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Abstract: Deep learning networks have demonstrated outstanding performance in 2D and 3D
vision tasks. However, recent research demonstrated that these networks result in failures when
imperceptible perturbations are added to the input known as adversarial attacks. This phenomenon
has recently received increased interest in the field of autonomous vehicles and has been extensively
researched on 2D image-based perception tasks and 3D object detection. However, the adversarial
robustness of 3D LiDAR semantic segmentation in autonomous vehicles is a relatively unexplored
topic. This study expands the adversarial examples to LiDAR-based 3D semantic segmentation. We
developed and analyzed three LiDAR point-based adversarial attack methods on different networks
developed on the SemanticKITTI dataset. The findings illustrate that the Cylinder3D network has the
highest adversarial susceptibility to the analyzed attacks. We investigated how the class-wise point
distribution influences the adversarial robustness of each class in the SemanticKITTI dataset and
discovered that ground-level points are extremely vulnerable to point perturbation attacks. Further,
the transferability of each attack strategy was assessed, and we found that networks relying on
point data representation demonstrate a notable level of resistance. Our findings will enable future
research in developing more complex and specific adversarial attacks against LiDAR segmentation
and countermeasures against adversarial attacks.

Keywords: adversarial attacks; LiDAR; semantic segmentation; autonomous vehicles

1. Introduction

With the rapid development of Artificial Intelligence (AI), Deep Learning (DL) net-
works have become the state-of-the-art technology for a wide range of computer vision
tasks. With the availability of large datasets, at present, these DL networks are used to
perform object identification, object tracking, etc., tasks in safety-critical applications [1].
Autonomous vehicles (AVs), in particular, are a promising component of smart cities that
rely on various DL networks to monitor the surrounding environment and transit safely.
Globally, there are several AV-related initiatives to develop fully automated vehicles and
nowadays there are highly automated vehicles in public services such as Google Waymo [2].

The initial iteration of AVs featured perception systems that relied on DL networks
based on 2D camera images. However, due to the complex environment of autonomous
driving, the commercial and scientific level AVs gradually migrated to employ 3D percep-
tion technologies. In order to perform 3D perception tasks, sensors such as Light Detection
and Ranging (LiDAR), and stereo cameras along with complex deep learning architectures
are heavily used, as they enable AVs to identify depth information about the scene [3–6].

Despite the exceptional performance of DL networks, recent research beginning
with [7,8] has demonstrated that they are extremely vulnerable to adversarially designed
inputs (known as adversarial attacks) that are usually visually identical to the original
input and are intended to deceive the network’s prediction. Initially, adversarial attacks
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were mainly investigated in the computer vision domain. However, a significant amount
of research has been since been conducted on adversarial attacks in order to identify vul-
nerabilities of networks based on other input types such as texts, graphs, etc. [9]. The
susceptibility of DL networks to adversarial attacks raises concerns regarding their use in
safety-critical applications like AVs, as the security of AVs is correlated with the DL net-
works those AVs employ. As a result, adversarial attacks against AVs have attracted a lot of
attention, and numerous studies were conducted to examine the adversarial vulnerabilities
of AVs and defend against them [10,11].

Previous studies on adversarial attacks and defense methods against AV perception
tasks mainly focused on 2D image-based object recognition [12–15], and steering net-
works [16]. Later, researchers extended these investigations to LiDAR-based 3D object
detection [17–20]. To deceive image-based perception methods and 3D object detection,
existing adversarial attacks have used noise perturbation-based techniques [12,16] or, to
improve physical realizability, have used adversarial objects [17,18] and patch [13–15]-
based techniques. Nevertheless, the adversarial robustness of LiDAR-based 3D semantic
segmentation has not been sufficiently explored.

In this study, three LiDAR point-based adversarial attack methods against seman-
tic segmentation networks are assessed. LiDAR semantic segmentation is the primary
concentration of this study, as it is more complex than the approximate region-based 3D
object detection and point cloud classification methods. In particular, we investigate point
removal, point attachment, and point perturbation attacks (See Figure 1) on six different
LiDAR semantic segmentation networks developed on the SemanticKITTI dataset [21]
covering networks based on points, voxels, and point-voxel data representation strategies.
Then, the effect of point distribution on adversarial robustness is investigated. Further, the
imperceptibility of the attack methods at various severity levels is evaluated. Following
that, the transferability of the attack methods is analyzed in a black-box manner. To the
best of our knowledge, this is the first comprehensive investigation of the adversarial
robustness of LiDAR semantic segmentation against previously mentioned point-based
attack methods. The main contributions of our study are as follows:

1. We update and develop point removal, point attachment, and point perturbation
attacks against six LiDAR segmentation networks and also examine how these attack
techniques can be applied across different networks.

2. Specifically, a dual loss function-based optimization process is employed for norm-
bounded iterative perturbation attack methods to regulate the imperceptibility and is
benchmarked against the l2 norm-bounded attacks.

3. A novel evaluation metric is introduced to measure the impact on the original point
cloud after the adversarial point injection and removal attacks.

4. We analyze the adversarial sensitivity of each class and the impact of the class-wise
point distribution towards the adversarial robustness.

Figure 1. Results from adversarial Attacks. The left-hand side image shows the network’s segmenta-
tion results for clean input. The second image demonstrates the segmentation results after the point
removal attacks, while the third image shows the results after the point injection attack. The final
image shows the segmentation results under the point perturbation attack.

The remainder of the paper is structured as follows: Section 2 summarises the state-
of-the-art works. Section 3 discusses the adversarial example generation mechanisms
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used in our study. Evaluation metrics used to assess the adversarial robustness and attack
imperceptibility are presented in Section 4. Section 5 summarises our experimental setup,
including the network architectures and dataset. In Section 6, we present the results of
the attacks under different severity levels. Section 7 focuses on the evaluation of attack
imperceptibility. Section 8 presents an analysis of the cross-network transferability of the
attack methods. There, the impact of the sparse tensor quantization pre-processing step
towards adversarial robustness is further evaluated. Section 9 discusses our findings and
potential research directions. Finally, Section 10 concludes the paper.

2. Related Works
2.1. Deep Learning for LiDAR Segmentation

Deep neural networks demonstrate high accuracy in image-based object detection and
segmentation tasks. Grounded in these networks, researchers introduce DL networks to
segment the LiDAR point clouds. Based on the data representation strategy, these networks
could be divided into four main categories: point, voxel, point-voxel, and projection-based
networks [22]. Point-based networks learn the geometric information from the raw point
clouds, while voxel-based networks transform point clouds to compact volumetric grids.
Generally, the voxel-based methods enable competitive performance while using less
computational resources. Projection-based methods transform the point cloud onto a 2D
image and make use of 2D convolution operators to provide the predictions. However, the
projection-based methods’ performance is limited by occlusions and scale issues.

2.2. Adversarial Attacks against 3D Perception

Adversarial attacks against image-based 2D driving scene segmentation and object
recognition have been studied extensively. However, as AVs increasingly leverage 3D
perception, there has been a growing focus on studying the adversarial vulnerabilities of
3D perception tasks. The 3D attack methodologies on LiDAR point clouds primarily centre
around manipulating the LiDAR point clouds, such as by changing the geometry of the
objects via LiDAR point shifting, and adversarial objects. In contrast, 2D attacks aim to
compromise networks relying on camera inputs through pixel-level manipulations such
as adding noise and adversarial patches. Notably, 2D image-based networks exhibit a
higher vulnerability to imperceptible adversarial perturbations, while 3D LiDAR point
cloud-based networks demand more substantial manipulations to alter the predictions. The
main reason for this is that LiDAR sensing enables the acquisition of comprehensive depth
information and allows the DL networks to learn geometry or both geometry and texture
information whereas 2D image-based networks mainly rely on texture information [22,23].

In the realm of adversarial attacks on AVs’ 3D perception, a considerable amount of
studies are focused on approximate region-based 3D object detection networks based on
LiDAR point clouds, camera and LiDAR fusions, and monocular/stereo vision. These attack
methods mostly rely on point injection techniques along with adversarial optimization
methods [19]. In contrast, another set of studies proposed physically realizable attack
methods using adversarially optimized mesh objects [24,25]. These adversarial mesh
object-based attacks have proven their success in altering the performance of both LiDAR-
based and Multi-Sensor-Fusion (MSF) based networks. Moreover, a limited number of
studies have investigated adversarial noise perturbation and patch attacks against camera
image-based 3D object detection [26].

The adversarial robustness of LiDAR segmentation of AVs is a relatively unexplored
topic. Zhu et al. introduced a real-world object-based adversarial attack against LiDAR
segmentation [27]. The fundamental concept behind this study is to determine the most
optimal locations at which to place the adversarial point clusters in order to deceive the
network and then place real-world objects in those places. However, prior to performing
the attack, the adversary has to gather the location’s point cloud to determine the most
optimal place to position the adversarial objects. Xu et al. presented an adversarial
perturbation-based attack against point cloud segmentation with the intention of degrading
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the performance and hiding objects [28]. They first demonstrated that color features
are more vulnerable than the point coordinates, and conducted their experiments on
perturbing the color features. Their evaluations were carried out based on the perception
of delivery robots, and for the experiments, they used only the point-based segmentation
networks. In [17], Chen et al. experimented with a physically realizable attack against
LiDAR segmentation networks available in Baidu Apollo using 3D printable adversarial
mesh objects. Moreover, Christian et al. developed a realistic test scenario generation
method for LiDAR segmentation using mutations such as object removal, addition, and
performing transformation on objects [29]. However, this method cannot be upgraded as
an adversarial attack, because adding or removing a complete object digitally makes a
significant change to the original point cloud and makes it suspicious to humans.

The study in [30] shares similarities with our study, in which the authors evaluated
the three adversarial attacks focused on in our study against different 3D object detection
networks. Moreover, Ref. [31] presented a comprehensive analysis of image semantic
segmentation against pixel perturbation attacks. However, our study focuses on the
adversarial robustness of 3D LiDAR semantic segmentation networks. We present an
optimization guided by dual loss functions for iterative norm-bounded perturbation attacks
and introduce a novel evaluation metric to measure the attack’s impact on the original
point cloud under the point injection and removal attacks.

3. Crafting Adversarial Examples
3.1. Problem Formulation

This section presents the formal definition of the LiDAR point cloud segmentation
and adversarial example generation mechanisms employed in our study.

In an adversarial attack against LiDAR segmentation, the adversary’s primary goal is
to fool the LiDAR segmentation network into assigning the wrong classification label to the
LiDAR points by making changes to the point cloud in a way that is imperceptible to human
observation but effectively deceives the LiDAR segmentation model. Mathematically, this
can be expressed as follows: Let P represent the point cloud which consists of N number
of LiDAR points as P ∈ RN×4. Each point Pi is represented by its 3D coordinates and
intensity value as (xi, yi, zi, ri). The main objective of the semantic segmentation network
Mseg is to map LiDAR points to labels y = {yi}N

i=1, where yi ∈ C is an element of original
class label set C = {Ci|i = 1 . . . L} with the cardinality of L asMseg(P) → y. The main
objective of the attacker is to generate the adversarial point cloud Padv using the adversarial
manipulation madv to obtain theMseg(Padv)→ y, where y 6= y. Specifically, in this study,
Padv is crafted using the adversarial manipulations madv, which include point perturbation,
point injection, and point removal methods using the knowledge of network gradient
information, as discussed in the next sections.

3.2. Point Perturbation Attack

Adversarial point perturbation attacks are carried out by slightly changing the coordi-
nates of the points as (xi + δx, yi + δy, zi + δz). Specifically, white-box point perturbation
attacks are used assuming that the attacker has full access to the network and dataset
including original labels obtained via a method such as performing a test step prior to the
attack. The most optimal perturbation can be derived by solving a maximization problem
given by:

δ∗ = arg max
δ∈∇
L(M(P + δ, θ), y). (1)

Ldist
(
Porg,Padv

)
= ‖Porgi

−Padvi
‖2

2. (2)

In Equation (1), L denotes the cost function of the optimization process. The main cost
function used in segmentation tasks is Cross-Entropy loss, which calculates the element-
wise classification error denoted as Lseg. In previous research, the imperceptibility of the
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perturbation attack was regulated by either constraining the perturbation for a specific
threshold based on a distance method (norm-bounded attack) or integrating the distance
metric, which calculates the difference between the original and corrupted point cloud as
a loss function and is iteratively optimized using an optimizer such as Adam [32]. Using
the insights from these two approaches, we integrate a distance cost function Ldist to
the Lseg while calculating the gradients for the previous iterative norm-bounded attack
sample generation process with the objective of further improving the imperceptibility and
stealthiness. Specifically, the L2 loss method is employed as the distance loss, which can
be formulated as shown in Equation (2). The generation of point perturbations could be
modelled as an optimization process guided by dual loss functions with the objective of
maximizing the Lseg while minimizing or regulating the distance loss Ldist. Therefore, the
overall loss function of the attack optimization is as shown in Equation (3), where λ is a
pre-defined control variable based on the attack’s performance to balance the loss functions.

L = Lseg − λLdist. (3)

In order to generate the adversarial perturbation δ, the previously introduced l∞ norm
bounded pixel perturbation attack methods [7,33,34] are used in this study. In particular,
the following attack techniques are employed:

Fast Gradient Sign Method (FGSM): FGSM is a single-step attack method and it
perturbs the input along the direction of the gradient [7]. The adversarial point cloud
from the FGSM attack is given as per the Equation (4). The severity of the perturbation is
controlled by the variable ε. Specifically, since the FGSM attack is not an iterative attack,
the adversarial perturbation is not optimized using the Equation (3). As a result, the
preliminary investigations demonstrated a low stealthiness of the attacked samples. To
overcome this, as a modification to the original attack perturbations, we clipped and limited
the perturbation to the non-negative values.

Padv = P + ε.sign(∇PL(M(P), y)). (4)

Projected Gradient Descent (PGD): PGD attack generates the adversarial inputs by
iteratively applying the FGSM attack method with small step size α in T amounts of
iterations [33]. Generally, the α is set according to ε/T ≤ α ≤ ε. PGD and Basic Iterative
Method (BIM) [35] attacks are almost similar, and the only difference is that PGD attack
uses a random start for P0 = P + U d(−ε, ε) where U d(−ε, ε) is the uniform distribution
between −ε and ε. The Equation (5) demonstrates the adversarial point cloud from the
PGD attack.

P ′t+1 = clip(P ,ε){P
′
t + α.sign(∇PL(M(P ′t ), y))}. (5)

Momentum Iterative Fast Gradient Sign Method (MI-FGSM): In this attack method,
a momentum term was introduced to the I-FGSM attack method [34]. The main intention
behind this momentum term is to introduce transferable adversarial samples by increasing
the possibility of reaching the global minimum by escaping the global maxima. This can be
mathematically expressed as Equation (6), where the µ and g are the decay factor of the
momentum and weighted accumulation gradient, respectively. Further, the Equation (7)
exhibits the adversarial point cloud from the MI-FGSM attack.

gt+1 = µgt +
∇PL(P∗t , y)
‖∇PL(P∗t , y)‖1

. (6)

P ′t+1 = clip(P ,ε){P
′
t + α.sign(gt+1)}. (7)

3.3. Point Injection Attack

The point injection attack adds new spoofed points to the most sensitive locations
of the given point cloud. Followed by previous studies [30,36,37], a saliency features
based point addition and shifting approach is used. The saliency features of each point
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are calculated using the partial derivative of the loss with respect to each point feature, as
shown in Equation (8).

S =
{∂Lseg

∂pi

}N

i=1
. (8)

Next, the highest critical points are duplicated based on the saliency scores. Notably,
the main loss function utilized in LiDAR segmentation networks is cross-entropy loss and
it is essential to have a one-to-one mapping between the number of labels and the number
of points available in the network. Hence, the labels of the injected critical points are
duplicated in a way similar to the studies [38,39]. Thereafter, the injected points are shifted
using the PGD-based point perturbation attack discussed in Section 3.2. The process of
point injection attack is defined in Algorithm 1.

Algorithm 1: Adversarial point injection attack.
Data: PointCloud : P , SegmentaionNetwork :Mseg, Labels : y
Result: Padv
t← iterations;
n← injectedCount;
Padv ← P;
loss = Lseg(Mseg(Padv), y)
calculate S . Equation (8)
indices = get(sortdesc(S), n)
Padv = Padv + Padv[indices]
y = y + y[indices]
for i = 0; i < t; i = i + 1 do

loss = Lseg(Mseg(Padv), y)
grad = loss.backward
grad[! = indices] = 0
Padv = PGD(Padv, grad)

end

3.4. Point Removal Attack

Using the insights gained from the previous studies [30,37], we iteratively remove
the r percentage of the highest sensitive points from the point cloud. The ratio r is a
pre-defined variable. As opposed to the point injection attack, when removing the points,
the respective label of the point from the original point class label set is deleted. The
Algorithm 2 demonstrates the point removal attack.

Algorithm 2: Adversarial point removal attack.
Data: PointCloud : P , SegmentaionNetwork :Mseg, Labels : y
Result: Padv
t← iterations;
r ← ratio;
Padv ← P;
removeNumber = r/t ∗ len(Padv)
for i = 0; i < t; i = i + 1 do

loss = Lseg(Mseg(Padv), y)
calculate S . Equation (8)
indices = get(sortdesc(S), removeNumber)
Padv = Padv −Padv[indices]
y = y− y[indices]

end
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4. Evaluation Methods
4.1. Robustness Evaluation Metrics

To evaluate the adversarial robustness of the networks under each attack, the robust-
ness score metric RmIOU

Mseg
(Equation (9)) which gives the ratio between mean intersection

over union (mIOU) score under clean and attacked samples, is used.

RmIOU
Mseg

=
mIOUadv

mIOUclean
. (9)

Moreover, to evaluate the impact on the original point cloud under the point injection
attack, we introduce an enhanced version of Rφ

Mseg
named Robustness Impact Score RIφ

Mseg
.

Here, we first obtain the predictions for the adversarially corrupted point cloud with K
amount of injected points as Pred(PN+K). Then, we remove the predictions of the injected
points from the predicted label set and calculate the accuracy. This can be mathematically
expressed as Equation (10).

RImIOU
Mseg

=
mIOUadv{Pred(PN+K)− Pred(PK)}

mIOUclean
. (10)

When calculating the accuracy or mIOU for the point cloud after the point removal
attack, comparing the corresponding ground truth labels without considering the removed
points is ineffective because it does not reflect the unavailability of the removed points
and its impact on the AV’s perception. As an illustration, suppose a car is on the road
and all of its points are removed by an adversary. The accuracy/mIOU for predictions of
the remaining points is then calculated by comparing their ground truth labels. However,
this method does not effectively quantify the unidentified objects/points due to the point
removal attack. Given the importance of this, it is reasonable to interpret these eliminated
points as misclassified points. To quantify this phenomenon, a custom label that is not
included in the original label set is appended to the removed point indices after receiving the
predictions of the corrupted point cloud from the point removal attack and calculating the
accuracy and mIOU for RmIOU

Mseg
. The mathematical expression for the proposed evaluation

method for the point removal attack is shown in Equation (11). Section 6.2 gives an in-depth
analysis of these newly proposed metrics for point removal and injection attacks.

RImIOU
Mseg

=
mIOUadv{Pred(PN−K) + {Label}K

i=0)}
mIOUclean

. (11)

4.2. Attack Imperceptibility Evaluation Metrics

Stealthiness or imperceptibility is an essential feature of adversarially corrupted sam-
ples. Hence, the Chamfer Distance (Equation (12)) metric is used to evaluate the difference
between original and adversarially corrupted samples.

DCD
(
Porg,Padv

)
= ∑

x∈Porg

min
y∈Padv

‖x− y‖2
2 + ∑

y∈Padv

min
x∈Porg

‖x− y‖2
2. (12)

Moreover, to benchmark the effectiveness of the proposed dual loss optimization-
based perturbation attack method, we propose the metric named change of the Chamfer
distance for one unit of mIOU drop as depicted in Equation (13). To be more precise, it gives
the difference between original and adversarially corrupted point clouds while degrading
the segmentation performance by mIOU 1%.

DCD
(
Porg,Padv

)
mIoUclean −mIOUattacked

. (13)
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5. Experimental Setup

We assess the attack methods against six LiDAR segmentation networks covering three
primary data representation techniques namely points, voxels, and point-voxel methods.

As point-based networks, PointNet [40] and PointNet++ [41] networks are used. Point-
Net architecture consists of three main components, namely: (1) T-Net, which is a spatial
transformer to align the point set to canonical space; (2) Multi-Layer Perceptrons (MLP)
layers to learn point-wise features, capturing the local characteristics of each point cloud
point; and (3) max-pooling layer to learn global features from MLP layers. PointNet learns
the features of each point independently. Hence, the structural relationship information
between points cannot be captured. As a result, PointNet++, a hierarchical network that
extracts features at multiple scales by recursively applying PointNet, was introduced.

This study employs, MinkUnet [42], Cylinder3D [43], and PolarNet [44] networks as
the voxel-based networks. MinkUnet is an extension of hierarchical U-Net networks [45]
introduced for 2D segmentation. It utilizes novel Minkowski convolutional blocks, which
are specifically designed for 3D voxel data. Cylinder3D utilizes a cylindrical representation
of voxel space and asymmetrical 3D Convolution kernels to extract features preserving the
shape and orientation of objects. PolarNet leverages the strengths of both voxel and BEV
representations. Here, the voxel representation is used as the initial input to the network,
and then it is transformed into a BEV representation using the polar coordinate system.
PolarNet [44] is also based on hierarchical networks and consists of three main components:
namely, a feature extractor, a feature aggregator, and a segmentation predictor. Finally, as
the point-voxel-based network, we use the SPVCNN [46] network which consists of two
branches namely: (1) voxel-based convolutional operation branch which extracts features
within individual voxels and incorporates information from neighbouring voxels, and
(2) MLP-based point feature extraction branch.

We use the SemanticKITTI dataset [21], which provides 43K LiDAR samples catego-
rized into 23 sequences. In particular, the validation set of the SemanticKITTI dataset
is used, as the testing set’s ground truth labels are not publicly available. Notably,
evaluating the attack methods against different severity levels on all the 4K LiDAR
samples available in the SemanticKITTI validation dataset takes a much longer time.
Hence, we use 500 LiDAR samples, which comprise approximately 12% of the valida-
tion dataset for faster experiments. For the experiments, we use publicly available code-
bases of the networks PointNet: https://github.com/Jiang-Muyun/PointNet12 PolarNet:
https://github.com/edwardzhou130/PolarSeg (accessed on 1 July 2023) and mmDetec-
tion3D [47] platform. Notably, we train the point-based networks for 360-view LiDAR
samples, and for other networks, we use the publicly available checkpoints.

The parameters that remain constant when implementing adversarial attacks are as
follows: When evaluating the point injection attacks with different point injection ratios, the
point shifting rate ε is set as 0.1%, and when evaluating the impact of the point shifting rate
we keep point injection ratio as 0.09. Moreover, to perturb the injected points, a PGD attack
with lin f norm with 40 iterations is used. In the point removal attack, we set the number
of iterations as 10. Finally, in point perturbation attacks (Except FGSM), the number of
iterations is set as 40.

6. Robustness of Different Segmentation Networks
6.1. Evaluating Adversarial Robustness
6.1.1. Adversarial Robustness of Point Perturbation Attacks

Table 1 and Figure 2a–c demonstrate the robustness score variation of the different
state-of-the-art networks on the SemanticKITTI dataset and Figure 3a depicts the mean
robustness score for each point perturbation attack method. These results illustrate that,
similar to the image segmentation tasks, iterative attacks are capable of degrading the
network’s performance more than the single-step FGSM attack. The examined segmentation
networks exhibit similar performance reduction at lower values of ε, and when the ε value
expands, the network’s adversarial robustness degrades significantly.

https://github.com/Jiang-Muyun/PointNet12
https://github.com/edwardzhou130/PolarSeg
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As per Figure 3a, the Cylinder3D network exhibits the highest susceptibility to per-
turbation attacks. In contrast, the adversarial vulnerability of two-point-based networks
against perturbation attacks is low. Specifically, they demonstrate a higher resilience to
the non-iterative FGSM attack method. As we identified, one main reason behind this is
that the PointNet and PointNet++ normalize the point coordinates. Hence, the impact of
the shifting distances under the perturbation attack is reduced. Further, we notice that
the MI-FGSM attack method slightly outperforms the PGD attack approach under the
PointNet network. When assessing the attack’s success rate on SPVCNN in contrast to
other voxel-based networks, SPVCNN exhibits a notably higher resistance across all three
attack methods. One key factor contributing to this resilience is SPVCNN’s use of both
voxel and point features and as a result, the network gains a richer understanding of the
scenario and stays strong against attacks.

Table 1. Networks’ robustness score against different point perturbation attacks.

Attack Network mRImIOU
Mseg

↑ ε: 0.01 ε: 0.03 ε: 0.05 ε: 0.07 ε: 0.09

PointNet 0.850 0.932 0.868 0.827 0.819 0.807
PointNet++ 0.936 0.982 0.953 0.934 0.920 0.894

FGSM MinkUnet 0.790 0.984 0.949 0.798 0.657 0.565
Cylinder3D 0.764 0.931 0.891 0.818 0.683 0.497
PolarNet 0.749 0.994 0.897 0.709 0.603 0.545
SPVCNN 0.805 0.981 0.951 0.801 0.703 0.589

PointNet 0.681 0.848 0.748 0.652 0.601 0.559
PointNet++ 0.752 0.952 0.804 0.742 0.684 0.580

MI-
FGSM MinkUnet 0.726 0.983 0.897 0.706 0.572 0.474

Cylinder3D 0.585 0.812 0.690 0.562 0.467 0.388
PolarNet 0.755 0.998 0.918 0.749 0.599 0.511
SPVCNN 0.749 0.971 0.902 0.775 0.617 0.481

PointNet 0.717 0.872 0.764 0.702 0.651 0.600
PointNet++ 0.764 0.948 0.880 0.805 0.710 0.477

PGD MinkUnet 0.633 0.968 0.791 0.548 0.462 0.398
Cylinder3D 0.542 0.851 0.672 0.511 0.384 0.292
PolarNet 0.671 0.994 0.789 0.603 0.517 0.454
SPVCNN 0.689 0.974 0.856 0.652 0.527 0.440

6.1.2. Adversarial Robustness of Point Injection Attacks

We separately analyze the impact of injected point ratio (See Table 2 and Figure 2e)
and injected point shifting distance (See Table 3 and Figure 2f) towards the attack’s success
rate. These results reveal that the injected point shifting distance has the highest impact
over the injected point ratio towards the attack success rate. It can also be observed that
the PointNet network is the most vulnerable network while the Cylinder3D network also
demonstrates a similar vulnerability. Further, the PointNet network demonstrates nearly
constant performance degradation while increasing the injected point ratio. However, when
the injected point distance increases, the network demonstrates a significant decrease in
resilience. In contrast, the SPCVNN and MinkUnet networks demonstrate a near-constant
resilience rate under the varying injected point shifting distances.

6.1.3. Adversarial Robustness of Point Removal Attacks

In Table 4 and Figure 2d, we present the robustness score for the various point removal
ratios of the attack using the Equation (11). Similar to the point injection attack, the
PointNet network demonstrates the highest susceptibility while MinkUnet demonstrates
the highest robustness. In contrast, the Cylinder3D network demonstrates a relatively good
performance.
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Table 2. Networks’ robustness score against point injection attack under different injected point ratios.

Network mRImIOU
Mseg

↑ r: 0.01 r: 0.03 r: 0.05 r: 0.07 r: 0.09

PointNet 0.803 0.799 0.802 0.801 0.806 0.809
PointNet++ 0.959 0.985 0.971 0.957 0.948 0.936
MinkUnet 0.947 0.986 0.956 0.943 0.932 0.919
Cylinder3D 0.805 0.915 0.839 0.790 0.755 0.727
PolarNet 0.931 0.977 0.948 0.927 0.910 0.893
SPVCNN 0.931 0.994 0.933 0.921 0.910 0.899

Table 3. Networks’ robustness score against point injection attack under different shifting values.

Network mRImIOU
Mseg

↑ ε: 0.1 ε: 0.3 ε: 0.5 ε: 0.7 ε: 0.9

PointNet 0.538 0.814 0.589 0.458 0.429 0.404
PointNet++ 0.867 0.936 0.886 0.870 0.837 0.806
MinkUnet 0.906 0.919 0.900 0.893 0.904 0.916
Cylinder3D 0.640 0.727 0.656 0.621 0.605 0.591
PolarNet 0.782 0.893 0.822 0.763 0.725 0.708
SPVCNN 0.884 0.899 0.870 0.872 0.883 0.899

Figure 3 presents the mean robustness scores of the network for each attack method.
Based on these scores, we can see that point-based networks are resilient to perturbation
attacks. Further, PointNet++ and MinkUnet networks demonstrate a higher resilience
against point injection and removal attacks, whereas PointNet demonstrates the least
resilience. One could argue that this is because PointNet solely depends on point features
and lacks the ability to capture essential information from surrounding points, which may
contribute to its increased vulnerability to point injection and removal attacks.

In the next section, we will further discuss the behaviour of each network under the
point removal attack and injection attack, comparing the results from the newly proposed
equation described in Section 4.1.

Table 4. Networks’ robustness score against point removal attack under different removed
point ratios.

Network mRImIOU
Mseg

↑ r: 0.01 r: 0.03 r: 0.05 r: 0.07 r: 0.09

PointNet 0.658 0.783 0.650 0.631 0.618 0.609
PointNet++ 0.787 0.869 0.821 0.773 0.746 0.726
MinkUnet 0.853 0.925 0.873 0.847 0.820 0.801
Cylinder3D 0.748 0.886 0.783 0.721 0.691 0.663
PolarNet 0.699 0.814 0.726 0.681 0.653 0.623
SPVCNN 0.846 0.929 0.870 0.838 0.810 0.785

6.2. Analysis of Updated Robustness Score Methods

This section presents a comparison of the robustness score metrics presented in
Equations (10) and (11) over Equation (9). From Figure 4a, it is evident that, under Point-
Net++, MinkUnet, Cylinder3D and SPVCNN networks, Equation (9) gives a robustness
score around 1.0, which means the network is able to identify the remaining points after the
removal attack correctly and the performance degradation demonstrates by Equation (11)
is from the removed points. The main insight gained from this phenomenon is that since
LiDAR semantic segmentation is a dense task, removing points from distributed locations
cannot have a huge impact on the remaining points.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Adversarial robustness of the networks under different severity levels of the attacks.
(a) Robustness scores under PGD attack with different ε values. (b) Robustness scores under MI-
FGSM attack with different ε values. (c) Robustness scores under FGSM attack with different ε values.
(d) Robustness scores under point removal attack with different removed ratios. (e) Robustness scores
under point injection attack with different injection ratios. (f) Robustness scores under point injection
attack with different ε values.
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(a) (b)
Figure 3. Mean robustness score of the networks against evaluated attack methods. (a) Mean
robustness score of the Networks against Perturbation Attacks. (b) Mean robustness score of the
Networks against Point Injection and Removal Attacks.

Figure 4b reveals that the Equation (9) does not correctly reflect the impact of the
point injection attack on the original point cloud, as it includes both misclassifications of
both original and injected points. Moreover, the outcomes derived from Equation (10)
demonstrate that the unlike removing points, injecting points and shifting the distance of
injected points has an impact on the predictions of the original points.

(a) (b)

Figure 4. Analysis of Updated Robustness Score Methods for Point Removal and Injection At-
tacks. (a) General robustness score (Equation (9)) metric vs. proposed robustness score metric
(Equation (11)): Point Removal Attacks. (b) General robustness score (Equation (9)) metric vs. pro-
posed robustness score metric (Equation (10)): Point Injection Attacks.

6.3. Analysis of Class Wise Adversarial Robustness

In this experiment, we analyzed the class-wise adversarial robustness of each network
against the three attack methods. The main intention behind this study is to verify the
impact of class-wise point distribution on adversarial attacks and identify the adversarial
sensitivity of each class. Notably, we analyze the intersection over union (IoU) differ-
ence between (referred to as IoU drop) attacked and corrupted samples using 15 out of
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19 classes available in the SemanticKITTI dataset. Figure 5a–c depict the IoU drop of each
selected class compared to the available point percentage over the total labeled points
(Distribution Ratio).

When considering point perturbation attacks, it is evident that the highly available
classes and the classes that reflect ground such as sidewalks, roads, and terrain demonstrate
the highest adversarial vulnerability. A notable point that can be seen in point injection and
removal attack scenarios is that there is a near-linear relationship between class distribution
and IoU drop where the highest available classes are resilient to such attacks. This is
because semantic segmentation is a dense task and deleting a relatively small number of
points from the highly available classes has no significant impact on it.

(a)

(b)

(c)

Figure 5. A comparison of class-wise IoU drop when compared to the class-wise point distribution.
(a) A comparison of class-wise IoU drop when compared to the class distribution under PGD attack.
(b) A comparison of class-wise IoU drop when compared to the class distribution under Point
Injection Attack. (c) A comparison of class-wise IoU drop when compared to the class distribution
under Point Removal Attack.
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7. Imperceptibility of the Attack Methods

We evaluate the difference between original and adversarially corrupted LiDAR
samples using the Chamfer Distance metric (Equation (12)). Notably, we employ the l2
norm-based Chamfer distance approach and report the sum of mean Chamfer distance
values from source to target point clouds and vice versa, as implemented in [48]. Figure 6
presents the mean Chamfer Distance of each attack under the various difference severity
levels for each network. Moreover, Figure 7 depicts an illustration of a point cloud related
to a car under various ε values of the PGD attack. Specifically, when it comes to the
adversarial point perturbation attacks, Chamfer distances for the PGD attack are presented.

(a) (b)

(c) (d)

Figure 6. Imperceptibility of the attack methods at different severity levels. (a) Attack imperceptibility
of the Point Perturbation Attack. (b) Attack Imperceptibility of the Point Removal Attack. (c) Attack
imperceptibility of the Point Injection Attack: varying injection ratios. (d) Attack Imperceptibility of
the Point Injection Attack: varying shifting levels.

Figure 7. Change to the point cloud which contains cars under the PGD point perturbation attack
with different ε values.

While analyzing the Chamfer distance results, along with the robustness scores pre-
sented in Section 6.1 , it is possible to observe that point perturbation is the most effective
method. However, when it comes to the PointNet network, a point injection attack is effec-
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tive, as it is able to enable a higher attack success rate while having a high imperceptibility
compared to the perturbation attacks. Moreover, the PolarNet network demonstrates an
exponential Chamfer distance distribution over the point removal ratios when compared
to the other networks.

As mentioned previously, research on the adversarial robustness of 3D point cloud clas-
sification and 3D object detection relied on l2 norm bounded perturbation attack methods
(e.g., -Dl2(x + δ, x) < ε) [30,49] or norm-unbounded attack methods [32] with a distance
loss function (e.g., -Chamfer Attack [36])-based optimization to regulate the imperceptibil-
ity of the attack. However, in this study, we design the adversarial perturbations using both
methods. Further, we integrate a distance loss function to the segmentation network loss
while calculating the gradients and use those gradients to craft l∞ norm-bounded attacked
samples with the intention of further regulating the imperceptibility of the attack method,
as discussed in Equation (3). To evaluate the effectiveness of this approach, we conduct
a benchmark of the attack methods’ success rate along with their imperceptibility while
using our approach and using only the l2 norm-bound attack methods using Equation (13).
Specifically, the PGD attack with ε = 0.09 is used for this investigation.

The result presented in Table 5 reveals that our approach is better than just using l2
norm-bounded attacks. In addition, these results also reveal the effectiveness of the two
point-based networks and the point cloud normalization approach.

Table 5. Benchmark of the attack’s effectiveness while using l2 norm-bounded attacks and using our
approach. Note: lower is better.

Network PointNet PointNet++ MinkUnet Cylinder3D PolarNet SPVCNN

l2 Attack 4.25 1.97 0.34 0.274 0.483 0.316

Ours 2.37 0.78 0.282 0.255 0.414 0.253

8. Analysis of Attack Transferability

This section evaluates the ability of the attack samples produced by one network to
deceive the predictions of a different network in a black-box manner. Specifically, we use
the PGD attack with ε = 0.09 as the point perturbation attack, the point injection attack
with 0.09 injection ratio, and the PGD-based ε = 0.9 shifting rate, and finally the point
removal attack with 0.09 removal ratio. We present transferability results for the point
perturbation attack in Table 6, transferability results for the point injection attack in Table 7,
and results for the point removal attacks transferability in Table 8. For better visualization,
we present these results in Figure 8.

Based on the data presented in the tables, it is possible to infer that two point-based
networks are resistant to attacked samples produced by other networks. Furthermore,
when it comes to point-based networks, the point removal and point injection attacks
are more effective than the point perturbation attacks. The underlying reason for this
phenomenon is that the code base used for PointNet and PointNet++ normalized the
coordinates of the points before they were transmitted into the network. As a result, the
impact of the point shifting is minimized. Surprisingly, rather than directly performing
an attack against a particular network using its gradient information, attacked samples
generated from PolarNet and PontNet++ demonstrate a higher attack success rate in most
of the evaluations. For example, when adversarially perturbed samples are produced
directly from MinkUnet’s gradient information, the resilience score against PGD attack
(ε = 0.09) is 0.398. However, when the LiDAR samples are corrupted using the same
PGD attack on PointNet++ and applied to MinkUnet, the robustness score is 0.26. This
observation will spark researchers to develop novel black-box attack methods targeting
LiDAR perception tasks, employing PointNet and PointNet++ as surrogate networks.
Furthermore, it is possible to observe that the Cylinder3D network is highly sensitive to
transferable adversarial attack samples, similar to how it is vulnerable to attacks performed
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directly utilizing its gradient information. In addition, MinkUnet and SPVCNN networks
demonstrate similar resilience rates in most of the scenarios.

Table 6. Transferability of the Point Perturbation Attack. Note:- Net-G: Network that is used to
generate attacked samples. Net-A: the network that is used for the evaluations.

Net-A
Net-G PointNet PointNet++ MinkUnet Cylinder3D PolarNet SPVCNN

PointNet - 0.923 0.920 0.949 0.956 0.946

PointNet++ 0.924 - 0.973 0.977 0.957 0.968

MinkUnet 0.251 0.260 - 0.440 0.346 0.485

Cylinder3D 0.328 0.409 0.502 - 0.295 0.500

PolarNet 0.408 0.425 0.608 0.834 - 0.595

SPVCNN 0.254 0.257 0.486 0.618 0.313 -

Table 7. Transferability of the Point Injection Attack. Note:- Net-G: Network that is used to generate
attacked samples. Net-A: the network that is used for the evaluations.

Net-A
Net-G PointNet PointNet++ MinkUnet Cylinder3D PolarNet SPVCNN

PointNet - 1.152 1.043 0.979 1.126 1.07

PointNet++ 0.943 - 0.981 0.970 0.944 0.958

MinkUnet 0.973 0.828 - 0.883 0.839 0.923

Cylinder3D 0.703 0.511 0.708 - 0.502 0.716

PolarNet 0.714 0.782 0.890 0.871 - 0.916

SPVCNN 0.980 0.840 0.938 0.883 0.853 -

Table 8. Transferability of the Point Removal Attack. Note:- Net-G: Network that is used to generate
attacked samples. Net-A: the network that is used for the evaluations.

Net-A
Net-G PointNet PointNet++ MinkUnet Cylinder3D PolarNet SPVCNN

PointNet - 0.611 0.751 0.716 0.684 0.737

PointNet++ 0.847 - 0.863 0.636 0.652 0.874

MinkUnet 0.642 0.631 - 0.652 0.580 0.760

Cylinder3D 0.704 0.662 0.788 - 0.588 0.759

PolarNet 0.710 0.667 0.786 0.705 - 0.780

SPVCNN 0.630 0.657 0.796 0.667 0.603 -

Ablation Study on MinkUnet and SPVCNN Networks

Sparse Tensor Quantisation (STQ) is a pre-processing step that is used in the Minkowski
Engine [42] which converts the input point cloud into points with distinctive coordinates
prior to voxelizing the point cloud. In further detail, this pre-processing step first rounds
the coordinates of each point and then keeps only the points with unique coordinates. Both
MinkUnet and SPVCNN employ this pre-processing step. However, the results mentioned
in the above section for MinkUnet and SPVCNN were achieved without using this method.
Hence, this study analyzes the impact of the STQ pre-processing step against point pertur-
bation and injection attacks, as both attack scenarios involve shifting the point coordinates.
The radar charts in the Figures 9 and 10 demonstrate the robustness score differences (using
Equation (9)) between implementing or not implementing a STQ pre-processing step. Both
Figures 9 and 10 illustrate that the STQ method has a minor impact on the robustness
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against point perturbation and point injection attacks. In particular, only the MinkUnet
network demonstrates a slight robustness increment in some attack scenarios while using
the STQ method.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Comparison of Transferability of Attack Samples Generated from each Network. (a) Trans-
ferability of attacked samples generated from PointNet network. (b) Transferability of attacked
samples generated from PointNet++ network. (c) Transferability of attacked samples generated
from MinkUnet network. (d) Transferability of attacked samples generated from Cylinder3D net-
work. (e) Transferability of attacked samples generated from PolarNet network. (f) Transferability of
attacked samples generated from SPVCNN network.
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(a) (b)
Figure 9. Comparison of transferability of point perturbation attack samples generated from each
network with and without using sparse tensor quantization method. (a) Robustness scores of
MinkUnet network. (b) Robustness scores of SPVCNN network.

(a) (b)
Figure 10. Comparison of transferability of Point Injection Attack samples generated from each
network with and without using sparse tensor quantization method. (a) Robustness scores of
MinkUnet network. (b) Robustness scores of SPVCNN network.

9. Discussion

In this section, we discuss the key observations of our study based on the formulated
research questions. We further discuss the future research directions led by our study.

RQ1—How robust is LiDAR Semantic Segmentation to adversarial attacks? Our
results reveal that LiDAR semantic segmentation networks are also vulnerable to adver-
sarial attacks. In particular, when comparing the overall results the Cylinder3D network
is the most adversarially vulnerable network whereas PointNet++ and MinkUnet demon-
strate the highest adversarial resilience. Moreover, the robustness of the SPVCNN network
against perturbation attacks, particularly in comparison to voxel-based networks, empha-
sizes the importance of supplying the network with additional information to enhance its
overall resilience. Further, our analysis demonstrates that deleting points from distributed
locations has no significant impact on the remaining points. In contrast, the injected points
have an impact on the original points.

RQ2—What are the most adversarially vulnerable classes and what is the impact
of class-wise point distribution towards the adversarial robustness? We demonstrated
that point injection and removal attacks have a nearly linear relationship between class-wise
point distribution. Further, when it comes to point perturbation attacks, the classes that
reflect ground are highly susceptible to adversarial attacks.

RQ3—How imperceptible are adversarial attacks against LiDAR segmentation?
The Chamfer distance results presented in Section 6 demonstrate that the attack imper-
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ceptibility has a relationship with its severity. Moreover, except PointNet network, the
point perturbation attack is effective when considering both the attack success rate and the
imperceptibility.

RQ4—How transferable are adversarial attacks on one LiDAR segmentation net-
work to another? We noticed that, except PointNet and PointNet++, the other networks
have a considerable performance degradation for the transfer attack samples. In particular,
the attacked samples generated from PointNet and PolarNet demonstrate the highest at-
tack success rate and in several instances, this is better than directly generating the attack
samples on a network using its gradient information.

RQ5—What are the challenges while developing adversarial attacks against Li-
DAR segmentation? The first challenge noticed is that similar to the attacks against
other point cloud-related tasks, introducing attack methods against LiDAR segmentation is
a trade-off between the total attack success rate and the imperceptibility. The next challenge
is performing an iterative attack (perturbation, injection, or removal attack) which requires
considerably higher computational resources, and these methods are not physically real-
izable. As a result, the viability of these attacks in real-time is called into doubt. Further,
point perturbation attacks mainly altered highly available classes. Hence, targeted attacks
may be required to deceive the network into not recognizing other critical classes such
as vehicles.

RQ6—What are the prospective research studies that could be conducted on adver-
sarial robustness of LIDAR segmentation? It is essential to investigate the adversarial
robustness of multi-sensor fusion-based LiDAR segmentation approaches. In the future, it
will also be essential to investigate more physically realizable and black-box attack methods
against LiDAR segmentation. Moreover, to the best of our knowledge, identifying a train-
ing phase attack method against LiDAR segmentation is still an open research problem.
Moreover, the adversarial vulnerability of the ground-level points against perturbation
attacks enables researchers to develop new attack methods for deceiving steering tasks
using techniques such as changing the road surface, etc. In addition, adversarial defense
methods against LiDAR segmentation attacks are also a vital topic. Specifically, unlike
adversarial training, which enables resilience against only known attack methods, a more
generic way of defending against adversarial attacks is essential. Furthermore, adversarial
point injection and removal attacks exhibit similar characteristics to common corruptions
caused by adverse weather conditions and sensor errors, such as snow, fog, beam missing,
and cross-sensor interference, as under these corruptions the point cloud naturally becomes
noisy or sparse [50]. As a potential solution, in the future, we plan to investigate and
develop a point cloud reconstruction network based on generative networks to mitigate
both man-made adversarial attacks and common corruptions.

10. Conclusions

The adversarial robustness of AVs is a vital field of research. Previous studies on adver-
sarial attacks against AV perception tasks mainly focused on 2D image-based approaches
and 3D object detection. However, the adversarial vulnerability of LiDAR segmentation
is a relatively unexplored topic. Hence, this paper presents an extensive analysis of the
adversarial robustness of 3D LiDAR semantic segmentation using the SemanticKITTI
dataset. In particular, we systematically investigate different LiDAR semantic segmentation
networks spanning three data representation strategies and three different attack methods.
We then evaluate the transferability and imperceptibility of these attack methods. After
analyzing the results, we present numerous observations for future research and challenges
of developing attacks against LiDAR segmentation. As a limitation, our study does not
assess the adversarial robustness of range-image-based LiDAR segmentation networks. We
hope our study will enable valuable insights for future research to improve the adversarial
robustness of LiDAR semantic segmentation in autonomous vehicles.
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