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Abstract: Energy consumption is a significant concern in daily life, often neglected in terms of cost
and environmental impact. Since IT networks play an essential role in our daily routines, energy-
saving in this area is crucial. However, the implementation of energy efficiency solutions in this field
have to ensure that the network performance is minimally affected. Traditional networks encounter
difficulties in achieving this goal. Software-Defined Networks (SDN), which have gained popularity
in the past decade, offer easy-to-use opportunities to increase energy efficiency. Features like central
controllability and quick programmability can help to reduce energy consumption. In this article, a
new algorithm named the Modified Heuristic Algorithm for Energy Saving (MHAES) is presented,
which was compared to eight commonly used methods in different topologies for energy efficiency.
The results indicate that by maintaining an appropriate load balance, one can save more energy than
in case of using some other well-known procedures by applying a threshold value based on forecast,
keeping only a minimal number of nodes in an active state, and ensuring that nodes not participating
in packet transmission remain in sleep mode.

Keywords: SDN; SDN networks; energy saving; compression TCAM; end host-aware; traffic-aware;
rule placement; MHAES; algorithm; Python

1. Introduction

Software-Defined Networks (SDN) [1,2] are regarded as valuable solutions in com-
puter networks and are gaining increasing prominence in modern times. The idea of SDN
originated from the fact that the optimal configuration of the network posed numerous dif-
ficulties and required substantial additional work in traditional networks. Moreover, legacy
networks suffered from limited flexibility and lacked the capability for immediate, fast, and
productive responses to network traffic demands. The main advantage of Software-Defined
Networks lies in the centralized control and the separation of the data plane (transmission)
and the control planes. The control plane ensures the management of programmable
network devices, while the responsibility of forwarding packets according to the processing
forwarding tables received from the controller lies solely with the switches. In recent years,
SDN has witnessed widespread adoption, not only in large corporate and institutional
networks but also in home networks. This is primarily due to the cost-saving opportunities
provided by it, particularly in the energy domain, where costs have significantly surged.
When examining network expenses, it becomes apparent that a considerable proportion
is attributed to energy consumption. Consequently, numerous investigations have been
carried out over the past few years and decades to reduce these expenses.

Several approaches exist for saving energy in SDN networks. They operate either on a
hardware basis or with software solutions. From a physical point of view, energy savings
are derived from optimizing the memory utilization of the switches. Managing the Ternary
Content Addressable Memory (TCAM) [3] offers practical solutions. It is crucial to compress
the contents and, if necessary, increase memory capacity to contribute to energy savings.
However, it is important to note that memory capacity cannot be expanded infinitely.
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Software-based energy savings can be accomplished through the controller by lever-
aging central control. In this scenario, different algorithms can be utilized to influence
the behavior of the network ensuring that energy savings do not come at the expense of
network performance. SDN energy efficiency methods can primarily be categorized into
four groups: Compression TCAM [3], End Host-Aware [4], Traffic-Aware [5], and Rule
Placement [6].

This article introduces a novel algorithm called the Modified Heuristic Algorithm for
Energy Saving (MHAES), which undergoes a comparative evaluation with eight commonly
employed methods across various topologies to assess its energy efficiency. The results
presented below stem from an investigation that primarily focused on three main categories
of energy-saving methods: compressive TCAM, traffic monitoring, and the rule placement
method. Although the endpoint-aware method was also examined, it was not considered
relevant to our research as our primary focus revolved around campus level or smaller net-
works. Within the three selected categories, the options that greatly facilitated the operation
of the heuristic algorithm being proposed in this article were thoroughly analyzed. Specif-
ically, the Rectilinear [7] and CAM Razor [8] methods were examined for Compression
TCAM, both prioritizing either rule or content compression. From the research perspective,
both methods held significance, as the goal was to convey to the switches as many basic
rules as possible while minimizing energy consumption. Traffic-aware options such as
Green Abstraction Layer (GAL) [9], Exclusive Routing (EXR) [10], Strategic Greedy Heuris-
tic (SGH) [11], or Routing for Minimization of Active Devices (RMAD, RMAD+) [12] were
also analyzed. They proposed efficient solutions for the current investigation, enabling us
to achieve energy savings with the implemented modifications. Additionally, rule place-
ment methods such as Energy-Aware Routing (EAR) [13] and DevoFlow [14] were also
considered and played a vital role in the research. These methods were modified resulting
in the proposed heuristic algorithm. The primary objective of this paper is to present this
algorithm and the achieved outcomes.

The rest of this paper is as follows. First, Software-Defined Networks (SDN) are
introduced briefly in Section 2. Then, energy-saving solutions in SDNs are reviewed in
Section 3. Section 4 presents the proposed new algorithm, while the simulation results are
described in Section 5. Finally, the conclusions are drawn in Section 6.

2. Software Defined Networks

SDNs [15,16] completely separate controlling from the data transmission in contrast to
the solution used in traditional networks. All decisions in the traditional network depend
on the routers (e.g., packet forwarding), while in SDNs, the controller decides the best way
for the packets using the centralization (Figure 1). Three main layers are distinguished in
the SDN architecture (Figure 2), i.e., the data plane [17] (infrastructure layer), the control
plane [18] and the application plane [19].
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Figure 2. SDN architecture.

Data plane: The data layer houses the network infrastructure, which consists of data
transmission devices commonly referred to as switches. These devices ensure the delivery
of packets from the source to the destination based on instructions received from the
controller. In traditional networks, routers continuously exchange messages to determine
the correct route. In SDN networks, switches inform the controller about the current
topology status, enabling decision-making on appropriate traffic control in the upper layer.
Data transmission information is then relayed to the relevant network devices through the
southbound interface. Error-free communication with the control layer requires the use
of the appropriate protocol, such as the open standard OpenFlow [20,21]. This protocol
provides a set of commands to modify the state of devices participating in an SDN.

Control Plane: The control layer encompasses the SDN controller(s) responsible for
centralization in SDN. Controllers make decisions regarding rule placement and instruc-
tions for traffic control. However, centralization can pose challenges, including network
security, scalability, and energy management, especially when controllers become over-
loaded. It is important to note that an SDN controller does not necessarily solve these
tasks in larger networks. Attention should be given to the location of SDN controllers,
as distributed control, error management, and energy consumption pose additional chal-
lenges. The network hypervisor and network operating system, located in this layer, aid in
resolving these functions.

The control layer’s third component is the northbound interface, facilitating communi-
cation between the controller and applications in the management layer. The northbound
interface commonly employs open-source application programming interfaces (APIs) that
can be easily utilized and modified according to specific requirements.

Application plane: The application layer comprises SDN network applications and
programming languages. This layer provides a user interface to configure desired settings,
including load distribution among potential routes, network security settings, rule system
creation, and energy consumption modifications.

By employing SDN applications and proper monitoring, rapid responses to network
changes can be achieved, such as addressing load balancing issues, lost routes leading to
topological changes, or unexpected attacks. Centralization eliminates the need for local
reconfiguration, allowing for quick and efficient changes through the controller [22]. This
capability is beneficial for network operation from all perspectives, and our article focuses
on potential solutions for improving energy usage.

3. Energy Saving Solutions in SDN Networks

With the emergence of the energy crisis, the task of reducing energy consumption
through centralization is becoming increasingly challenging for SDN networks as well.
Moreover, accurately monitoring and tracking energy consumption is also crucial. Various
techniques can be employed in SDN networks to achieve energy saving. It should be noted
that in these networks, the decisions are made by the controller. SDN switches can be
configured to operate in an active or sleeping state, bandwidth can be limited, and rules for
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network operation can be defined and sent to the respective devices. This section presents
an overview of these different energy saving methods.

3.1. Compression TCAM Solution

Switches utilize a specialized memory known as Content Addressable Memory
(CAM) [23] to store and retrieve data. Unlike regular RAM, which relies on memory
addresses, CAM allows direct content querying without the need for specifying addresses.
CAM offers faster access compared to RAM and its tables yield either a true (0) or false (1)
result. This type of memory is particularly useful for creating tables that require exact
matches, such as MAC address tables. However, CAM’s limitation lies in its ability to only
check for complete matches of ones and zeros. To address this limitation, the solution lies
in Ternary Content Addressable Memory (TCAM) [24,25].

TCAM serves as a specialized form of CAM, capable of storing and retrieving data
based on three different input parameters: 0, 1, and X (“do not care”). The inclusion
of the “do not care” input parameter, acting as a wildcard, enables TCAM to perform
more detailed searches as intended. TCAM proves valuable in finding longest matches
and also stores additional information such as Access Control Lists (ACLs) [26] and other
higher-level task-related data. While TCAM functions well in SDN switches for efficient
routing, its drawbacks include high cost, significant power consumption, and excessive
heat generation. These challenges pose a considerable obstacle for central controllers and
other network devices. However, it is worth noting that the use of TCAM ensures that the
application of ACLs does not impact the performance of the switch. Multiple TCAMs can
be present in a switch, enabling the simultaneous or parallel evaluation of incoming and
outgoing security ACLs, offering a substantial energy-saving advantage.

Considering the expense and energy consumption associated with TCAM usage,
finding a solution to address these issues becomes imperative. One possible method is
the compression of TCAM. Two potential compression approaches for TCAM are rule
compression and content compression.

In SDN, switches make their decisions based on the forwarding rule identified in
TCAM. Each entry in the process table defines a matching rule, specifying a predefined
operation for each case. Upon packet arrival, the forwarding device identifies the highest
priority matching rule and executes the requested action. Various solutions have been
developed to compress these rules, ensuring a more efficient utilization of TCAM.

The Rectilinear [7] approach leverages the features provided by SDN, such as centrally
programmable interfaces and the dynamic definition of actions for forwarding specific
packets (content compression). In the case of compression, the bit size is reduced to store
only vital information necessary for packet routing. Each flow is assigned a unique flow
ID to ensure proper identification. Forwarding switches modify the packet headers to
incorporate the flow ID, facilitating packet classification by switches. SDN switches employ
a shorter label representation compared to the original bit number to identify flows, thereby
conserving energy.

The rule compression method, known as the CAM Razor [8] method, defines a four-
step process. In the first step, a reduced decision diagram is created for the given rules. The
second step involves considering rules associated with non-central nodes and minimizing
them using dynamic programming techniques. Subsequently, rules are generated from the
decision diagram in the third step. In the fourth and final step, unnecessary or redundant
rules are eliminated from the process.

Compact TCAM [8,24,25] is a solution that reduces the size of TCAM process entries
and uses shorter tags for process identification. This can be used to reduce the size of
forwarding rules, so the TCAM space can be optimized. For the efficient use of TCAM,
a scheme was created, which can be used to compress forwarding rule in overlapping
switching nodes, thus reducing the occupied area in TCAM.
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3.2. End Host-Aware Solution

The utilization of End Host-Aware solutions involves the common practice of shutting
down less utilized servers and redirecting their tasks to other servers. This approach proves
particularly advantageous for energy conservation in data centers.

ECODANE [27] serves as a valuable solution for energy saving in data centers. The
implemented method consists of five logical modules: the data center network, optimizer,
power control, forwarding module, and traffic generator. To create a data center network,
the project creators utilized the Elastic-Tree network [28] and simulated it using Mininet [29].
The task of the optimization module is to determine the minimum energy network segment,
requiring the fewest switches and links, while maintaining traffic conditions corresponding
to the requests and upholding quality of service (QoS) standards. A topology-aware
heuristic [30] was developed to assist the optimizer in quickly determining the suitable
subset for the power controller and forwarding module.

Leveraging OpenFlow, the power control module can modify the power supply status
of ports or entire switches (i.e., turning them off, on, or enabling energy-saving mode)
using the options provided by the Python API of Mininet. The function of the forwarding
module is to optimize routes within the data center, employing a hierarchical load balancing
routing algorithm [31]. Although the optimizer and forwarding module are implemented
separately, they closely collaborate. The forwarding module operates based on the data
received from the optimizer, but in the absence of information, it sets all non-active network
devices to the “on” state. The traffic generator contributes to the simulation process.

It is important to note that our research does not specifically focus on data center
networks. Instead, we concentrate on optimizing energy consumption in institutional, local,
and large company networks within the region. Therefore, this method did not play a
prominent role in our study, and we did not compare it to our own algorithm.

3.3. Traffic-Aware Solution

The energy efficiency solution, focusing on traffic awareness, highlights the fact that
network switches are not always fully utilized. By optimizing the on and off state of
these devices, energy savings of up to 40% can be achieved. The key idea is to switch on
these transmission devices only when necessary and switch them off otherwise, thereby
conserving energy [32]. While energy saving is crucial, it is equally important to consider
the quality of service (QoS) [33] since a significant reduction in QoS can have a more
detrimental impact on our optimized network than the energy saved.

The Green Abstraction Layer (GAL) [9,10] method represents a traffic-aware solu-
tion that capitalizes on the communication capabilities between network devices, with
the querying of this communication playing a pivotal role in energy saving. The GAL
abstraction encompasses two main models: the Energy-Aware State (EAS) [12] and the
Energy Optimizer module. EAS defines logically independent units of the network, such as
switches or traffic management operations. Data collected from these units are transmitted
to the controller, which, considering the actual requirements, applies the most effective
strategies across the network devices. The Energy Optimizer module calculates the optimal
state to minimize energy consumption based on information received from EAS. The GAL
operation consists of three distinct stages: discovery, provisioning, and monitoring. In the
discovery phase, information is collected, and network devices inform the controller about
their energy usage. This process can be time-consuming and energy-intensive due to the
varying number of devices depending on the network size. The provisioning stage, on the
other hand, is faster and more efficient as it leverages basic settings and rules whenever
possible to set the network nodes to their optimal energy states. Following the provisioning
stage, the monitoring phase ensures continuous optimal network operation. The controller
receives real-time information about the current state of each entity through monitoring,
and if necessary for network operation, the triple process restarts.

Exclusive Routing (EXR) [30] represents a method to enhance fair-sharing routing
(FSR) [34], a general routing approach for efficient distribution. FSR evenly distributes flows
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over a subset of links, ensuring fairness without delay. However, this method operates with
reduced capacity, failing to utilize the full capacity available. By implementing EXR, energy
can be saved by utilizing the full capacity of active links and putting additional switches to
sleep. The primary aspect of this solution lies in eliminating low link and switch utilization.
If all routes are used, but a route has temporarily suspended flows with lower priority than
the current flow, the flow becomes active, and the package is forwarded via a lower priority
route. Otherwise, the flow remains suspended. If multiple options are available, the switch
with the fewest idle states is selected. Upon the successful completion of a process, the
controller resets the necessary flows.

Tests conducted using the OpenFlow protocol have revealed that EXR enables energy
savings regardless of whether the network is idle or busy, achieving effective utilization
through connection structure application or capacity utilization modifications. Prioritizing
flows can enhance the network’s flexibility in utilization, but careful attention must be paid
to avoid delays. It is essential to note that network flexibility in this solution assumes the
presence of backup routes and swift response, as failing to meet these conditions may result
in an unacceptable level of service.

The Strategic Greedy Heuristic (SGH) [11] algorithm serves as an effective means
to optimize the energy consumption of Software-Defined Networks (SDNs). In SGH,
participating access nodes in a flow share their load information with other nodes, and
the controller optimizes traffic flow accordingly, putting idle devices to sleep whenever
possible. SGH considers three aspects: capacity limitation to ensure efficient connections
without underutilization or overload [35–37], assigning flows to paths with adequate
capacity for each traffic demand, and shutting down nodes where necessary.

Routing for Minimization of Active Devices (RMAD, RMAD+) [12] presents a highly
beneficial energy-saving solution for SDN networks. This method takes into account the
energy savings achievable by turning devices on and off. The outlined method primarily
utilizes the Open Shortest Path First (OSPF) [38] protocol for route determination, which
proved to be an effective and swift solution. RMAD identifies the most active links using
the shortest path, extending the sleeping time of already inactive units to achieve greater
energy savings. The improved RMAD+ further limits the number of hops on a given
path and selects the path with the fewest active nodes. It is important to note that the
selection of a path with fewer active nodes does not necessarily equate to the shortest
path determination.

3.4. Rule Placement Solution

The Rule Placement method [6,13,39] necessitates the placement of information in
switches to ensure proper packet forwarding from the source to the destination address.
The crucial aspect of these techniques lies in the reception of accurate, fast, and easy-to-
implement rules by the processing devices. The ideal solution is centralized control, where
the controller provides the most optimal transmission paths. The downloading of rules to
the switches is a significant aspect of this technology. Although heuristic-based algorithms
are not foolproof, they contribute to finding the optimal solution for network enhancement.
It should be noted that switches have finite memory capacity, but this can be optimized by
defining basic traffic control rules and preloading them onto the switches.

The Energy-Aware Routing (EAR) [13] solution assumes an infinite number of rule
spaces, which is not accurate due to the limited size of the TCAM, as mentioned previously.
Giroire et al. [13] developed a method to overcome the rule space limitations in energy-
aware routing. The initial step involved creating a default rule, which is selected when
no predefined rule is available for packet forwarding, indicating that the forwarding
device lacks the necessary information to determine the possible route. Deploying these
default rules to devices is time-consuming and energy-intensive, but it can yield long-
term benefits if properly implemented. A crucial aspect is that these basic rules are only
sent to one default port from the controller, resulting in energy savings throughout the
network. The developers of the method considered the determination of the default port
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as a key element of their solution. It is important to note that each switch has only one
default port. To address this, a heuristic algorithm was created, aiming to find the best
possible forwarding route for received requests while considering storage capacity and rule
limitations. The routing table is continuously populated with appropriate routes until the
TCAM reaches its capacity. The default port is determined based on the port involved in
the most management tasks. Taking this into account, the number of active links is reduced,
switches with lower loads are put into sleep mode, and their responsibilities are assumed
by other active devices, resulting in energy savings. This solution not only conserves energy
but also reduces the rule area size, decreases delay time, and minimizes communication
with the controller, which is crucial in a corporate environment.

Another viable and beneficial solution is DevoFlow [40], which essentially modifies
an OpenFlow controller. The solution involves breaking the connection with the controller
to offload certain tasks to the switches, thereby reducing the workload on the controller
and leading to significant energy savings. The controller continuously gathers network
information, consuming substantial energy and hindering the fast transmission of large
packets. To expedite switch control, rule cloning was introduced. When a flow matches
another flow, the switch clones the rule, reducing the usage of TCAM and minimizing
communication with the controller. The authors also proposed a local mechanism, en-
abling switches to make decisions without consulting the controller for certain packet
transmissions, leveraging the use of basic rules.

In terms of the research (Table 1 shows the examined solutions), the Traffic-Aware so-
lution, combined with rule placement options (and the utilization of Compression TCAM),
proved to be highly beneficial. The reason is the Traffic-Aware and the Rule Placement
solutions have a very useful relationship. Important feature of Traffic-Aware is elasticity
and topology awareness. Talking about the Rule Placement solution, the knowledge of the
entire topology is closely related to these two properties, which is essential for choosing
the best route. Knowing the full network topology means having a global view. It is the
ability to decide which rules have to be placed on which switch, which depends on the
total network information, end-point policies, and routing policies. The set of these rules
is the rule space. Rule spaces can be reduced by reducing the number of active switches
and links. It is important to note that attention must be paid to which rule is defined for
proactive operation (before the packet arrives) and which is for reactive operation (reaction
to new packets).

Table 1. Energy-saving solutions.

Solution Name Method Difficulty of
Implementation Network Type

Rectilinear [7] Compression TCAM solution; rule list Easy Fixed network

CAM Razor [25]
Compression TCAM solution—decision

diagrams; dynamic programming;
redundancy removal

Medium Fixed network

Compact TCAM [24,25] Compression TCAM solution—shorter flow
entry size Medium Fixed network

ECODANE [27] End Host-Aware solution Medium Data center

GAL [9,10] Energy-aware states; Traffic-Aware Hard Fixed network

Exclusive Routing (EXR) [10,30] Traffic-Aware solution Medium Fixed network

SGH [11] Traffic-Aware solution Easy Fixed network

RMAD,
RMAD+ [12]

Traffic-Aware; number of active nodes;
sleep ratio Easy Fixed network

Giroire et al.’s heuristic
algorithm [6,13,39]

Rule Placement; TCAM—rule-spaced base;
Traffic-Aware Easy Fixed network

DevoFlow [40] Rule Placement; rule cloning; local actions Easy Fixed network
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The insights gained from all these methods played a pivotal role in shaping the
development of the Modified Heuristic Algorithm for Energy Saving (MHAES), as detailed
in the previous section (refer to Table 1 for the analyzed solutions). Notably, the Traffic-
Aware solution, coupled with strategic rule placement and the adoption of Compression
TCAM, demonstrated significant advantages. These methodologies collectively influenced
the refinement and formulation of the Modified Heuristic Algorithm for Energy Saving
(MHAES), which will be elaborated upon in the following section.

4. Energy-Aware Approach—Modified Heuristic Algorithm for Energy
Saving (MHAES)

In the preceding section, several methods were presented that can effectively con-
tribute to energy savings in SDNs. The mathematical models of the Traffic-Aware solution
and the Rule Placement solution [41–45], which will also be shown in this section, had
a significant impact on the design of the new algorithm presented here. Moreover, the
mathematical background of the proposed algorithm will be detailed as well, along with
the algorithm itself.

4.1. Mathematical Model for Traffic-Aware Solutions

Network traffic, which refers to the number of packets transmitted on the network
at a given time, can be managed to avoid congestion, promote proper load distribution,
and save energy. For optimal route selection, the status information of the devices used in
the network is periodically collected by the SDN controller. This data assist in determining
the network rule system, enabling quick reactions in case of possible failures. The Traffic-
Aware model [12,32,35–37], which is a solution aimed at minimizing power consumption
by deciding when each device should be put to sleep under low traffic conditions, can be
utilized through SDN-centralized management. Table 2 shows the list of notations used.

Table 2. Notation table.

Variable Name Description

Z SDN switch set

E Link set

Eij Link between switches zi and zj

BWij Bandwidth of the link between zi and zj

PCSi Power consumption of switch zi

PCi Power consumption of link eij

f Flow of the network

Sr, ds Source switch, destination switch

fr Flow rate

Hin Incoming host

Hout Outgoing host

λf The packet rate of flow f

Lij Variable is whether edge eij is active or not

af
i Flow f installed on switch zi

Si Status of the switch

In terms of energy consumption, links and switches are the main participants in SDN
networks. The reduction in the number of switches and connections required for network
traffic transfer is crucial for achieving more favorable energy savings.

Network traffic can be illustrated by an undirected weighted graph G = <Z, E>. Here
Z and E represent the number of switches and connections, where zi ∈ Z and eij ∈ E. The
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connection, or link, between switches zi and zj is denoted by eij. The current state of the
switch is determined by the following equation.

Si =

{
1 if switch zi is active

0 otherwise

}
(1)

Equation (2) aims to minimize the total energy consumption of the network through
the utilization of switches and connections. The energy consumption of the links and
switches is represented by the first and second terms, respectively.

The energy consumption of the connection eij and the switch zi is denoted as PCij and
PCSi, respectively. The network traffic flow, represented by f, belongs to the set F, where f
can be defined as f = (sr ds fr). The flow rate is denoted as fr, while sr and ds, both belonging
to the set Z, represent the source and destination switches, respectively,

Minimalize
(

∑∀ f ∑∀eij
Fij × PCij + ∑∀Si

Si × PCSi

)
(2)

subject to:
∑∀ f Fij× ≤ BWij, ∀eij (3)

∑∀ f Fai = ∑∀ f Fib,zi 6= sr, ds ∈ fsr ,ds ,λ f
(4)

Fmj = Fin, zm = sr, zn = ds, ∀emj, ∀ein (5)

Fij ≤ Sj, ∀zj ∈ z (6)

Fij ≤ Sj, ∀zi ∈ z (7)

Si ≤ ∑∀ f
[

fij + f ji
]
, ∀zi ∈ z (8)

The flow rate between the switches is specified by Equation (3), which ensures that it
does not exceed the maximum capacity of the available connection. The inflow and outflow
values are given by Equation (4). Equation (5) governs the flow from the source to the
destination. Equations (6) and (7) ensure that the flow cannot be directed towards any
sleeping switches. Assistance in deactivating idle switches is provided by Equation (8).

4.2. Mathematical Model for Rule Placement Solutions

Another energy saving method, as already mentioned, is Rule Placement
solution [6,13,39,41–45]. An important aspect of this method is TCAM, in which significant
energy savings can be achieved by controlling the number of flow rules. TCAM memory is
finite, and an important aspect is that this memory is also expensive. The energy consump-
tion of the SDN network can be influenced by the number of entries stored in the TCAM.
By using the rule placement method, the number of rules placed in the TCAM can be
influenced, for example with the default rules, or possibly with other replacement methods.

The goal of this solution is to minimize flow inputs, thus increasing energy efficiency.
To represent the network traffic, we use an undirected weighted graph G = <Z, E> where Z
and E represent the number of switches and links, such that zi ∈ Z and eij ∈ E. The eij is a
connection between switches zi and zj. The bandwidth of the given link is presented by wij.
The state of the switch is given by the following Equation (9).

Si =

{
1, if switch zi is active

0, otherwise

}
(9)
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Considering the free capacity of resources, the matrix of rules can be described as
follows (10). Rules represent flows associated with switches:

ai f =

{
1 if rule representig flow f is installed on switch zi

0 otherwise

}
(10)

The size of the matrix is determined by the number of switches in the matrix. The
edge is eij, and whether it is asleep or not is decided by the binary variable Lij.

Lij =

{
1, if edge eij is active

0, otherwise

}
(11)

The status of the flow through the edge eij is refreshed by the variable Kij, which gives
back a binary result.

Kij =

{
1, ∑ f∈F Fij ≥ 1

0, otherwise

}
(12)

The number of rules present in switches is given by Equation (13). The capacity of
the connection fixedly determines the number of flows that can pass through the given
link, and this can be seen in Equation (14). Of course, the number of rules built into the
switch cannot exceed the switch capacity, Equation (15). Equation (16) shows the state of
the flow passing through edge eij. Equation (17) puts the unused connection to sleep. If
this reference is used in any process, it must become active. It can be seen in Equation (18).
Equation (19) contains the rule of flow retention.

Minimalize∑ ai f ∀ f (13)

is subject to:
∑∀ f Fij × λ f ≤Wij, ∀eij (14)

∑∀ f Fij = Gi, ∀zi (15)

Fmj = Fin, zm = sr, zn = ds, ∀emj, ∀ein (16)

Fij ≤ Sj, ∀zj ∈ z (17)

Fij ≤ Sj, ∀zi ∈ z (18)

Si ≤ ∑∀ f
[

fij + f ji
]
, ∀zi ∈ z (19)

4.3. Mathematical Model and Algorithm of MHAES

As the starting point of the development of the Modified Heuristic Algorithm for
Energy Saving, an analysis was carried out to determine the components upon which
the energy consumption of switches depends. For this purpose, the following formula
was utilized.

Eswitch = Ebasic + Econfiguration + Eopenflow + Econtrol, (20)

where Ebasic denotes the basic performance of the switch, Econfiguration is configuration speed,
Eopenflow refers to the energy consumption of the processed OpenFlow traffic (operations),
while Econtrol pertains to the energy consumption of the control traffic (which depends on
the speed of outgoing and incoming packets).

During the investigation, focus was placed on determining which components’ energy
consumption could be influenced to achieve greater energy saving. Ebasic and Eopenflow
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offered limited opportunities for reducing energy usage but modifying the variables
Econfiguration and Econtrol showed promise in solving the problem.

In this investigation an undirected weighted graph G = <K, E> was used to represent
the network traffic. Here, K includes both hosts and SDN switches (K = H U Z), and E
represents the number of connections, such that zi ∈ Z and eij ∈ E. The connection between
switches zi and zj is denoted by eij. The basic rule B applied between hosts was taken into
account. For each R, Hr represents the default traffic control rule set.

The premise underlying the approach was to minimize communication between trans-
mission devices and the controller, thereby achieving significant savings in delay time,
capacity utilization, and energy consumption. To enable reduced communication, an algo-
rithm was conceived that detects active and sleeping SDN-compatible switches and seeks
to avoid activating switches already in a sleeping state. Whenever possible, as many default
and local rules as possible were applied to determine the proper forwarding of packets
between the source and destination addresses without relying on central communication.
The primary goal was to minimize energy consumption in the SDN network.

When developing the mathematical model, the well-established solutions developed
in the aforementioned Traffic-Aware and Rule Placement approaches were taken into
account, supplemented by the defined expectations aimed at reducing network energy
consumption. Table 3 shows the designations of basic and special input data, while Table 4
contains the decision parameters.

Table 3. Input variables table.

Variable Name Description

Z SDN switch set

E Link set

H Hosts

Eij Link between switches zi and zj

Bwij Bandwidth of the link between zi and zj

R Set of offered unicast request

hr, r ∈ R Offered route rule for r. From this information, s(r) denotes the
source host of a demand r, and t(r) is the target host

Ebasic Base power of SDN-enabled switches

Econfiguration_po
The power activation of both extreme switches ports of a link.

This affects overall Econfiguration

Econfiguration_sp Speed rate, this affects overall Econfiguration

Eopenflow_control
Limited performance associated with control and

OpenFlow traffic

ASW Active switches list

SSW Sleeping switches list

CA Maximum capacity of a link

TCA Threshold number for link capacity

BN A big number
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Table 4. Decision parameters table.

Variable Name Description

ze, e ∈ E 1: if designated link is already installed
0: otherwise (no link means 0 capacity)

CAe, e ∈ E The capacity of the designated link

Yre, r ∈ R, e ∈ E 1: if demand r passed designated link e,
0: otherwise

yre, r ∈ R, e ∈ E 1: if demand r passed designated link e,
0: otherwise

Yz, z ∈ Z 1: if designated switch is already installed
0: otherwise

rz, z ∈ Z The number of installed OpenFlow flows in designated switch z

The total energy consumption of SDN switches participating in the network is min-
imized by the task of function (21). Flow constraints are contained in Equation (22).
Equation (23) indicates that the traffic forwarded on each connection’s link is either less
than or equal to the available capacity. Constraint (24) ensures that if a connection is in a
sleep state, CAe = 0, indicating it has no capacity. However, if the link is active, its capacity
is limited by CA, which represents the maximum capacity of the link.

Constraint (25) guarantees that when a switch z is in the off state, the capacity of both
the incoming and outgoing links must be 0, i.e., CAe = 0. Equation (26) ensures that if a
request r does not impact the link e, the traffic associated with the request will be 0 (Yre = 0).
Equation (27) determines the number of processes belonging to the OpenFlow protocol
that should be set on the z switch.

X = min(E basic∑
z

yz + Econ f iguration_po∑
e

ze + Econ f iguration_sp∑
e

CAe + Eopenlow∑
z

rz) (21)

is subject to:

∑
e∈kout(z)

Yre − ∑
e∈kin(z)

Yre =


hr, i f z = s(r);
−hr, i f z = t(r)

0, otherwise

, ∀r ∈ R, ∀z ∈ Z (22)

∑
r

Yre ≤ CAe∀e ∈ E (23)

CAe ≤ CAZe , ∀e ∈ E (24)

∑
e∈kout(z)

CAe − ∑
e∈kin(z)

CAe ≤ BNYz∀z ∈ Z (25)

Yre ≤ BNyre, ∀r ∈ R, ∀e ∈ E (26)

∑
e∈kout(z)

∑
r

yre = rz, ∀z ∈ Z (27)

The modified heuristic algorithm (Algorithm 1) has been developed using the above-
presented model.
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Algorithm 1 The modified heuristic algorithm

FOR EACH CuRe IN R DO
IF CuRe is first request THEN

CuPa = Shortest_Path(CuRe)
CPo = Power_Value(CuPa, CuRe)
Update(CuPa, ASW, SSW, AL, CA, F)

ELSE
P = All_Available_Paths(CuRe)
SP = []
FOR EACH CuPa IN P DO

IF Available_Capacity(CuPa)>TCA THEN
CPo = Power_Value(CuPa, CuRe)
SP← CuPa, CPo

END IF
END FOR
OP = Minimum_Power_Path(SP)
Update(OP, ASW, SSW, AL, CA, F)

END IF
END FOR

In the algorithm, R represents the list of traffic requests, and CuRe represents the
current request that needs to be examined. TCA is the threshold value of the link capacity
defined manually [46]. ASW represents the list of active SDN switches, while SSW contains
the set of switches in a sleeping state. AL is the list of active links, while CA represents the
capacity of the link. F represents the active flows in each SDN switch. CPo denotes the
power consumption of the current request, and SP includes the list of selected paths and
their corresponding CPo.

The main goal was to determine a route that would minimize the energy consumption
of the network. The algorithm treats the first request separately from subsequent requests.
For the first incoming request, the algorithm considers it as the shortest and most efficient
path in terms of energy consumption and updates the required values accordingly. In the
case of requests following the first request, the first task is to define the set of all available
routes that can be assigned to the given request. Next, the method selects the set of paths
with a capacity greater than the specified capacity threshold (20%) and determines their
energy consumption. Next, it chooses the path that results in the smallest energy increase
in the network. After determining the path with the minimum value, the necessary values
are updated accordingly.

In the Power_Value function, as depicted in Algorithm 2, the algorithm determines
whether certain actions need to be taken based on the threshold number of active switches.
These actions include activating a new switch if necessary, modifying link settings (e.g.,
increasing speed with Active_Links_Update (CL, CuRe)), or adding a new flow entry to the
existing ones as requested (Basic_Flow_Update (CuRe)).

A switch in a sleeping state can only be awakened under the condition that the switch
intended for use by the link is not active, meaning there is no active connection between
the source and target, and the number of active SDN switches does not exceed the specified
threshold number.
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Algorithm 2 Function Power_Value

Power_Value(path, CuRe)
FOR all CL IN path DO

Active_Links_Update(CL, CuRe)
Basic_Flow_Update(CuRe)
IF origin(CL) or destination(CL) not in ASW

THEN
IF count(ASW)>TASW THEN

RETURN infinite
END IF
Active_Switches_update(ASW, SSW)

END IF
power=Calculate_Power(CL, CuRe)

END FOR
RETURN power

5. Simulation and Results

The algorithm was tested in Net2Plan [47–49] using several different environments.
For this purpose, two network topologies, i.e., Simmons and eon, built into the software,
were employed with different numbers of nodes. The tests were conducted on fixed
wired networks with 15, 30, 45, and 60 nodes. In each case, six different solutions were
compared to the newly created algorithm five times starting from different nodes. The
power consumption was analyzed when all switches and links were active. Additionally,
the Rectilinear, DevoFlow, EXR, RMAD, RMAD+, and Giroire et al.’s heuristic algorithm
solutions were tested and compared against the new MHAES solution.

The initial tests utilized the built-in networks Simmons_N30_E72 and Simmons_N60_E154
E154. To broaden the scope of testing, selected solutions were also tested with 15 nodes. For
the 15-node solution (Figure 3), the network topology Simmons_N30_E72 was modified
by removing several links and nodes (resulting in 43 links). With 30 nodes we use the
original Simmons_N30_E72 (with 72 links) topology (Figure 4.). The topology with 45 nodes
(Figure 5) was created by deleting nodes and links from the Simmons_N60_E154 network
(resulting in 122 links). In Figure 6. can see the original topology Simmons_N60_E154 (with
154 links).
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The simulation average results are depicted in the diagrams presented in Figures 7–10,
representing networks with 15, 30, 45, and 60 nodes, respectively. The y-axis indicates
the energy consumption relative to the expected amount, where 100% corresponds to
the scenario with all links and nodes active. All tested methods consistently consumed
less energy compared to this scenario. In the case of 15 nodes (Figure 7), the Rectilinear,
DevoFlow, EXR, RMAD, and RMAD+ solutions exhibited energy savings of average
10–15% for a small number of requests and up to 15–20% for a larger number of requests
on average. Giroire et al.’s heuristic algorithm and the MHAES consistently outperformed
the other methods, achieving energy savings of around 25% for 80 requests. The MHAES
demonstrated the best performance, surpassing Giroire et al.’s heuristic algorithm by an
additional 2% in energy savings on average. This was mainly due to the fact that more
information reaches the nodes in the initial stage, which, although it requires more energy in
the case of continuous increases in requests, due to less frequent contact with the controller,
it uses its own local information and can save energy. It is important that the capacity
and the number of sleeping nodes decisively influence the amount of energy savings.
In this case, these numbers are constant values given through experience, which will be
determined in the future, taking into account the actual needs. Notably, this study served as
a starting point and focused on network topologies typically found in smaller companies.
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Figure 7. The average energy consumption with 15 nodes depending on the number of requests.
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Figure 8. The average energy consumption with 30 nodes depending on the number of requests.
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Figure 9. The average energy consumption with 45 nodes depending on the number of requests.
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Figure 10. The average energy consumption with 60 nodes depending on the number of requests.

Moving on to networks with 30 nodes (Figure 8), the initial average energy savings
with the MHAES and Giroire et al.’s heuristic algorithm were slightly lower compared
to the 15-node scenario. However, they still outperformed the other examined methods,
demonstrating only minimal loss. The MHAES began performing noticeably better after
25 requests, achieving significant energy savings. Similar energy savings to the 15-node
test were attained for 80 requests in this network.

Figures 9 and 10 display the results for networks with 45 and 60 nodes, respectively.
Once again, the MHAES and Giroire et al.’s heuristic algorithm outperformed the other
solutions. The Rectilinear, DevoFlow, EXR, and RMAD methods achieved average energy
savings of 20–25% for almost 80 requests in the case of 45 nodes and 25–30% for 60 nodes.
However, the MHAES and Giroire et al.’s heuristic algorithm, after the initial rule placement
load, consistently achieved substantial energy savings compared to the aforementioned
methods. With 40–45 requests, the MHAES consistently outperformed its competitors,
achieving nearly 40% energy savings compared to the scenario where all switches and links
are active. In the network with 60 nodes, the MHAES maintained a 2% average energy
savings advantage over Giroire et al.’s heuristic algorithm after 45 requests, which persisted
even after 80 requests. It is worth noting that due to the larger number of links, all tested
methods exhibited smaller savings compared to the first series of tests. The deviation from
the average value in the negative direction was not greater than 1.2% in all cases, while the
maximum value in the positive direction was 2.5%. The network performance performed
similarly in all cases examined, and no significant differences were observed.

For the second series of tests, the starting point was the built-in network eon_N15_E66
(with 66 links), as depicted in Figure 11. The network was also tested with 30, 45, and
60 nodes five times each, starting from different nodes. Additional nodes and links were
randomly added to the basic network. Consequently, the 30-node network (Figure 12)
had 108 links, the 45-node network (Figure 13) had 152 links, and the 60-node network
(Figure 14) had 214 links. The aim was to significantly increase the number of connections
compared to the previous test and evaluate the selected SDN-based energy-saving solutions.
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The simulation results are presented in Figures 15–18. Similarly to the previous test,
the y-axis represents the percentage of energy consumption relative to the expected level,
while the x-axis indicates the number of requests. As observed, the network consumed the
most energy when all switches and links were active. The average energy savings achieved
through the tested methods yielded similar results to the previous topology, although
higher link numbers naturally led to increased energy consumption. In the case of 15 nodes
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(Figure 15), Giroire et al.’s heuristic algorithm and the MHAES yielded the best results.
The MHAES achieved the best performance with 25% average savings for 80 requests,
surpassing Giroire et al.’s heuristic algorithm by 2%.
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For 30 nodes (Figure 16), similarly to the previous topology, the MHAES and Giroire
et al.’s heuristic algorithm demonstrated initial energy savings compared to networks
with fewer nodes. The MHAES already outperformed the other methods after 35 requests.
The energy savings achieved with 80 requests were similar to those obtained with the
first topology.

In the case of networks with 45 or 60 nodes (Figures 17 and 18), the MHAES and
Giroire et al.’s heuristic algorithm once again outperformed the other tested solutions.
For 45 nodes, the MHAES surpassed Giroire et al.’s heuristic algorithm after the 30th
request. With 80 requests, these two algorithms still consumed the least energy, but their
advantage was not as significant as with a smaller number of nodes. Compared to the
RMAD, RMAD+, and Giroire et al.’s heuristic algorithm, the MHAES achieved 7% and
9% less average energy consumption, respectively (compared to all switches and links,
the savings were 30%). In the case of 60 nodes, the MHAES outperformed the heuristic
algorithm by 2% after 45 requests, maintaining the advantage even after 80 requests. It
is important to note that due to the larger number of links, all tested methods exhibited
smaller savings compared to the first test series. The deviation from the average value
within these topologies in the negative direction was not greater than 1.7% in all cases,
while the maximum value in the positive direction was 2.8%. The network performance
performed similarly in all cases examined, and no significant differences were observed.

Regarding the MHAES, it is crucial to emphasize that the capacity threshold number
and the threshold number of active switches were determined empirically. Further research
will focus on predicting these values accurately based on collected samples using fuzzy
logic and other artificial intelligence techniques [50–53]. The development of an effective
method to predict the power demand of the network, enabling precise determination of the
necessary threshold numbers, is of utmost importance.

6. Conclusions

All of the SDN-based energy-saving solutions examined in this study are highly
valuable; however, they vary in their energy-saving capabilities. Several studies have been
conducted on this topic, producing many relevant findings. Difficulties arose during the
investigation due to variations among researchers in terms of the tested methods, network
topologies, and software utilized. Therefore, this study conducted two sets of tests, each
employing different built-in topologies and four different node numbers per topology.
Within these environments, seven different methods were compared. The baseline case
involved all switches and links being active, which was then compared to the Rectilinear,
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DevoFlow, EXR, RMAD, RMAD+, Giroire et al.’s heuristic algorithm solutions, and the
MHAES proposed in this article.

Based on the results, it can be concluded that both the proposed MHAES and Giroire
et al.’s heuristic algorithm achieved similar performances and provided significantly higher
energy savings compared to the other examined solutions. It is worth noting that in all
the tested environments, MHAES outperformed Giroire et al.’s heuristic algorithm after
40–45 requests.

To better anticipate future requirements, fuzzy logic can play a crucial role. Leveraging
the capabilities of fuzzy logic, it would be advantageous to predict the threshold number
for capacity and the number of active switches to be applied in the MHAES, based on
network needs and load.

Another aspect that deserves attention in future research is the development and
placement of rules on switches. Transferring decision making from the controller to the
switches increases the energy consumption of the MHAES for initial requests. Therefore, a
suitable solution must be devised to ensure more efficient operation.

Attention must also be paid to the fact that the algorithm has to take into account the
diversity of traffic control devices, which can also affect the degree of energy savings.

It would be important to create a fast-intervention SDN application that, based on the
queried data, could change the messages sent by the controller with the help of a mobile
device of any platform in terms of energy saving [54,55].
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