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Abstract: The paper presents a method for estimating the inertia tensor components of a spacecraft
that has expired its active life using measurement data of the Earth’s magnetic field induction vector
components. The implementation of this estimation method is supposed to be carried out when
cleaning up space debris in the form of a clapped-out spacecraft with the help of a space tug. It is
assumed that a three-component magnetometer and a transmitting device are attached on space
debris. The parameters for the rotational motion of space debris are estimated using this measuring
system. Then, the known controlled action from the space tug is transferred to the space debris.
Next, measurements for the rotational motion parameters are carried out once again. Based on
the available measurement data and parameters of the controlled action, the space debris inertia
tensor components are estimated. It is assumed that the measurements of the Earth’s magnetic
field induction vector components are made in a coordinate system whose axes are parallel to the
corresponding axes of the main body axis system. Such an estimation makes it possible to effectively
solve the problem of cleaning up space debris by calculating the costs of the space tug working body
and the parameters of the space debris removal orbit. Examples of numerical simulation using the
measurement data of the Earth’s magnetic field induction vector components on the Aist-2D small
spacecraft are given. Thus, the purpose of this work is to evaluate the components of the space debris
inertia tensor through measurements of the Earth’s magnetic field taken using magnetometer sensors.
The results of the work can be used in the development and implementation of missions to clean up
space debris in the form of clapped-out spacecraft.

Keywords: estimating the inertia tensor; space debris; magnetometer; space tug

1. Introduction

Nowadays, various projects are being developed to clean up space debris from near-
Earth space. This issue was first raised at UN meetings in the early 1980s. Even then, it
became clear that the active use of near-Earth space would create the problem of its cleaning
from space debris of terrestrial origin [1,2]. Space debris poses a serious threat to the safe
operation of unmanned and manned spacecraft in near-Earth orbits. Due to the threat of
collision with space debris, maneuvers have become common practice in the operation of
modern spacecraft [3,4]. All experts note that the number of launches of small spacecraft
will increase significantly in the future [5].

Therefore, in the opinion of many authors, nowadays, it is necessary to design space-
craft with specific systems for its removal from the orbit at the end of its active life [6].

Various concepts have been developed to remove space debris from near-Earth orbits.
The authors of [7] believe that the standard propulsion system of the spacecraft and the
remnants of the working fluid can be used for removal. In this case, it is not necessary to

Sensors 2023, 23, 9615. https://doi.org/10.3390/s23239615 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23239615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2698-1348
https://orcid.org/0000-0002-6750-1307
https://doi.org/10.3390/s23239615
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23239615?type=check_update&version=2


Sensors 2023, 23, 9615 2 of 13

design a specific system that removes the spacecraft at the end of its active life. However,
this method can be used for the oriented flight of the spacecraft with a full-fledged motion
control system. The use of executive bodies that do not require the expenditure of working
fluid makes this method inefficient.

The work [8] considers a drag augmentation system (DAS), which is a space sail [9]
that unfolds at the end of the spacecraft’s active life. This sail contributes to removing the
spacecraft from the orbit due to the aerodynamic drag increase. This method involves the
development of a specific system for transporting and unfolding the sail and is applicable
mainly in low near-Earth orbits. For high orbits, the spacecraft deorbit time can be signifi-
cant. Modern materials of such a sail have high stress–strain properties and a low specific
gravity. Therefore, the increase in the mass parameters of a small spacecraft when using
such a system will be insignificant.

The review [10] presents a comparative analysis of four different methods to remove
spacecraft from low near-Earth orbits at the end of their active life. Two active devices
(classical rocket and electric motors) and two passive technologies (drag augmentation
devices and cables of electrodynamic tether systems [10]) are considered. The authors
of [10] believe that, with other factors being equal, for an initial height of 850 km, cables
are approximately one and two orders of magnitude lighter than active devices and drag
augmentation devices, respectively. In this case, special attention is paid to electrodynamic
tether systems, according to the results of the FP7/Space BETs project [10]. The superiority
of ribbon cables over round and wire cables in terms of deorbit efficiency is substantiated,
as well as the importance of the optimal choice for the length, width, and thickness of a
ribbon cable depending on the spacecraft mass and its initial orbit [10]. Figure 1 shows a
scheme of transporting space debris by a cable using a space tug [11].
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The prospect of using tether systems is noted by many researchers, for example, the au-
thors of [12–15]. It is possible to design and install systems for deorbiting the spacecraft when
creating new space technology, but the task of cleaning up existing space debris leaves signifi-
cantly fewer options for its solution. Therefore, one of the promising options for such cleaning
is the use of a space tug in combination with a tether system for transporting space debris.

At the same time, methods of non-contact debris removal are actively developed, for
example, using a laser system [16]. The authors of [16] propose to create a space laser facility
to protect orbital stations from space debris. Based on the results of numerical simulation, a
design for a space-based laser system was proposed in [16]. The developed laser system can
effectively deal with space debris ranging in size from 1 to 10 cm. However, this method is
more suitable for the protection of operating space objects than for cleaning up space debris.
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The work [17] contains a detailed review and comparison of existing technical solutions
and approaches to space debris removal. Contactless transport systems are considered as a
promising direction in creating safe and reliable space debris removal systems. The use of an
ion beam is proposed as one of the active influences on space debris [17,18]. The work [18]
presents a scheme of the ion beam’s impact on space debris and analyzes the parameters of
the impact that is necessary to solve the problem of its removal successfully [18]. In [19], a
multipath scheme was proposed and control laws for impulse motors were developed.

For effective contact (through tether systems) and the contactless (via ion beams) cleaning
of space debris in the form of spacecraft that have exhausted their active life, it is necessary to
know the inertial mass parameters of these spacecraft. Therefore, the problem of estimating
the inertial mass parameters of space debris, as well as the parameters of its rotational motion
in absolute space and relative to the space tug, arises. This problem was considered not only
in the context of the space debris problem in [11,20–22]. In [20], the difficulties of estimating
the inertia tensor of a captured object are noted in the case when the connection between the
space tug and the debris is not rigid, for example, when using a tether system.

In [20], the components of the space debris inertia tensor are estimated using var-
ious Kalman filters by measuring the rotation velocity of space debris. The cases of a
cable stretched all the time and a cable subject to frequent weakening are considered. A
good estimation quality is shown if the cable tension and the cable attachment point are
known [20]. However, in some cases, the authors of [20] note a large dispersion of the
obtained estimations.

In [21], the traditional method was employed to achieve an accurate estimation of the
inertial mass parameters in a system analysis designed for the errors which influence the
parameter measurements of the space debris rotational motion. To improve the estimation
accuracy, the authors of [21] proposed a modification for the estimation equations by
including the data of the space tug contact force impact on space debris.

In [22], it was proposed to use a nanosatellite as a data measurement system for esti-
mating the parameters of the space debris rotational motion. This satellite must dock with
space debris and move with it as a single body. However, docking issues are not discussed.

In general formulation, solving the problem of estimating the inertia tensor compo-
nents of arbitrary-shaped space debris moving arbitrarily in outer space is quite compli-
cated. The possibility of attaching several measuring instruments on different parts of
space debris, and the possibility of monitoring the relative position of these instruments,
while taking into account errors, will expand the range of the proposed method application
for estimating the inertia tensor components. However, technically, it is not easy to solve
this problem.

This work makes the following contribution:

(1) A method for estimating the inertia tensor components of space debris and the
parameters of its rotational motion by attaching elements of the data-measuring
system on a space debris object is proposed;

(2) A simulation is carried out for a particular case of attaching measuring instruments
on a space debris object;

(3) The results of numerical simulation for a particular case with an estimation of inertia
tensor components for the Aist-2D small spacecraft are presented;

(4) An analysis of the obtained results was carried out and recommendations for its use
were given.

2. Problem Formulation

Let us consider the problem of estimating the inertia tensor components for a space
debris object in the general formulation within the framework of the proposed approach
of attaching the measuring equipment—a magnetometer—on it. Let us assume that a
three-component magnetometer with a data-transmitting device has been attached to the
space debris object. In this case, using the measurements of the Earth’s magnetic field
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induction vector, it is possible to estimate the components of the angular velocity vector of
space debris in the magnetometer’s structural coordinate system (Figure 2).
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To obtain a correct estimation for the angular velocity vector, it is proposed in [23] to
use the derivative of the Earth’s magnetic field induction vector components:

→
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.
→
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and
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( .
Bxk−1,

.
Byk−1,

.
Bzk−1

)
are the derivatives of the Earth’s

magnetic field induction vector components and its components in the magnetometer’s
structural coordinate system (Figure 3) for the k-th and k− 1-th measurements, respectively;
∆tk = tk − tk−1 is the time interval between k-th and k − 1-st measurements.
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Then, with an arbitrary location of the axes of the magnetometer’s structural coordinate
system relative to the main body axis system of the space debris object, the Euler dynamic
equations in the magnetometer’s structural coordinate system will have the form [24]:

Ixx
.

ωxk − Ixy
.

ωyk − Ixz
.

ωzk + ωyk

(
Izzωzk − Ixzωxk − Iyzωyk

)
−ωzk

(
Iyyωyk − Ixyωxk − Iyzωzk

)
= Mx

Iyy
.

ωyk − Ixy
.

ωxk − Iyz
.

ωzk + ωzk

(
Ixxωxk − Ixyωyk − Ixzωzk

)
−ωxk

(
Izzωzk − Ixzωxk − Iyzωyk

)
= My

Izz
.

ωzk − Ixz
.

ωxk − Iyz
.

ωyk + ωxk

(
Iyyωyk − Ixyωxk − Iyzωzk

)
−ωyk

(
Ixxωxk − Ixyωyk − Ixzωzk

)
= Mz

, (3)

where
→
M
(

Mx, My, Mz
)

is the main vector of external moments acting on the space debris

object; Î =

 Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 is the symmetrical inertia tensor in the magnetometer’s struc-

tural coordinate system;
.
→
ωk

( .
ωxk,

.
ωyk,

.
ωz

)
is the derivative of the angular velocity vector

of the space debris object and its components in the magnetometer’s structural coordinate
system (Figure 2).

Further, the known perturbing effect is transferred to the space debris object. The
above equations are then also used to estimate the rotational motion parameters.

In the general formulation, the problem of estimating inertia tensor components of
the space debris object using measurements of a single magnetometer cannot be solved
without additional data.

Therefore, let us consider a special case, whereby the origin of the magnetometer’s
structural coordinate system is located on one of the axes of the main body axis system,
and the Obxbybzb axes of the structural coordinate system and Oxyz axes of the main body
axis systems are parallel (Figure 3).

In this case, taking into account the introduced simplified assumption, Equation (3) is
transformed to the form [24]:

Ixx
.

ωxk + ωykωzk
(

Izz − Iyy
)
= Mx

Iyy
.

ωyk + ωxkωzk(Ixx − Izz) = My

Izz
.

ωzk + ωxkωyk
(

Iyy − Ixx
)
= Mz

. (4)

Let us rewrite Equation (4) with respect to the diagonal inertia moments in the struc-
tural coordinate system:

.
ωxk Ixx − Iyyωykωzk + ωykωzk Izz = Mx
.

ωyk Iyy + ωxkωzk Ixx −ωxkωzk Izz = My
.

ωzk Izz −ωxkωyk Ixx + ωxkωyk Iyy = Mz

. (5)

Let us assume that the quantity of the controlled action is significant enough to neglect
the external disturbing action. Then, the right parts of Equation (5) will represent the
moment from the controlled action in the magnetometer’s structural coordinate system
(Figure 3):

→
M =

→
r ×

→
F cont, (6)

where
→
r is the radius vector of the controlled action application point relative to the origin of

the magnetometer’s structural coordinate system;
→
F cont is the vector of the controlled action.
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Let us express the diagonal components of the inertia tensor from system (5):

Izz =
Mz

.
ωxk+Mxωxkωyk−(My

.
ωxk−Mxωxkωzk)

ωxkω2
ykωzk−ωxkωyk

.
ωxk

.
ωxk

.
ωyk+ωxkωykω2

zk
.

ωxk
.

ωzk+ωxkω2
ykωzk+

(
ωxkω2

ykωzk−ωxkωyk
.

ωxk

) ωxkωzk
.

ωxk−ωxkωykω2
zk

.
ωxk

.
ωyk+ωxkωykω2

zk

;

Iyy = Izz
ωxkωzk

.
ωxk+ωxkωykω2

zk.
ωxk

.
ωyk+ωxkωykω2

zk
+

My
.

ωxk−Mxωxkωzk
.

ωxk
.

ωyk+ωxkωykω2
zk

;

Ixx =
Mx+ωykωzk Iyy−ωykωzk Izz

.
ωxk

.

(7)

Now, by estimating the angular velocity and angular acceleration of the space debris
object using magnetometer measurements and the moment from controlled action, it is
possible to estimate the inertia tensor components from system (7) in the construction
coordinate system of the magnetometer.

Let us transform the inertia tensor in accordance with the Huygens–Steiner theorem
upon transition to the main body axis system of the space debris object. In the considered
case, the axes of the main body axis system of the space debris object and the magnetome-
ter’s structural coordinate system are parallel (Figures 3 and 4). The y and yb axes are offset
from each other (Figure 5). Therefore, we have:

Î =

Ixx 0 0
0 Iyy + ma2 0
0 0 Izz + ma2

, (8)

where m is the mass of the space debris object; a is the distance between the y and yb axes of
the main body axis system of the space debris object and the magnetometer’s structural
coordinate system (Figure 3).
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In this particular case, the components of the inertia tensor are relatively easy to find.
Let us illustrate it with an example in the next section of the paper.
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3. Numerical Simulation for the Aist-2D Small Spacecraft

Let us consider the Aist-2D small spacecraft for remote sensing of the Earth as an
example to estimate the inertia tensor components (Figure 6 [25]).
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The main parameters of the Aist-2D small spacecraft for remote sensing of the Earth
are presented in Table 1 [26].

Table 1. The main parameters of the simulated Aist-2D spacecraft [26].

Parameter Designation Value Dimension

Mass m 530 kg

Axial moments of inertia
Ixx
Iyy
Izz

175
200
285

kg·m2

Maximum control torque M 0.2 N·m
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Modern measuring instruments provide high accuracy in measuring the components of
the Earth’s magnetic field induction vector [27]. Therefore, their application can provide an
effective estimation of the inertia tensor components for the space debris object. Thus, proton
precession magnetometers and optically pumped magnetometers have a sensitivity of about
10–50 pT, an absolute accuracy of about 0.1–1.0 nT, and a dynamic range of 1–100 µT [28].

In this case, the following algorithm is used:

– The fixing of the magnetometers on the space debris object, the construction axes of
which are parallel to the axes of the main connected coordinate system of the space
debris object;

– The implementation of a controlled impact on the space debris object;
– Carrying out measurements with a uniform step sufficient for the subsequent correct

restoration of a continuous signal;
– The restoration of continuous dependences of the Earth’s magnetic field induction

vector components via their discrete measurements;
– The estimation of the angular velocity and angular acceleration of the space debris

object as a result of a controlled impact;
– The estimation of the space debris object inertia tensor components using dynamic

Euler equations.

The Aist-2D small spacecraft is equipped with three-component magnetometers. Their
measurements are used as experimental data.

Let us consider the stabilization section of the Aist-2D small spacecraft as the initial
section before the controlled action. The measurement data for this section are shown in
Figure 5. Time t = 0 corresponds to 31 July 2016, 14:35:46 Moscow time.

Let us choose the section of reorientation of the Aist-2D small spacecraft as a section
with controlled action. The measurement data for this section are shown in Figure 6. Time
t = 0 corresponds to 31 July 2016, 19:34:28 Moscow time.

To correctly estimate the derivative of the Earth’s magnetic field induction vector
components, it is necessary to have continuous dependences of these components on
time. These dependencies are then used in Formulas (1) and (2) to determine the vector of
angular velocity and rotational acceleration of the space debris object in the magnetometer’s
structural coordinate system.

Let us restore discrete measurements to continuous dependencies using the Kotelnikov
series [29], since there are measurement data at regular intervals:

Bj(t) =
∞

∑
k=−∞

Bjk
sin
[

π
∆t (t− k ∆t)

]
π
∆t (t− k ∆t)

, (9)

where j = x, y, z; Bjk are the measurements at the time tk; ∆t = ∆tk is the uniform step
between measurements.

Continuous dependencies corresponding to Figures 5 and 6 obtained using the Kotel-
nikov series (9) are shown in Figure 7. The derivatives of these functions are shown in
Figure 8.

The variation ranges of the Earth’s magnetic field induction vector components in the
reorientation mode are much wider than in the stabilization mode (Figure 7). It should be
noted that the variation ranges of derivatives in different modes are comparable. However,
the analysis of Figure 7 shows that in the stabilization mode, the derivatives fluctuate
around zero with a sign change. In the reorientation mode, the derivatives have the same
sign for a long period of time. This can be explained by the fact that in the stabilization
mode, there are random fluctuations in the orientation angles with a change in the sign of
the angular velocity. In the reorientation mode, the angular position of the small spacecraft
purposefully changes. This is achieved by the fact that the angular velocity has the same
sign for a significant period of time. Thus, we can refer to the correct restoration for the
continuous dependences of the Earth’s magnetic field induction vector components using
the Kotelnikov series (9).
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Let us further estimate the angular velocity by using Formula (2). The estimation
results are shown in Figure 9.
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The derivative of the angular velocity—angular acceleration—will have the form
shown in Figure 10.

The values of the angular velocity and angular acceleration in the stabilization mode
are significantly lower than in the reorientation mode (Figure 9). This fact is an important
difference between different modes. Let us estimate the dependences for the diagonal
components of the Aist-2D small spacecraft inertia tensor by using system (7) according to
the measurement data. These dependencies are shown in Figure 11 for the stabilization
mode and in Figure 12 for the reorientation mode.
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Bursts on the diagonal components of the inertia tensor graphs are associated with
both measurement errors and approximation errors of these measurements by the Kotel-
nikov series (9). Small oscillations in the dependences can be explained by the errors in
the attachment of measuring equipment relative to the main body axis system, as well as
by natural oscillations of the solar panels of the Aist-2D small spacecraft. These oscilla-
tions influenced the components of the inertia tensor and provided them with a dynamic
component. In general, upon analyzing Figures 11 and 12, we can state a fine precision of
the results with data from Table 1. It can also be seen that in the reorientation mode, the
diagonal components of the inertia tensor are estimated more accurately. This is due to the
fact that the moment from the executive bodies of the Aist-2D small spacecraft (flywheel
engines) was determined more accurately than the moment from many disturbing factors
in the stabilization mode. The error of this method in the given numerical example can be
estimated correctly only in the case of the inertia tensor components’ constancy over the
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entire measurement time. Then, the interval estimation for the stabilization and orientation
modes, respectively, has the form:

Ixx(β = 0, 95) ∈ [167, 183];

Iyy(β = 0, 95) ∈ [190, 210];

Izz(β = 0, 95) ∈ [280, 290].


Ixx(β = 0, 99) ∈ [168, 182];

Iyy(β = 0, 99) ∈ [195, 205];

Izz(β = 0, 99) ∈ [282, 287].

Here, β is the confidence probability.
In fact, due to the natural oscillations of solar panels, the moments of inertia will not

remain constant. Error estimation in such a situation is complex and is a random process.
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4. Conclusions

Thus, as a result of the investigations carried out in the paper, a theoretical estimation
of the diagonal components of the space debris object inertia tensor was obtained in the
simple case of attaching the measuring equipment on this object. It was assumed that
the structural axes of the measuring equipment coincide with the main body axes of the
space debris object. As an example, the Aist-2D small spacecraft for the remote sensing of
the Earth was taken. Its example demonstrates the possibility of estimating the diagonal
components of the inertia tensor using the measurement data of the Earth’s magnetic
field induction vector. The average values of the disturbing factors (in the stabilization
mode) and the moments of flywheel engines (in the reorientation mode) were chosen as
the controlled action on the small spacecraft. The results showing a fine precision with the
diagonal components of the inertia tensor of the Aist-2D small spacecraft are obtained. The
results of the work can be used in estimating the inertia tensor components of space debris
objects. This can be useful when implementing the missions to clean up near-Earth space.
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