD can have serious life-long im-
pacts, including poorer academic achievement, fewer social interactions and increased
risk of juvenile delinquency [4,5]. Therefore, it is crucial for them to receive timely and
accurate diagnoses.

Evidence-based practice guidelines recommend the use of phonetic transcription in the identi-
fication and classification of speech error patterns [6], which is essential for diagnosing SSDs [7].
Using the International Phonetic Alphabet (IPA) (https://www.internationalphoneticalphabet.
org/, accessed on 25 November 2023) to transcribe the consonants and vowels produced
by a client, S-LPs identify differences between typical and disordered speech production
and classify type of SSD, which may include dysarthria, childhood apraxia of speech, and
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phonological disorder [8–10]. Yet, it is well documented that phonetic transcription is a
specialist skill [11] and barriers to its use within the clinical setting include, but are not
limited to, perceptual bias, transcriber experience and time constraints [8,11–13].

Researchers have, therefore, long advocated for instrumentation to support percep-
tual analyses during the assessment and diagnosis of SSDs. Technological advances
and access to instrumentation have developed our understanding of important articu-
latory distinctions or convert contrasts that are not perceivable to the human ear [13–15].
McKechnie et al. [16] sought to identify automated speech assessment tools currently
available to S-LPs and concluded that although automatic speech recognition tools show
promise, further work is needed in training models with a focus on increasing accuracy
and the capacity for differential diagnosis of SSDs.

The following subsections will briefly review different models for automatic speech
recognition and phoneme segmentation, which are the key components of FA tools.

1.2. Automatic Speech Recognition

Automatic speech recognition (ASR) is a technology that enables the conversion of
spoken language into written text, making use of machine learning algorithms and acoustic
models [17,18]. Over the years, significant advancements in neural networks, such as
recurrent neural network (RNN) [19], bi-directional long short-term memory (BLSTM) [20],
connectionist temporal classification (CTC) [21], and variants based on the generic networks,
have been instrumental in advancing ASR, particularly from the 1990s to the 2010s [22].
In [23], researchers conducted a comprehensive assessment of phoneme classification
performance among BLSTM, LSTM, BRNN, RNN, and a Multi-layer Perceptron (MLP)
based on the TIMIT dataset [24]. Their findings suggest that BLSTM outperformed other
models, achieving a test set accuracy of 70.2%. This superiority can be attributed to BLSTM’s
bidirectional training, which enables them to incorporate a richer context for prediction.

Inspired by the benefits brought by stacked conventional deep networks, a deep long
short-term memory RNN was introduced to bolster the field of speech recognition. The
model combined a stacked BLSTM paired with CTC [25]. A stacked BLSTM combines
multiple BLSTM layers, with each layer building on the representations learned by the
previous layer. The aim is to facilitate abstraction not only across time but also within
spatial dimensions, which is different from traditional RNNs that rely primarily on temporal
abstraction. Increasing the depth in this case reduced the phoneme error rate (PER) from
23.9% to 18.4%.

In recent years, more advanced neural networks, such as the Residual Network
(ResNet) [26], Transformer [27], and Conformer [28], have been proposed, opening up new
possibilities for researchers. Jasper [29] is an end-to-end convolutional neural acoustic
model that includes 1D convolutions, batch normalisation, ReLU, dropout, and resid-
ual connections.

QuartzNet [30] is a variant of Jasper that employs a smaller and more efficient model
architecture. QuartzNet replaces the 1D convolutions in Jasper with time-channel separable
convolutions, reducing the number of parameters and computations while maintaining
high performance in speech recognition. QuartzNet utilises more blocks and modules than
Jasper but with fewer filters and kernel sizes.

Transformer is an attention-based sequence-to-sequence model [27], capable of mod-
elling long-term dependencies and parallelising computations more effectively than recur-
rent or convolutional networks. Transformer can be combined with convolutional layers to
form hybrid models, such as the Conformer. Conformer uses a convolution-augmented
attention module comprising a point-wise convolution, a multi-head self-attention, and
a feed-forward layer [28]. The convolution layer helps model local dependencies and
positional information, while the self-attention layer aids in modelling global dependencies
and context. Conformer outperforms Transformer and CNN-based models on several
ASR benchmarks.
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However, it is important to emphasise that Conformer is a supervised model requir-
ing a large labelled dataset to perform well. In the case of speech sound disorders re-
search, this is challenging to meet in practice due to this scarcity of annotated dysarthric
speech data.

Baevski et al. [31] introduced a self-supervised model named wav2vec 2.0, designed
to learn effective speech representations from unlabelled data. It could be then fur-
ther fine-tuned for many downstream tasks, such as automatic speech recognition [32],
speaker recognition, translation, emotion detection, music classification. The ability to
learn speech representations by itself is advantageous in addressing the scarcity of SSD
datasets. The performance metrics of the aforementioned networks in are summarised in
Tables 1 and 2.

Table 1. Performance of various ASR models on LibriSpeech dataset [33]. Lower WER indicates
better performance. WER means “word error rate”.

Model Source WER

Jasper [29] 7.84%
QuartzNet [30] 7.53%
Conformer [28] 3.9%

wav2vec 2.0 [31] 3.3%

Table 2. Performance of various ASR models on TIMIT dataset. Lower PER indicates better perfor-
mance. PER means “phoneme error rate”.

Model Source PER

MLP (10 frame time-window) [23] 36.9%
LSTM (5 frame delay) [23] 34.0%

BRNN [23] 31.0%
BLSTM (retrained) [23] 29.8%

CTC-5L-250H [25] 18.4%
wav2vec 2.0 [31] 8.3%

1.3. Phoneme Segmentation

Phoneme segmentation, also known as phoneme boundary detection, involves di-
viding spoken words into the smallest distinctive units of sound in a language that can
distinguish one word from another. Phoneme segmentation can be either supervised or un-
supervised. In the supervised context, there are two different approaches: text-independent
phoneme segmentation and phoneme-to-speech alignment (or forced alignment). Whilst
the latter has access to a set of pronounced phonemes, the former does not and must
predict both what has been uttered and where. In this work, we focus on the former, i.e.,
text-independent phoneme segmentation. In the supervised scheme, the ultimate goal
is to learn a function that can map the speech utterance with the target boundaries as
accurately as possible. The supervised phoneme segmentation has traditionally been
performed by tools that build upon Hidden Markov Model–Gaussian Mixture Model
(HMM-GMM) architecture [34–37]. These tools perform inadequately when dealing with
impaired speech, with phoneme label accuracy dropping as low as 46.32%, which do not
meet clinically acceptable standards [16]. The study discussed in [38] delved into the
utilisation of an RNN network (BLSTM) in conjunction with an Mel Frequency Cepstral Co-
efficients (MFCC) feature extractor for predicting phoneme boundaries. With the assistance
of phonetic transcriptions, they achieved very competitive results for normal speakers
on TIMIT.
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However, phonetic transcription is a time-consuming task, especially when transcrib-
ing disordered speech. Consequently, recent years have witnessed a surge in the popularity
of unsupervised learning and self-learning approaches. In [39], researchers employed a
convolutional neural network (CNN) to directly segment raw audio data. Contrastive
learning was utilised to train the model to differentiate between samples by maximising
the similarity between positive (similar) pairs and minimising the similarity between neg-
ative (dissimilar) pairs. Remarkably, this unsupervised phoneme segmentation model
has been shown to be able to identify the phoneme boundaries well. Thus, it will be
incorporated to the proposed pipeline to initialise phoneme boundaries for subsequent
segmentation tasks.

1.4. Contributions

The immediate objective of our research is to develop a text-independent forced
aligner capable of automatically generating phonetic transcriptions. This tool aims to assist
S-LPs in the manual task of phonetic transcription. The long-term goal is to integrate the
current model with the identified significant acoustic features to create a computer-assisted
speech assessment system. In this paper, our proposed text-independent forced alignment
model simultaneously addresses the phoneme recognition and phoneme segmentation (also
known as forced alignment), which is a much more challenging task and not many existing
tools are available. Our main contributions are: (1) employing advanced self-supervised
learning models to identify individual phonemes within the input speech signal and
utilising unsupervised learning model to detect the boundaries of phonemes, (2) developing
algorithms for the precise determination of phoneme boundaries and subsequent data
post-processing. We build upon existing state-of-the-art methodologies in this research and
extend our preliminary study in [40].

This paper is structured as follows. Section 2 provides detailed information about
the developed model. In Section 3, datasets and evaluation metrics are described com-
prehensively. Section 3 includes a series of experiments and their corresponding results.
Remarkable conclusions and future work are presented in the final section. Furthermore,
the implementation of the proposed method will be made publicly available on the GitHub
repository https://github.com/YingLi001/phoneseg, accessed on 1 November 2023.

2. Methodology

To tackle the challenging problem of performing forced alignment of an audio record-
ing without manually transcribing it first, we employed a combination of advanced tech-
nologies with several inventive methods. First, to recognise the phonemes, we utilised a
language model-free variant of wav2vec 2.0, an architecture designed for self-supervised
learning of speech representations. This provides a preliminary prediction of the phonemes
present in the audio. Subsequently, we computed the boundaries of these phonemes using
a novel algorithm that leverages both the preliminary predictions and an unsupervised
segmentation model, UnsupSeg, to detect boundaries for each phoneme. Through this
innovative approach, we refine both the boundaries and the phonemes themselves.

2.1. Proposed Model

Our proposed forced aligner pipeline, illustrated in Figure 1, comprises three es-
sential components: (1) a phoneme recogniser based on wav2vec 2.0; (2) a preliminary
unsupervised phoneme segmenter based on UnsupSeg; and (3) a novel forced aligner. The
first two components were employed to process audio inputs. The third component intro-
duced a groundbreaking forced alignment method—a crucial part of our proposed pipeline.
Details about each component are found in the following sub-sections.

https://github.com/YingLi001/phoneseg
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Figure 1. The pipeline of the proposed model.

2.1.1. Phoneme Recognition

Wav2vec 2.0 is a self-supervised end-to-end model comprised of convolutional and
transformer layers. The model encodes raw audio inputs χ into latent speech represen-
tations Z1, ..., ZT for T time-steps through a multi-layer convolutional feature encoder
f : χ → Z. The speech representations are then fed to a transformer-masked network
g : Z → C to build contextualised representations C1, ..., CT . Meanwhile, the latent speech
representation output is discretised to q1, ..., qt via a quantisation module Z → Q. The
quantised representations represent the targets in the self-supervised learning objective [31].
The feature encoder is composed of seven convolutional blocks with 512 channels, strides
of (5, 2, 2, 2, 2, 2, 2) and kernel widths of (10, 3, 3, 3, 3, 2, 2). The network contains 24 blocks,
1024 dimensions, 4096 inner dimensions, and 16 attention heads. The complete architecture
of this model is shown in Figure 1 of the original paper [31].

We fine-tuned a pre-trained wav2vec 2.0 acoustic model based on the wav2vec2-xlsr-
1b model, which is available in Hugging Face wav2vec 2.0 implementation. The initial
step is pre-processing datasets. In the Hugging Face platform, the datasets library [41] is
employed to efficiently load and pre-process our datasets. This library leverages a mapping
function that enables batch loading and multi-threading, resulting in a significant reduction
in dataset processing time. Additionally, this library conveniently includes various public
datasets, such as TIMIT, with ready-to-use scripts provided for easy access. However,
the TORGO dataset is not part of the library’s offerings. As a result, a similar script
was developed to efficiently load the TORGO dataset. In the script, each audio sample
in both the TORGO-TD and TORGO-SSD groups was treated as an individual instance.
The number of instances in those groups has been tabulated in Table 3. Each instance
is associated with several attributes, as detailed in the subsequent list. Attributes like
File, Text, and Phonetic Detail are deemed essential, while others are considered optional.
During the pre-processing phase, we have excluded these optional attributes to streamline
our data-handling process.

Table 3. The number of instances in TORGO dataset.

Group TRAIN TEST

TORGO-TD 1925 618
TORGO-SSD 1583 634

• File: Path to the corresponding audio file.
• Text: The corresponding transcription for the audio file.
• Phonetic Detail: The corresponding phonetic transcription for the audio file represent-

ing as <BEGIN_SAMPLE><END_SAMPLE><PHONEME>. BEGIN_SAMPLE is the
beginning integer sample number for the segment and END_SAMPLE is the ending
integer sample number for the segment. PHONEME is a term used in phonetics
to represent a single unit of phonetic transcriptions, typically using the ARPABET
phonetic symbols.
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• Word Detail: The word-level transcription for the audio file representing as <BE-
GIN_SAMPLE><END_SAMPLE><WORD>. BEGIN_SAMPLE is the beginning inte-
ger sample number for the segment and END_SAMPLE is the ending integer sample
number for the segment. WORD is a single word from the orthography.

Pre-processing data for fine-tuning wav2vec 2.0 includes creating a tokeniser, feature
extractor, processor, and data collator. In this study, the tokeniser was a dictionary mapping
phonemes into numerical representations. The 45 unique ARPABET phonemes in the
TORGO dataset were collected in a vocabulary list and then converted into an enumer-
ated dictionary. Because there were some limitations of the current version of Hugging
Face, some multi-character ARPABET phonemes, such as “aa”, “ay”, and “zh”, cannot
be represented in the dictionary. Therefore, we encoded phonemes to Unicode emojis
starting from U+1F600. A Hugging Face wav2vec 2.0 tokeniser was created from the
Unicode to a numeric dictionary. To extract sequential features from input speech, a feature
extractor was declared with: feature size = 1, sampling rate = 16 kHz, padding value = 0,
and normalise = False. The processor combined the tokeniser and the feature extractor to
pre-process our datasets. Additionally, a data collator was created to collate a batch of data
into a format suitable for model training. Due to the input length of wav2vec 2.0 model
being significantly longer than the output length, we dynamically padded the training
batches to the longest sample in their batch instead of the overall longest sample. It is
beneficial for improving the fine-tuning efficiency.

Finally, we fine-tuned a large-scale pre-trained model named wav2vec2-xls-r-1b
on a disordered speech dataset. Compared with our preliminary work [40], we utilised
a large-scale pre-trained model named wav2vec2-xls-r-1b. It was pre-trained on 436k
hours of unlabelled speech sampling at 16 kHz in 128 languages. During the pre-training
process, the model learned latent representations of many languages. However, all of
these representations was not useful until further training the model on a “down-stream”
task. Therefore, we fine-tuned the learned representations on labelled data and added a
randomly initialised output layer on top of the Transformer to predict phonemes. During
the fine-tuning process, the model has been optimised by minimising a CTC loss [21]. The
loss was obtained from the PER metric by comparing the difference between predictions
generated by the fine-tuned model and the ground truth provided by the TORGO dataset.
PER is the metric derived from Levenshtein distance which is a string metric for measuring
the difference including substitution, insertion, deletion, and correction between two
sequences. We used an epochs of 50, batch size of 8, and learning rate of 1× 10−5, which
was warmed up for the first 10% of the training.

2.1.2. Unsupervised Phoneme Segmentation

UnsupSeg The unsupervised segmentation model named UnsupSeg has been utilised
to identify phoneme boundaries in raw waveform data [39]. UnsupSeg is a convolutional
neural network that directly operates on the raw waveform of the speech signal. A feature
extractor transforms the input waveform into a sequence of latent vectors via f : χ→ Z.
The network f learns to identify spectral changes in the signal using the Noise-Contrastive
Estimation principle [42], which is a technique for learning representations by contrasting
positive and negative examples. The feature encoder is comprised of five blocks of 1D
strided convolution, followed by Batch-Normalisation and a Leaky ReLU [43] nonlinear
activation function. The network f has kernel sizes of (10, 8, 4, 4, 4), strides of (5, 4, 2, 2, 2)
and 256 channels per layer. The complete architecture of this model is depicted in Figure 1
of the original paper [39].

The model is trained in a self-supervised manner, meaning that it does not require any
human annotations in the form of target boundaries or phonetic transcriptions. We trained
the model on TIMIT with the following parameters: learning rate = 2× 10−4, epochs = 200,
batch size = 8. For TORGO dataset, we explored different hyper-parameters. The UnsupSeg
model achieved the best performance, r-val is equal to 0.65, using the same settings as



Sensors 2023, 23, 9650 7 of 25

in the TIMIT dataset. At test time, a peak detection algorithm is applied over the model
outputs to produce the final boundaries.

Voice Activity Detection Voice activity detection (VAD) was incorporated to eliminate
extraneous segments during silent periods. This public implementation produced a frame-
based voice activity probability sequence, which was represented by 0 (non-speech) or 1
(speech). To incorporate this output with the UnsupSeg model, we developed Algorithm A1
(in Appendix A) to convert the probability sequence into rising and failing edge pairs. Any
segments found within the region of non-speech were subsequently deleted. The entire
process has been visually represented in Figure 2. To accurately and effectively detect
voice activities in disordered speech, we conducted experiments using different parameter
values. Taking the trade-off between training efficiency and accuracy into account, our
implementation achieved a substantial performance with the following parameters: number
of FFT points nFFT = 2048, window length = 0.025, hope length = 0.01, threshold = 0.5.

Segments:

Audio:

Posterior:
1

0

Filtered
Segments:

Figure 2. Visual guide on how the VAD algorithm will remove silenced segments. Grey dashed line
represents speech boundary pair. Small vertical lines represent segments.

2.1.3. Forced Alignment

The forced alignment algorithm was developed to combine the outputs of wav2vec 2.0
and UnsupSeg models. As shown in Figure 3, (a) is the recognised tokens and weak posi-
tional information provided by wav2vec 2.0 and (c) is the unlabelled segments produced
by UnsupSeg. We utilised the recognised phoneme within each segment to annotate that
segment. For instance, when a segment spans from time t1 to t2 and contains the label L, we
assign the label L to the entire segment. However, some segments may not have phonemes
or may have several conflicting phonemes. In Figure 3, we depicted the segments with
conflicting phonemes, highlighting the challenge we faced. This issue was successfully
addressed by our novel algorithm, which, instead of directly assigning the recognised
phoneme to that segment, utilised the nearest neighbor approach to determine the class
region (boundaries) for each phoneme. The class region for each phoneme is described by

Ri : x → πi ∀ Ri εx (1)

calculated by using the midpoint of two successive phonemes

Boundary(R1 : R2) =
t1 + t2

2
∀t1 < t2 ∧ @ t1 ≤ tx ≤ t2∀x. (2)
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Here, Ri denotes region i belonging to class πi, x denotes the item to be classified, ti denotes
the time of label impulse i, and tx denotes the time of any segment that is not t1 or t2.

However, the phonemes recognised by wav2vec 2.0 might be located closer to either
the start or end of the true segment. To address this, we introduced a bias factor to calculate
the class region boundaries as shown in Equation (3). The bias factor β allows us to adjust
the boundary position, bringing it closer (for β→ 1) or moving it farther (for β→ 0) from
the uppermost segment:

BiasedBoundary(R1 : R2) = (1− β)t1 + βt2 ∀ t1 < t2 ∧ @ t1 ≤ tx ≤ t2. (3)

As can be seen, the mid-point boundary is a special case of the biased boundary when
β = 0.5. The bias allows us to adjust the boundary more specific to the data.

Multiple
Phonemes

No
Phonemes

Figure 3. The demonstration of segments with no phoneme or conflicting phonemes. (a) The outputs
of wav2vec 2.0 model. “[PAD]” tokens does not correspond to anything and is simply removed from
the output. (b) The recognised meaningful phonemes. Blue lines represent “impulse” of phoneme
before applying CTC collapsing. (c) The segments produced by UnsupSeg model.

After obtaining the class regions, as shown in Figure 4b, we conducted a comparison
of the overlapping sections between each class region and the corresponding segment. The
phoneme’s class region with the greatest overlap was selected as the label for that segment,
as illustrated in Figure 5. Within the segment spanning from 0.54 s to 0.63 s, the class
regions of three phonemes, including “t”, “r”, “ey”, overlap with it. Upon calculating the
overlap sections, the phoneme “r” is the dominant and, therefore, determined as the final
label for this segment.

To further increase the accuracy of the predictions, we applied post-processing meth-
ods to remove overfitted phonemes through the following steps:

1. Get the word spoken with CTC collapse.
2. Calculate transitions based on every two letters, i.e., cat = (c-a, a-t).
3. Scan through the labelled segments and amalgamate every two labels that are the

same but are not a permissible transition.

Cleaning helps merge several successive duplicate segments that result from over-
fitting. It preserved successive duplicate segments in places where this is expected be-
haviour. Words with expected behaviour are ones that have two similar successive sounds
in its true pronunciation, such as a word “ca-ck-ck-al” (cackal).
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(a) Timestamps for Meaningful Tokens
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(b) Class Regions for Meaningful Tokens
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Figure 4. The visualisation of utilising the nearest neighbor approach to determine the class region
(boundaries) for each phoneme. (a) The recognised meaningful phonemes via wav2vec 2.0. (b) The
determined colored class region for each phoneme. (c) The segments provided by UnsupSeg model.
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Figure 5. Example of the process of determining the label of an unlabelled segment.

We implemented the above strategy in two different ways. The first method, soft
cleaning (see Algorithm 1), was implemented such that tt can be considered as a local
clean. It scanned a sequence of segments, and when it found each transition, it moved onto
the next transition. It also moved onto the next transition when it found a duplicate. The
limitation of this was that only the first duplicate segment pair would be amalgamated.
The benefit was that it would amalgamate segments even when there was a permissible
transition elsewhere in the sequence, so duplicates would only be amalgamated where
wav2vec 2.0 specified that they could be.
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Algorithm 1 Soft Clean

1: procedure SOFT CLEAN(segList, wavPath)
2: segList is a list of segments which have a start, stop and phone label
3: transitionsList is a new List
4: segList← copy segList by value
5: Tokens← predict wavPath with W2V2 + CTC Collapse
6: for ii in range of 0 to (length of Tokens - 1) do
7: Append tuple (Tokens[ii], tokens[ii+1]) to transitionsList
8: end for
9: index← 0

10: for jj in range of 0 to (length of transitionsList - 1) do
11: Found← false
12: LimitReached← false
13: while Found is False and LimitReached is False do
14: if Length of segList ≤ index then
15: LimitReached← true
16: else
17: SegFrom← segList[index]
18: SegTo← segList[index + 1]
19: if segFrom[label] == segTo[label] and segFrom[label] == transition-

sList[index][label] then
20: segList[index] ← Tuple (segList[index][label], segList[index][start],

segList[index+1][stop])
21: else if segFrom[label] == transitionsList[jj][label] and segTo[label] ==

transitionsList[jj][1] then
22: found← True
23: index← index + 1
24: else
25: index← index + 1
26: Break
27: end if
28: end if
29: end while
30: end for
31: return segList
32: end procedure

The second method, hard cleaning (see Algorithm 2, did not take into account where the
transition happened in the sequence. If wav2vec 2.0 specified that a duplicate transition
(i.e., “ah” → “ah”) was allowed to occur at the end of the sequence, but the cleaning
segment found one at the start of the sequence, it would amalgamate it automatically.
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Algorithm 2 Hard Clean

1: procedure HARD CLEAN(segList, wavPath)
2: segList is a list of segments which have a start, stop and phone label
3: transitionsList is a new List
4: segList← copy segList by value
5: Tokens← predict wavPath with W2V2 + CTC Collapse
6: for ii in range of 0 to (length of Tokens - 1) do
7: Append tuple (Tokens[ii], tokens[ii+1]) to transitionsList
8: end for
9: ceiling← length of segList - 2

10: jj← 0
11: finished← false
12: while Finished is False do
13: if jj ≤ ceiling then
14: if segList[jj][label] equal to segList[jj+1][label] then
15: if tuple (segList[jj][label], segList[jj+1][label]) not in transitionsList then
16: newSeg← tuple (segList[jj][0], segList[jj][1], segList[jj + 1][2])
17: segList[jj]← newSeg
18: remove segList[jj+1] from segList
19: ceiling← ceiling - 1
20: j← j - 1
21: end if
22: end if
23: end if
24: end while
25: return segList
26: end procedure

2.2. Application

Algorithm 3 details the workflow (backbone) of our forced alignment, a crucial step
in aligning phonemes with audio signals. It starts with reading a raw WAVE file using
soundfile python package, which returns a 1D array representing the signal data and the
sampling frequency. Using the returned two values, we calculate the time length of the
audio as t = n

f , where t is the duration (in seconds), n is the number of samples, and f
is the sampling frequency (in Hz). Two objects are created, one to call the wav2vec 2.0
model and another for the UnsupSeg model. These models return recognised phonemes
and unlabelled segments, which are then saved in a 1D array named tokens and a list named
segVect. These data structures form the underpinning of our forced alignment algorithm.

An optional step includes implementing a voice activity detection method to remove
unnecessary segments from the segVect list. Subsequently, the 1D array is converted into
a list of tuples, named timeTokens, containing the token and its corresponding time (see
Algorithm 4). The pad, unknown and delimiting tokens used for CTC are removed and
saved as filteredTimedTokens. Afterwards, the DecisionBoundaryCalc function calculates the
boundaries for each recognised phonemes and returned a list of class regions formatted as
“(phoneme, start time, end time)”. The maxDCBInitDict is initialised as a blank dictionary.
The keys are the ARPABET phonemes, which are retrieved from the “strToUnicodeDict”
dictionary, and their values are set to zero. It is effectively a string to zero dictionary,
essential for subsequent calculations. Based on the segments and decision boundaries, the
MaxContribution function (see Algorithm 5) calculates the maximum contributor in each
segment and use the dominant class phoneme to label that segment. Finally, a cleaning
function is applied to remove overfitted labels, thereby enhancing the overall performance.
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Algorithm 3 Forced Aligner

1: procedure LABELLED SEGMENTER(wavPath)
2: signal, samplingFreq← soundfile.read(wavPath)
3: seconds← length of signal / SamplingFreq
4: wp←Wav2Vec2PredictiorObject
5: tokens← wp.predictWavNoCollapse(wavPath)
6: segPredictor← UnsupervisedsegmenterPredictorObject
7: segVect← segPredictor.predict(wavPath, CheckpointPath)
8: segVect← VADFilterSegments(wavPath, SegVect)
9: segVect← toList(segVect)

10: timedTokens← tokensToTimedTokens(signal, samplingFreq, tokens)
11: filteredTimedTokens← new List
12: for timedToken in timedTokens do
13: if timedToken[label] is not "[pad]" or "[unk]" or "|" then
14: Append timedToken to filteredTimedTokens
15: end if
16: end for
17: decisionBoundaries← decisionBoundaryCalc(filteredTimedTokens, seconds, bias)
18: strToUnicodeDict← Read in from wav2vec2 object save
19: MaxDCBinitdict← dictionary fromkeys(strToUnicodeDict, 0)
20: Insert 0 at index 0 to segVect
21: Append seconds value to the end of segVect
22: labelList←MaxContribution(segVect, maxDCBInitDict, DCB)
23: segList← new List
24: for ii in range of length of labelList do
25: Append tuple (LabelList[ii], segVect[ii], segVect[ii+1]) to segList
26: end for
27: segList← cleanSegs(segList)
28: Convert list of tuples to list of dictionaries
29: return segList
30: end procedure

Algorithm 4 Supporting function which takes w2v2 labels and appends a time to each

1: procedure TOKENSTOTIMEDTOKENS(signal, samplingFreq, tokens)
2: seconds← length of signal / samplingFreq
3: wp←Wav2Vec2PredictiorObject
4: tokens← wp.predictWavNoCollapse(wavPath)
5: segPredictor← UnsupervisedsegmenterPredictorObject
6: segVect← segPredictor.predict(wavPath, CheckpointPath)
7: segVect← VADFilterSegments(wavPath, SegVect)
8: segVect← toList(segVect)
9: DeltaS← seconds / (2 * length(tokens))

10: timedTokenList← new List
11: timestamp← deltaS
12: for token in tokens do
13: timedToken = tuple (token, timestamp)
14: Append timedToken to timedTokenList
15: timestamp = timestamp + 2*deltaS
16: end for
17: return timedTokenList
18: end procedure
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Algorithm 5 Find the class region which exists the most within a segment

1: procedure MAXCONTRIBUTION(segVect, initDict, DCB)
2: segVect is a vector of segments with start and end times.
3: Init dict is a dictionary of phone label keys with 0 value
4: DCB is a list of decision boundaries / class regions with label, start and end times
5: labelList← new List
6: for segIndex in range of length(segVect) do
7: labelDict← copy initDict by value
8: if segIndex != length(segVect) - 1 then
9: tsegStart = segVect[segIndex]

10: segEnd = segVect[segIndex + 1]
11: for dcb in DCB do
12: if tsegStart ≤ dcb[start] and dcb[start] ≤ tsegEnd then
13: if dcb[stop] ≤ tsegEnd then
14: labelDict[dcb[phone]] += (dcb[end] - dcb[start])
15: else
16: labelDict[dcb[phone]] += (tsegEnd - dcb[start])
17: end if
18: else if tsegStart ≤ dcb[end] and dcb[end] ≤ tsegEnd then
19: labelDict[dcb[phone]] += (dcb[end] - tsegStart)
20: else if dcb[start] ≤ tsegStart and tsegEnd ≤ dcb[end] then
21: labelDict[dcb[phone]] += (tsegEnd - tsegStart)
22: end if
23: end for
24: Append key (phone) with largest value in dictionary to labelList
25: end if
26: end for
27: return LabelList
28: end procedure

3. Experiments
3.1. Experimental Setup
3.1.1. Datasets

TIMIT [24] is a standard acoustic-phonetic dataset used for the evaluation of speech-
related tasks. It consists of 6300 utterances produced by 630 healthy adult American
speakers from 8 dialect regions. The corpus contains approximately 5 h of speech recordings
that are stored in 16-bit and 16 kHz waveform files, associated orthographic transcriptions
of the words the person said, and time-aligned phonetic transcriptions.

TORGO [44] is an acoustic and articulatory speech dataset from 8 dysarthric speakers
aged from 16 to 50 years old and 7 gender- and age-matched healthy speakers. It consists
of aligned acoustics and measured 3D articulatory features of phonemes. It includes 23 h’
non-words, words, and sentences, of which words and sentences are used in this study.

Pre-Processing TORGO
In TORGO, both array and head-worn microphones were used to collect audio. As

our work focused on the acoustic part, we only used RIFF (little-endian) WAVE audio files
(Microsoft PCM, 16 bit, mono 16 kHz) and the corresponding phonemic transcriptions
(PHN files). When pre-processing TORGO, we noticed two main issues that had not been
discovered in the literature.

The first issue was the inconsistencies in sampling rates between certain WAVE files
and their respective PHN files. Originally, WAVE files recorded by array microphones and
head-worn microphones were sampled at 44.1 kHz and 16 kHz respectively. Before making
the dataset public, all WAVE files recorded by array microphones were downsampled to
16 kHz. However, the corresponding PHN files were not downsampled, which led to
an inconsistency issue between the WAVE files and PHN file as shown in Figure 6. To
address this issue, we comprehensively identified all improper PHN files and recalculated



Sensors 2023, 23, 9650 14 of 25

the start sample number and end sample number using old sample number to multiply
the ratio between new sampling rate (16 kHz)and old sampling rate (44.1 kHz). Figure 7
shows the matched version between the WAVE file (audio) and corresponding PHN file
(phonetic transcription).

pau bcl b iy tcl t pau

Time (s)
0 6.663

Figure 6. Visualisation of the inconsistency between a WAVE file and a wrong PHN file.

pau bcl b iy tcl t pau

Time (s)
0 2.418

Figure 7. Visualisation of the same WAVE file and the modified version PHN file.

The second issue was related to certain TXT and PHN files that either lacked content
or solely contained the strings ‘.jpg’ or ‘xxx’, originally intended for picture naming tasks.
We identified and subsequently removed these files. Consequently, the TORGO-TD group
consisted of 2543 samples of normal speakers, and the TORGO-SSD group contained
2217 samples of SSD speakers. In line with TIMIT’s practices, we adopted a consistent
speaker split, allocating approximately 70% of the speakers for training and reserving the
remaining 30% for testing in each subset. Comprehensive details regarding the processed
TORGO dataset are available in Table 4.
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Table 4. The pre-processed TORGO dataset for this research: there are TXT, WAV, and PHN files for
each speaker.

Group Subset Speaker Session Samples Files

TORGO-TD TRAIN

MC01 Session 1 314 942
Session 3 392 1176

MC02 Session 1 361 1083

MC03 Session 1 568 1704
Session 2 290 870

TEST MC04 Session 1 618 1854

TORGO-SSD

TRAIN

F01 Session 1 118 354

F03
Session 1 189 567
Session 2 143 429
Session 3 185 555

M01 Session 1 90 270
Session 2 276 828

M02 Session 2 220 660

M04 Session 1 109 327
Session 2 253 759

TEST
F04 Session 2 229 687
M05 Session 1 118 354

Session 2 287 861

3.1.2. Evaluation Metrics

Forced alignment can be examined on two different aspects: (1) The ability to predict
the correct labels; and (2) The ability to position the predictions accurately. The former is
measured with precision, recall and F1 score whilst the latter is measured with onset and
offset timing errors, ∆tstart and ∆tend

∆tstart = |tpred
start − ttruth

start |, ∆tend = |tpred
end − ttruth

end | (4)

where tpred
start and tpred

end are the predicted start and end times, and ttruth
start and ttruth

end are the
actual values.

3.1.3. Precision, Recall and Harmonic Mean

The proportion of matched predictions correct is a way of assessing how precise our
classifier is. The proportion of ground truths correctly classified is a way of assessing our
algorithm’s ability to recall the correct answer. The harmonic mean between these two
metrics is called the harmonic mean:

Harmonic Mean =

(
P−1

GroundTruthCorrect + P−1
MatchedPredictionsCorrect

2

)−1

, (5)

where

• PGroundTruthCorrect: is the ratio of correct matches/number of ground truth segments.
• PMatchedPredictionsCorrect: is the ratio of correct matches/number of predictions.

3.1.4. Obtaining Metrics (Midpoint method)

This method has been previously reported and utilised by child speech researchers. It
is described in [45]. From each utterance, several metrics are obtained, such as start offset
time, end offset time, %-match and accuracy. This section demonstrates how the metrics
are obtained in a high level way.

Each segment in the ground truth (i.e., manual aligned utterance) is compared with
each segment in the prediction list. If the temporal mid-point of the ground truth is both
greater than a predicted segment’s start time, and smaller than the predicted segment’s end
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time, then it is stated that the prediction has “matched” the manual alignment. Equation (6)
details the condition a predicted segment and a ground truth segment must satisfy to be
considered matched.

tpredict,start ≤ ttruth,midpoint ≤ tpredict,end. (6)

Of the matched segments, the absolute difference in time of the segment boundaries,
∆i = |ti,predict − ti,truth|, is noted for both the end times and the start times separately.
Figure 8 and Algorithm 6 detail this process.

[sil] [sil][d] [o] [g]

[sil] [sil][d] [o] [g]

Ground Truth:

Prediction:

t0

Midpoints : Blue

True Segs : Yellow

Pred Segs : Orange ∆tstart ∆tend

Captured Midpoint

Figure 8. High-level diagram detailing how metrics are obtained. Writing in square brackets (i.e., [d])
corresponds to ARPABET phone label.

Algorithm 6 Evaluation Algorithm (Midpoint method)

1: procedure EVALUATE(TUtterance, PUtterance) . T: Ground Truth, P: Predict
2: Hits = 0
3: for Tseg in TUtterance do . Tseg has stop, start, midpoint, label
4: for Pseg in PUtterance do . Pseg has stop, start, label
5: if Psegstart ≤ Tsegmidpoint and Tsegmidpoint ≤ Psegstop then
6: if Tsegphone_label = Psegphone_label then
7: Hits← Hits + 1
8: ∆tstart ← Tsegstart − Psegstart . start: start time of seg
9: ∆tstop ← Tsegstop − Psegstop . stop: end time of seg

10: Record ∆tstart, ∆tstop in global list
11: end if
12: end if
13: end for
14: end for
15: ProportionGround Truth ← Hits/(length TUtterance)
16: ProportionPredictions ← Hits/(length PUtterance)

17: HarmonicMeanAcc← 2(Proportion−1
Ground Truth + Proportion−1

Predictions)
−1

18: return HarmonicMeanAcc
19: end procedure

3.1.5. Obtaining Metrics (Onset Method)

This method is described in [46]. The onset method uses the onset of each segment
to determine a hit. For any segment, there exists a segment boundary at time tstart which
defines the start of region R with class π. If a predicted segment’s tstart value exists within
20 ms either side of the ground truth’s tstart, the prediction has considered to have hit the
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ground truth. Furthermore, if both segments represent a transition to class π, then the
prediction is said to accurately predicts the ground truth (see Figure 9).

[sil] [sil][d] [o] [g]

[sil] [sil][d] [o] [g]

Ground Truth:

Prediction:

t0

Missed Segs: Red

True Segs : Yellow

Pred Segs : Orange
2 ∗ 20ms

Acc. Hit Segs: Blue
Inacc. Hit Segs: Purp.

Figure 9. Matches and correct predictions calculated using the onset method with a 20 ms tolerance.

3.2. Experimental Results

This section demonstrates and interprets the obtained results from comprehensive
experiments. Firstly, we assessed the performance of the two critical components, namely
wav2vec 2.0 and UnsupSeg, within the proposed forced alignment pipeline using TORGO
dataset. Secondly, given that the forced aligner consists of several small components, we
evaluated their performance using TORGO dataset. Thirdly, we measured the overall
performance of the proposed pipeline after applying a transfer learning method based
on TIMIT and TORGO datasets. All evaluations were conducted on a Linux-5.19.0-40-
generic-x86_64 machine with the following hardware configurations: 16-core CPU and one
NVIDIA® GeForce® RTX™ 4090 GPU with 24 GB of G6X memory.

3.2.1. Phoneme Recognition

Wav2vec2-xls-r-1b, as a large-scale multilingual pretrained model for speech, should
be fine-tuned in a downstream task to adapt the model for a particular task. In this
research, we performed fine-tuning of the wav2vec2-xls-r-1b on TORGO dataset to assess
the effectiveness of wav2vec 2.0 in handling disordered speech. The fine-tuning process
yielded a PER of 14.8% when we evaluated the model on the testing set. It achieved a
minimum PER of 22.3% when applied on the validation set. Compared with other ASR
models [47], wav2vec2-xls-r-1b produced better results in the disordered speech dataset.
Fine-tuning on the TORGO dataset took approximately 5 h, 47 min, and 58 s. Comparing
these results with those obtained from the TIMIT dataset [40], it is noteworthy that the PER
value is higher in the TORGO dataset, primarily due to the increased variability inherent in
the speech data of individuals with SSD.

3.2.2. Unsupervised Phoneme Segmentation

We trained the UnsupSeg model using TORGO and achieved an r-val of 0.58. Notably,
the performance of training the UnsupSeg model on TIMIT was reported as 0.83 r-val in a
previous study [39]. Consequently, we chose to utilise the checkpoint trained on the TIMIT
dataset to obtain more accurate segmentation.

3.2.3. Forced Alignment

The following experiments were conducted to evaluate the performance of the pro-
posed forced aligner pipeline. Initially, we conducted experiments with varying bias values
to identify the optimal setting. As depicted in Figure 10, our proposed method achieved
the highest performance with a harmonic mean of 70.31% on TORGO dataset when the
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bias was set to 0.5. Notably, we observed a positive correlation between the bias value and
time performance when the bias was less than 0.5. Conversely, when the bias exceeded 0.5,
a negative correlation emerged between time performance and the bias value. To optimise
the forced alignment pipeline for both the accuracy of recognised phonemes and boundary
accuracy, we recommend employing a bias value of 0.5.

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Bias

0.50

0.55

0.60

0.65

0.70

0.75

0.80

va
lu

e
Harmonic Mean, Start-times and End-times agianst Bias

variable
Harmonic Mean
Starttime % under 20ms
Endtime % under 20ms

Figure 10. The performance of the force aligner with varied bias and hard cleaning on TORGO.

With the optimal bias of 0.5, we then examined the effectiveness of VAD and the
cleaning methods on the forced alignment algorithm’s performance in terms of label
prediction accuracy and boundary accuracy.

Table 5 illustrated label prediction precision, recall, and harmonic mean scores after
applying VAD and cleaning methods. When evaluating VAD in isolation (comparing
Exp. 1 vs Exp. 4), we observed a notable 13.88% improvement in label prediction accuracy.
However, the accuracy remained suboptimal. Incorporating cleaning methods (comparing
Exp. 2, 3 with 1 and Exp. 5, 6 with 4) revealed substantial improvements, with the hard
cleaning method achieving the highest label prediction accuracy at 70.31%. Consequently,
the inclusion of the cleaning method proved critical for our final pipeline.

In addition to assessing label prediction accuracy, we conducted an evaluation of the
boundary accuracy after applying VAD and cleaning methods. This assessment involved
the measurement of onset and offset timing errors, represented as ∆tstart and ∆tend. As
shown in Table 6, VAD generally improved the boundary accuracy when comparing
Exp. 1 with 3 and Exp. 2 with 4. However, when considering different cleaning methods,
we found that the soft cleaning method tended to exhibit a higher percentage of ∆tstart,
whereas the hard cleaning method performed better in terms of ∆tend. This probably
because the first segment in a string of duplicates is more likely to match with the midpoint
than the last. But it also might show that the segmentation programme is leading the
ground truth somewhat, having segments start earlier than their ground truth counterpart.
Amalgamating the segments will mean that this leading segment is what determines the
error to the boundary, not the matched central segment.

In summary, the hard cleaning method demonstrated more significant overall benefits
for our pipeline. While VAD contributed to improved boundary accuracy, the gains within
20 ms tolerance for hard cleaning method were not substantial. Therefore, we selected the
hard cleaning method without VAD as the final choice.
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Table 5. Evaluation results for label prediction after applying VAD and cleaning methods. The best
result is highlighted in bold.

Exp Bias VAD Cleaning Precision Recall Harmonic Mean

1 0.5 / / 16.54% 68.08% 26.61%
2 0.5 / soft 49.71% 68.08% 57.35%
3 0.5 / hard 73.22% 67.62% 70.31%
4 0.5 yes / 29.11% 66.50% 40.49%
5 0.5 yes soft 39.99% 66.37% 49.91%
6 0.5 yes hard 58.44% 66.25% 62.10%

Table 6. Results of boundary accuracy evaluation after applying VAD and cleaning method.

Exp VAD Cleaning Timing Error <20 ms <40 ms <60 ms

1 / soft ∆tstart 69.09% 77.45% 81.29%
∆tend 63.27% 74.14% 78.66%

2 / hard ∆tstart 63.46% 73.07% 77.78%
∆tend 73.88% 83.24% 86.53%

3 yes soft ∆tstart 77.67% 87.11% 90.73%
∆tend 66.61% 80.07% 86.28%

4 yes hard ∆tstart 68.55% 79.60% 84.75%
∆tend 76.31% 87.48% 91.88%

3.2.4. Transfer Learning

Transfer learning involves reusing learned knowledge to solve a new, related problem,
with the aim of improving the generalisation of the newly built model. In the ASR domain,
data collection and labelling are time-consuming and expensive. Thus, transfer learning has
been successfully implemented by utilising out-of-domain data to enhance the performance
of ASR models [48,49]. As indicated in [50], the use of transfer learning with out-of-domain
normal adult speech can improve phoneme recognition performance for speech from
disordered adults. Following this principle, we trained the wav2vec2-xls-r-1b model on
TIMIT first, and then fine-tuned it on TORGO. As shown in Tables 7 and 8, the phoneme
recognition accuracy (PER) improved by 2.60% thanks to transfer learning. For the accuracy
of boundaries, it improved by 2.40% and more phonemes have phoneme start time and
end time within the 20 ms tolerance.

Table 7. The comparison between the performance of our current pipeline on the TORGO dataset
and the performance after applying transfer learning. The best result of PER is highlighted in bold.

Model Dataset PER Precision Recall Harmonic Mean

wav2vec2-xls-r-1b TORGO 14.80% 73.22% 67.62% 70.30%
wav2vec2-xls-r-1b-TL TIMIT, TORGO 12.20% 72.84% 72.48% 72.70%

Table 8. The boundary accuracy measured by timing errors after applying transfer learning. The best
results are highlighted in bold.

Model Timing Error <20 ms <40 ms <60 ms

wav2vec2-xls-r-1b ∆tstart 63.46% 73.07% 77.78%
∆tend 73.88% 83.24% 86.53%

wav2vec2-xls-r-1b-TL ∆tstart 67.84% 79.70% 84.86%
∆tend 78.35% 89.13% 92.83%

To identify the phonemes that cannot be recognised by the proposed forced alignment
pipeline, we calculated the error rate for each phoneme. The phonemes with error rate
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higher than 0.5, both before and after transfer learning, as well as those with increased
error rate after applying transfer learning have been plotted in Figure 11.

After applying transfer learning, the number of phonemes with error rate exceeding
0.5 decreased from 6 to 5. Furthermore, the error rates of these phonemes (e.g., ‘kcl’, ‘tcl’,
‘uh’, ‘zh’) were significantly reduced. These results highlighted the substantial performance
improvement gained through the additional knowledge acquired from TIMIT.

However, some phonemes experienced an increased error rate (increment threshold > 0.1),
such as ‘bcl’, ‘ch’, ‘d’, ‘gcl’, ‘hh’, ‘p’, ‘t’, ‘th’. These phonemes represent stop (stop closure),
affricate, and fricative consonants. Because SSD speakers producing these phonemes
significantly differently from normal speakers, transfer learning using normal speech data
effectively moves the starting point further away from the good solution on the optimisation
surface. There are several avenues to address this issue, one being to exclude these specific
phonemes during the pre-training step, which we will consider in future work.

bcl ch d dcl dh gcl hh kcl p t tcl th uh zh
ARPABET Phonemes

0.0
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1.0
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 R
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After TL

Figure 11. The comparison of ARPABET phonemes performed with error rate > 0.5, both before and
after applying transfer learning, as well as those with increased error rate (increment threshold > 0.1)
after applying transfer learning.

3.2.5. Comparison

This section compares our proposed text-independent forced alignment tool with
others. Since the onset metric is primarily used in the ASR domain [46], we calculated the
precision, recall and F1 scores for our model using onset metric. The comparison results are
presented in Table 9.

On the TIMIT dataset, the proposed tool demonstrates competitive performance,
comparable to the best method and significantly outperforming others. Specifically, it
achieved a precision of 0.62 and a recall of 0.54. While recall is slightly lower, the higher
precision instills greater confidence when a phoneme is detected.

Given the limited research available on measuring text-independent forced alignment
models on disordered datasets, we compare our results with those obtained from the TIMIT
dataset. While the precision, recall, and F1 score on the TORGO dataset were not as high
as those on the TIMIT dataset, there is potential for overall performance improvement
through further training on additional datasets and feature extraction.
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Table 9. A comparison with other text-independent aligners. † indicates an evaluation by ourselves.

Dataset Model P R F1

TIMIT FAVE [51] 0.57 0.59 0.58
TIMIT Gentle [52] 0.49 0.46 0.48
TIMIT Charsiu (CTC-20ms) [46] 0.31 0.30 0.31
TIMIT Charsiu (FS-20ms) [46] 0.40 0.42 0.41
TIMIT Charsiu (FC-20ms-Libris) [46] 0.57 0.59 0.58
TIMIT Charsiu (FC-32k-Libris) [46] 0.60 0.63 0.61
TIMIT Ours 0.62 0.54 0.58

TORGO Charsiu (CTC-20ms) † [46] 0.179 0.209 0.193
TORGO Charsiu (FC-20ms-Libris) † [46] 0.085 0.156 0.110
TORGO Ours 0.408 0.406 0.407

On the more challenging TORGO dataset, it achieves an F1 score of 0.407. To the
best of our knowledge, we are the first to evaluate a text-independent forced alignment
model on this TORGO dataset. As such, it is not possible to compare against published
results. The best effort we could make was to fine-tune the state-of-the-art forced alignment
model, known as Charsiu [46], on TORGO and compared it against our model. We did not
report the performance of fine-tuning Charsiu (FS-20ms) because this model is trained on a
43-phoneme list. As for the Charsiu (FC-32k-Libris) model, it is trained on upsampled raw
WAVE files (32 kHz), whereas our dataset is sampled at 16 kHz. Due to these inconsistencies,
we chose not to fine-tune these two checkpoints.

The phoneme recognition performance (PER) of Charsiu model is 66.40%, which is
significantly worse than our fine-tuned wav2vec 2.0 model (12.20%). It is important to
note that the Charsiu model utilised a reduced version of phoneme list (39 phonemes),
while our paper utilised the full phoneme list (61 phonemes). Although reducing phonemes
can simplify tasks, it comes at the cost of losing phonetic details, which are crucial for our
work. Therefore, we have maintained the use of the full set of 61 phonemes.

Additionally, we recognise that the common practice in ASR systems involves us-
ing both acoustic and language models to enhance recognition accuracy. However, in the
architecture of our pipeline, we opted not to incorporate a language model, as it would
correct phonetic transcriptions, which is contrary to our aim. Specifically, our focus is
on capturing instances where a speaker with a phonological disorder, for instance, might
pronounce ’cat’ as ’ca’, omitting the final consonant. In such cases, our model generates
a phonetic transcription that reflects the speaker’s actual pronunciation, such as ’ca’. Em-
ploying a language model might lead to the automatic correction of the transcribed word
’ca’ to ’cat’. However, this correction would contradict the focus of our paper, which is to
faithfully represent the speaker’s pronunciation, even when it deviates from conventional
language norms.

3.2.6. Qualitative Analysis

This section presents the qualitative analysis of two samples from the TORGO-SSD
group. In Figure 12, we demonstrate the predictions and ground truth for the word “sheet”
produced by the M05 speaker, who has moderate to severe dysarthria symptoms. Figure 13
illustrates the predictions and ground truth for the word “nice” produced by the F03
speaker, who has moderate SSD severity. The difference between the subplots (a) and (b)
in each figure is whether transfer learning (TL) is applied or not. It is evident that the
phoneme boundaries become more accurate after applying transfer learning. Following the
quantitative analysis, we now delve deeper into the SSD problem to better understand the
challenges in phoneme segmentation.
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Figure 12. Quantitative analysis for M05 (M/S) “sheet” in TORGO-SSD group.
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Figure 13. Quantitative analysis for F03 (Moderate) “nice” in TORGO-SSD group.

4. Conclusions

This article presents a text-independent forced alignment tool designed to automati-
cally generate phonetic transcriptions for disordered speech. Leveraging the phonemes
recognised by the wav2vec 2.0 model and the unlabelled segments provided by the
UnsupSeg model, we employed nearest-neighbour class regions to annotate each segment
using a novel algorithm. We conducted a comprehensive evaluation of all sub-components
within our pipeline, including VAD, cleaning methods, and bias values, using the TORGO
dataset. Our pipeline achieved optimal performance when the bias value β was set to 0.5,
using the hard cleaning method and without VAD.

To improve the performance of the whole pipeline on disordered speech data (TORGO
dataset), given the limited annotated disordered data available, we applied transfer learn-
ing. Specifically, we firstly trained the wav2vec2-xls-r-1b model using relevant speech
data (TIMIT dataset) and then fine-tuned it on the disordered dataset. As supported by
both qualitative and quantitative results, the use of TIMIT dataset for transfer learning
significantly improved our model’s capability.

For the future work, as our long-term goal is to develop a computer-assisted speech
assessment system to support the S-LPs in diagnosing children with speech sound disorders,
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we will extend our work to SSD datasets that include children, such as [53] as well as our
own corpus comprised of over 200 unique child speakers, aged 2 years to 3 years, 11 months.
This will allow us to address specific challenges related to this group of speakers.
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Appendix A

Algorithm A1 Edge Detect Function

1: procedure DETECTEDGES(array, seconds) . Array is array posterior probability of
speech, 0 or 1. Seconds is duration of speech in seconds.

2: temp1 = None
3: temp2 = None
4: ReturnList = List
5: for ii = 0 in Length(array) do
6: if temp1 == None then
7: temp1 = array[ii][0] . array is list of single valued list
8: else if array[ii][0] != tmp AND temp1 == 0 then
9: temp2 = seconds / length(array)

10: tmp = 1
11: else if array[ii][0] != tmp AND temp1 == 1 then
12: Append tuple (Temp2, seconds / length(array)) to ReturnList
13: Temp1 = 0
14: end if
15: end for
16: return ReturnList . Return list of pairs of “speech” segment boundaries
17: end procedure
18:
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