
Citation: Nebeluk, R.; Ławryńczuk,

M. Fast Nonlinear Predictive Control

Using Classical and Parallel Wiener

Models: A Comparison for a

Neutralization Reactor Process.

Sensors 2023, 23, 9539. https://

doi.org/10.3390/s23239539

Academic Editor: Alessandro

Casavola

Received: 15 September 2023

Revised: 27 November 2023

Accepted: 29 November 2023

Published: 30 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fast Nonlinear Predictive Control Using Classical and Parallel
Wiener Models: A Comparison for a Neutralization
Reactor Process
Robert Nebeluk * and Maciej Ławryńczuk

Institute of Control and Computation Engineering, Faculty of Electronics and Information Technology,
Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland; maciej.lawrynczuk@pw.edu.pl
* Correspondence: robert.nebeluk@pw.edu.pl

Abstract: The Wiener model, composed of a linear dynamical block and a nonlinear static one connected
in series, is frequently used for prediction in Model Predictive Control (MPC) algorithms. The parallel
structure is an extension of the classical Wiener model; it is expected to offer better modeling accuracy
and increase the MPC control quality. This work discusses the benefits of using the parallel Wiener
model in MPC. It has three objectives. Firstly, it describes a fast MPC algorithm in which parallel
Wiener models are used for online prediction. In the presented approach, sophisticated trajectory
linearization is performed online, which leads to computationally fast quadratic optimization. The
second objective of this work is to study the influence of the model structure on modeling accuracy.
The well-known neutralization benchmark process is considered. It is shown that the parallel Wiener
models in the open-loop mode generate significantly fewer errors than the classical structure. This
work’s third objective is to validate the efficiency of parallel Wiener models in closed-loop MPC. For
the neutralization process, it is demonstrated that parallel models demonstrate better control quality
using various indicators, but the difference between the classical and parallel models is not significant.

Keywords: model predictive control; wiener models; neutralization reactor

1. Introduction

Model Predictive Control (MPC) refers to an advanced control strategy in which a
dynamical model of the considered process is utilized online to predict the future process
state and an optimization procedure finds the best possible control action to minimize the
predefined control quality index [1]. MPC algorithms have been used for years in process
control; typical applications include chemical reactors [2], olefin metathesis processes [3],
distillation towers [4] and power plants [5]. Nowadays, as a result of the availability of
fast and relatively cheap hardware platforms necessary to carry out all online calculations,
MPC algorithms are used in smart buildings [6] and several embedded systems; example
applications include autonomous ground vehicle [7], autonomous driving vehicle [8],
planning vehicle-parking trajectories for vertical parking spaces [9] and quadrotors [10,11].
Finally, MPC algorithms may control distributed parameter systems [12].

Two factors are essential for good control quality: precise online measurements pro-
vided by sensors and an accurate model of the controlled process. MPC algorithms utilize
measurements of the process output variables (and state variables, in some cases). Signif-
icant measurement errors combined with an imprecise model result in poor predictions
and, in consequence, unsatisfactory control performance. The importance of precise mea-
surements is stressed in [13] where a wind disturbance preview is incorporated with an
MPC algorithm to improve the resistance of Unmanned Aerial Vehicles during operation
to wind gusts. However, observers are designed to solve this critical problem in many
scenarios if there are not enough process data available. By estimating the values in such
a way, a better control quality is achievable. A state observer scheme is proposed in [14]

Sensors 2023, 23, 9539. https://doi.org/10.3390/s23239539 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23239539
https://doi.org/10.3390/s23239539
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1152-8690
https://orcid.org/0000-0002-6846-2004
https://doi.org/10.3390/s23239539
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23239539?type=check_update&version=2

Sensors 2023, 23, 9539 2 of 20

for uninterruptible power supply applications and it is compared to classical approaches
like with Kalman filters. The study presented in [15] shows an approach to deal with ocean
environment disturbances by designing a nonlinear disturbance observer for unmanned
surface vehicles to obtain safe and effective motion control performance. Lastly, in work [7],
a Dual-Rate Extended Kalman filter is designed to obtain fast vehicle state estimation in
the problem of real-time lane-keeping control for autonomous ground vehicles.

In this work, we study the impact of model structure and accuracy on the possible
control performance. Although the general idea of MPC does not limit the model structure
used for online prediction, the cascade Wiener model is frequently used [16]. The Wiener
model consists of a linear dynamical block connected in series with a nonlinear static block.
A great advantage of the Wiener model is the fact that it can efficiently approximate the
properties of different processes using a limited number of parameters. Let us name a few
examples reported in the literature: distillation columns [17], chemical reactors [18–20],
gasifiers [21], chromato-graphic separation processes [22], fuel cells [23,24], photovoltaic
cells [25], the relaxation processes during anesthesia [26], the arterial pulse transmission
phenomena [27]. Additionally, due to the specialized structure of the Wiener model, we
can derive a set of computationally efficient MPC algorithms in which fast quadratic
optimization is used rather than complicated nonlinear programming [16].

Typically, the classical Wiener model structure is used in MPC [16], i.e., the model
consists of one linear dynamical block and one nonlinear static block. A natural extension
of the rudimentary Wiener structure uses a few classical sub-models connected in parallel.
Such a model structure and identification issues are described in [28,29], while identification
starting from linearized models is considered in [30]. The motivation to use the parallel
structure is the following: the parallel model should be capable of generating better accuracy
than the classical one. As a result, the parallel model is likely to offer better control quality
when used in MPC compared to the classical model structure. Of course, this may be true
for some processes, while for other ones, the classical structure may be sufficient.

This work has the following three objectives:

1. The first objective is to extend previous research in computationally efficient MPC
algorithms in which Wiener models are used for prediction [16]. Namely, the goal is
to detail a fast MPC method in which a linear approximation of the process predicted
trajectory is successively obtained online using parallel Wiener models. As a result,
the derived MPC algorithm requires relatively simple and fast quadratic optimization
rather than a nonlinear approach.

2. The second objective of this work is to study the influence of the model structure
on modeling accuracy. We compare the accuracy of the classical Wiener structure
and that of the parallel Wiener models. In the latter case, the impact of the number
of sub-models and the complexity of the nonlinear block are thoroughly evaluated.
To the best of the authors’ knowledge, a fair comparison between the classical and
parallel Wiener models has not yet been presented in the literature.

3. The third objective of this work is to compare the efficiency of classical and parallel
Wiener models in MPC. The problem is really important. Although more sophisticated
models are likely to produce much better modeling accuracy in an open loop, the
advantages of using complex models may be insignificant in MPC. Multi-criteria
control quality assessment is used to demonstrate the impact of model structure.

The well-known neutralization benchmark process [19] is considered to verify the
advantages of parallel Wiener models used in the open loop and MPC. Precise modeling
and control of the neutralization benchmark process is essential in different areas, i.e., in
chemical engineering, biotechnology and waste-water treatment industries [31]. Moreover,
it is often utilized as a benchmark to assess the efficiency of new model structures and
control algorithms, e.g., [16,32–38].

This work is structured as follows. Section 2 defines the structure of the classical
Wiener model and its parallel variant, Section 3 derives and discusses the implementation

Sensors 2023, 23, 9539 3 of 20

of the fast MPC algorithm for the parallel Wiener model, Section 4 thoroughly discusses
simulation results and Section 5 summarizes the whole work.

2. Classical and Parallel Wiener Models

Let us start with the definition of the classical Wiener model [16,39]. In this work,
we study Single-Input Single-Output (SISO) systems, i.e., we consider processes with one
input and one output. The process input, which is also the manipulated variable in MPC,
is denoted by u. The process output, which is the controlled variable in MPC, is denoted by
y. Figure 1 shows the classical Wiener model consisting of a linear dynamic block and a
nonlinear static block connected in series. Let us describe the model using mathematical
formulas. We use the discrete-time description; k denotes the current sampling instant
(k = 0, 1, 2, . . .). The output signal of the linear block is

v(k) =
nB

∑
i=1

biu(k− i)−
nA

∑
j=1

ajv(k− j), (1)

where integer numbers A and B define the order of model dynamics while real numbers aj
and bj stand for model coefficients. The output signal of the second block, which is also the
output of the whole Wiener model, is a nonlinear static mapping

y(k) = f (v(k)). (2)

Because we use online linearization of the predicted trajectory in MPC, we limit our
considerations to differentiable functions f . In order to obtain precise models, we use
neural networks with two layers, known to be universal approximators. Hence, the second
block of the model is defined by

y(k) = f (v(k)) = w2
0 +

K

∑
i=1

w2
i ϕ
[
w1

i,0 + w1
i,1(v(k))

]
. (3)

The first (hidden) layer is nonlinear; it has K hidden neurons and ϕ stands for the activation
function, e.g., ϕ = tanh. The second layer of the network is linear. The weights of the first
layer are denoted by w1

i,0 and w1
i,1, while the parameters of the second layer are w2

0 and w2
i .

Linear dynamic
block

Nonlinear static
block

Figure 1. Classical Wiener model structure.

The general structure of the parallel Wiener model [28–30] is depicted in Figure 2. The
model consists of ng sub-models, also called branches, each of which has the classical Wiener
structure. The model branches are connected in parallel; the outputs of the submodels are
summarized. The outputs of the linear dynamic blocks are denoted by v1(k), . . . , vng(k)
while the outputs of the nonlinear static blocks are denoted by y1(k), . . . , yng(k). Outputs
of the consecutive linear blocks are calculated from the following formula

vg(k) =
nB

∑
i=1

bi,gu(k− i)−
nA

∑
j=1

aj,gvg(k− j), (4)

where g = 1, . . . , ng. The nonlinear blocks use neural networks with two layers and are
described as follows

yg(k) = fg(vg(k)) = w2,g
0 +

Kg

∑
i=1

w2,g
i ϕ

[
w1,g

i,0 + w1,g
i,1 (vg(k))

]
, (5)

Sensors 2023, 23, 9539 4 of 20

where K is the number of hidden neurons. The output of the whole model is calculated
from Equation (5) from

y(k) =
ng

∑
g=1

[
w2,g

0 +
Kg

∑
i=1

w2,g
i ϕ

[
w1,g

i,0 + w1,g
i,1 (vg(k))

]]
. (6)

Linear dynamic
block

Nonlinear static
block

Linear dynamic
block

Linear dynamic
block

Nonlinear static
block

Nonlinear static
block

+

Figure 2. Parallel Wiener model structure.

3. Predictive Control Using Classical and Parallel Wiener Models
3.1. Preliminaries

At each discrete sampling instant of MPC, i.e., k = 0, 1, 2, . . ., the algorithm calculates
the whole decision vector, which consists of increments of the manipulated variable signal
for the current and future instants,

4u(k) =

 4u(k|k)
...

4u(k + Nu − 1|k)

, (7)

where the number of the calculated increments is defined by the control horizon denoted
by Nu. At the current sampling instant, only the first element of the calculated vector is
applied to the process, and calculations are repeated at the following instants. Let us recall
the rudimentary MPC optimization task, [1,16]

min
4u(k)

{
J(k) =

N

∑
p=1

(ysp(k + p|k)− ŷ(k + p|k))2 + λ
Nu−1

∑
p=0

(4u(k + p|k))2

}
,

subject to (8)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1,

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1,

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 0, . . . , N − 1.

The objective of MPC is to find online the decision variable vector,4u(k), that minimizes
the predefined cost function, J(k), and satisfies all constraints. As far as the cost function
is concerned, we consider predicted control errors, defined as differences between the
setpoint trajectory, ysp(k + p|k), and the predicted trajectory, ŷ(k + p|k), which is found
from the process model. As many as N predicted control errors are considered; N is
called the prediction horizon. The second part of the cost function minimizes unwanted
significant changes in the manipulated variable; λ stands for the penalty coefficient. In this

Sensors 2023, 23, 9539 5 of 20

work, we consider classical MPC constraints, i.e., it is possible to consider limitations of the
magnitude of the manipulated variable, the increments of that variable and the magnitude
of the predicted value of the controlled variable.

3.2. Derivation of Fast MPC Algorithm

Let us note that as a result of model nonlinearity, predictions ŷ(k + p|k) are nonlinear
functions of the calculated MPC decision vector,4u(k). It means that the MPC optimization
task (8) is nonlinear, and a nonlinear solver is necessary at each sampling instant. This
work adopts the MPC Algorithm with Nonlinear Prediction and Linearization along with
the Predicted Trajectory (MPC-NPLPT) derived in [16] for the classical Wiener model. The
MPC algorithm discussed next requires that the dynamical model used for prediction can
be linearized online. It is true when the neural Wiener models described in Section 2 are
differentiable. This assumption is fulfilled when activation function ϕ used in the nonlinear
hidden nodes of the models’ static blocks is differentiable. It is true for ϕ = tanh.

Let us define the predicted output trajectory vector

ŷ(k) =

 ŷ(k + 1|k)
...

ŷ(k + N|k)

. (9)

The idea behind the MPC-NPLPT algorithm is to use a linear approximation of the predicted
trajectory with respect to the decision vector,4u(k). Trajectory linearization is performed
along some predefined trajectory of the manipulated variable

utraj(k) =

 utraj(k|k)
...

utraj(k + Nu − 1|k)

. (10)

Using the process model, we determine the predicted trajectory of the controlled variable
that corresponds to the assumed trajectory utraj(k)

ŷtraj(k) =

 ŷtraj(k + 1|k)
...

ŷtraj(k + N|k)

. (11)

In order to analytically derive trajectory ŷtraj(k) over the whole prediction horizon, we
have first to use Equation (4) to express the outputs of the first block of the model explicitly
predicted for sampling instant k + p at current instant k

vtraj
g (k + p|k) =

nB

∑
i=1

bi,gutraj(k− i + p|k)−
nA

∑
j=1

aj,gvtraj
g (k− j + p|k). (12)

Next, we use Equation (6) to express the outputs of the second block of the model, which is
the model output. The predicted model output signal is

ŷtraj(k + p|k) =
ng

∑
g=1

[
w2,g

0 +
Kg

∑
i=1

w2,g
i ϕ

[
w1,g

i,0 + w1,g
i,1 (v

traj
g (k + p|k))

]]
+ d(k). (13)

Sensors 2023, 23, 9539 6 of 20

Because a model is never perfect, in prediction Rule (13), we supplement the model output
by an estimated model error denoted by d(k). It is determined straightforwardly as a
difference between real (measured) process output denoted by y(k) and model output

d(k) = y(k)−
ng

∑
g=1

[
w2,g

0 +
Kg

∑
i=1

w2,g
i ϕ

[
w1,g

i,0 + w1,g
i,1 (vg(k))

]]
. (14)

As thoroughly derived in [16], the linear approximation of the predicted trajectory of
the process output is given by the following vector–matrix formula

ŷ(k) = H(k)J4u(k) + ŷtraj(k) + H(k)(u(k− 1)− utraj(k)). (15)

The matrix of partial derivatives of the predicted output trajectory with respect to the input
trajectory is of dimensionality N × Nu and has the following structure

H(k) =
dŷtraj(k)
dutraj(k)

=

∂ŷtraj(k + 1|k)

∂utraj(k|k)
· · · ∂ŷtraj(k + 1|k)

∂utraj(k + Nu − 1|k)
...

. . .
...

∂ŷtraj(k + N|k)
∂utraj(k|k)

· · · ∂ŷtraj(k + N|k)
∂utraj(k + Nu − 1|k)

. (16)

Let us now analytically derive entries of the matrix H(k) for the parallel Wiener shown in
Figure 2. The partial derivatives are calculated differentiating Equation (13), which yields

∂ŷtraj(k + p|k)
∂utraj(k + r|k)

=
ng

∑
g=1

Kg

∑
i=1

w2,g
i

dϕ(ctraj
i,g (k + p|k))

dctraj
i,g (k + p|k)

∂ctraj
i,g (k + p|k)

∂utraj(k + r|k)
, (17)

where predicted input signals of the first layer of neural networks used in the nonlinear
static block of the Wiener model are

ctraj
i,g (k + p|k) = w1,g

i,0 + w1,g
i,1 (v

traj
g (k + p|k)). (18)

If the hyperbolic tangent (tanh) function is used as the neural network activation function
ϕ, we have

dϕ(ctraj
i,g (k + p|k))

dctraj
i,g (k + p|k)

= 1− (ϕ(ctraj
i,g (k + p|k)))2. (19)

Combining Equations (17) and (19), we obtain the general formula to determine the entries
of matrix H(k)

∂ŷtraj(k + p|k)
∂utraj(k + r|k)

=
ng

∑
g=1

Kg

∑
i=1

w1,g
i,1 w2,g

i

(
1− (ϕ(ctraj

i,g (k + p|k)))2
)∂vtraj

g (k + p|k)
∂utraj(k + r|k)

. (20)

Partial derivatives in the right-hand side of Equation (20) are also calculated analytically.
For this purpose, we differentiate Equation (18). As far as the prediction for the first
sampling instant of the prediction horizon is concerned, i.e., for sampling instant k + 1,
we obtain

∂vtraj
g (k + 1|k)

∂utraj(k + r|k)
=

{
b1,g for r = 0
0 for r > 0

. (21)

It results in
∂ŷtraj(k + 1|k)
∂utraj(k + r|k)

= 0 for all r > 0. (22)

Sensors 2023, 23, 9539 7 of 20

Similarly, for the prediction for the second sampling instant of the prediction horizon, i.e.,
for sampling instant k + 2, we obtain

∂vtraj
g (k + 2|k)

∂utraj(k + r|k)
=

nB

∑
i=1

bi,g
∂utraj(k− i + 2|k)

∂u(k + r|k) −
nA

∑
j=1

aj,g
∂vtraj

g (k− j + 2|k)
∂u(k + r|k) . (23)

Since the prediction horizon is typically longer than the control horizon, we have

∂utraj(k− i + p|k)
∂utraj(k + r|k)

=

{
1 for (r = i and r < p)
0 otherwise

. (24)

In general, for the prediction for sampling instant k + p, we obtain

∂vtraj
g (k + p|k)

∂utraj(k + r|k)
=

nB

∑
i=1

bi,g
∂utraj(k− i + p|k)

∂u(k + r|k) −
nA

∑
j=1

aj,g
∂vtraj

g (k− j + p|k)
∂u(k + r|k) . (25)

Let us stress that partial derivatives
∂vtraj

g (k−j+p|k)
∂u(k+r|k) necessary in Equation (25) are calculated

recurrently. Namely, calculations are repeated for all combinations of p = 1, . . . , N and
r = 0, . . . , Nu − 1 to find all entries of matrix H(k).

The auxiliary matrix of dimensionality Nu×Nu used in Equation (15) has the following
structure

J =

1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

, (26)

and the auxiliary vector of length Nu is

u(k− 1) =

 u(k− 1)
...

u(k− 1)

. (27)

Using the linear approximation of the predicted output trajectory given by Equation (15),
the general MPC optimization task (8) is transformed into the following quadratic opti-
mization task

min
4u(k)

{
J(k) =

∥∥ysp(k)− H(k)J4u(k)− ŷtraj(k)

− H(k)(u(k− 1)− utraj(k))
∥∥2

+ ‖4u(k)‖2
Λ

}
,

subject to (28)

umin ≤ J4u(k) + u(k− 1) ≤ umax,

4umin ≤ 4u(k) ≤ 4umax,

ymin ≤ H(k)J4u(k) + ŷtraj(k) + H(k)(u(k− 1)− utraj(k)) ≤ ymax.

The constraints are expressed using the following vectors of length Nu

umin =

 umin

...
umin

, umax =

 umax

...
umax

, 4umin =

 4umin

...
4umin

, 4umax =

 4umax

...
4umax

 (29)

Sensors 2023, 23, 9539 8 of 20

and the vectors of length N

ymin =

 ymin

...
ymin

, ymax =

 ymax

...
ymax

. (30)

The MPC-NPLPT algorithm repeats online trajectory linearization and quadratic optimiza-
tion a few times at each sampling instant. Namely, the future input trajectory along which
linearization is determined, i.e., utraj(k) (Equation (10)), is initially set as the “tail” of the
optimal control sequence found at the previous sampling instant, i.e., without its first ele-
ment,4u(k|k). Quadratic programming task (28) is then solved. If the controlled variable
of the process is close to a required setpoint, the first element of the optimized solution
vector is applied to the process. If this condition is not fulfilled, the calculated decision
vector is used to form trajectory utraj(k); linearization is performed, followed by solving the
quadratic optimization task. A few such repetitions may be used at each sampling instant.
In practice, five repetitions are sufficient [16].

3.3. Classical Formulation of the MPC Quadratic Optimization Task

Let us consider the classical formulation of the quadratic optimization task

min
x(k)

{
0.5xT(k)HQP(k)x(k) + f T

QP(k)x(k)
}

,

subject to (31)

A(k)x(k) ≤ B(k),

LB ≤ x(k) ≤ UB,

where x(k) = 4u(k). From Equation (28), we derive the time-varying linear inequality
constraints

A(k) =

−J
J

−H(k)J
H(k)J

, B(k) =

−umin + u(k− 1)
umax − u(k− 1)

−ymin + ŷtraj(k) + H(k)(u(k− 1)− utraj(k))
ymax − ŷtraj(k)− H(k)(u(k− 1)− utraj(k))

 (32)

while constant bounds are specified by

LB = 4umin, UB = 4umax. (33)

Matrix HQP(k) is the second-order derivative of the cost function, J(k), with respect to the
decision variables,4u(k). The first-order derivative is

dJ(k)
d4u(k)

=− 2JTHT(k)(ysp(k)− H(k)J4u(k)− ŷtraj(k)− H(k)(u(k− 1)− utraj(k)))

+ 2Λ4u(k)

= 2(JTHT(k)H(k)J + Λ)4u(k)

− 2JTHT(k)(ysp(k)− ŷtraj(k)− H(k)(u(k− 1)− utraj(k))), (34)

while the second-order derivative becomes

HQP(k) =
d2 J(k)

d(4u(k))2 = 2(JTHT(k)H(k)J + Λ). (35)

Sensors 2023, 23, 9539 9 of 20

Vector f QP(k) is defined by the part of the first-order derivative (34) which is independent
of vector4u(k). We obtain

f QP(k) = −2JTHT(k)(ysp(k)− ŷtraj(k)− H(k)(u(k− 1)− utraj(k))). (36)

4. Simulations
4.1. Neutralization Process Description

In this work, we consider a neutralization reactor benchmark process to validate and
compare the efficiency of classical and parallel Wiener models for open-loop modeling
purposes and in closed-loop MPC control. The fundamental model of this benchmark
process is described in detail in [19]. It consists of two differential equations and one
algebraic equation. The full model formulation is as follows

dWa(t)
dt

=
q1(t)(Wa1 −Wa(t))

V
+

q2(Wa2 −Wa(t))
V

+
q3(Wa3 −Wa(t))

V
, (37)

dWb(t)
dt

=
q1(t)(Wb1 −Wb(t))

V
+

q2(Wb2 −Wb(t))
V

+
q3(Wb3 −Wb(t))

V
, (38)

and

Wa(t) + 10pH(t)−14 − 10−pH(t) + Wb(t)
1 + 2× 10pH(t)−K2

1 + 10K1−pH(t) + 10pH(t)−K2
= 0. (39)

State variables Wa and Wb are reaction invariants. The process manipulated variable is the
base NaOH stream denoted as q1, while the controlled variable is the pH of the product.
The buffer flow rate q2 and base flow rate q3 remain constant. Wa1 , Wa2 , Wa3 , Wb1 , Wb2 , Wb3 ,
V, K1 and K2 are constants [19]. The fundamental model given above is utilized only for
process simulation, while various Wiener models are used in MPC.

4.2. Model Identification and Validation

Two classes of Wiener models are considered: classical and parallel. Neural networks
with two layers defined by Equation (5) are utilized in nonlinear static blocks in both models.
We use two sets of data generated from the open-loop simulation of the fundamental model
for model identification: training and validation data sets. The first set is used only to
identify model parameters, while the second set is used to assess model accuracy. All
models are found using the same identification procedure. It consists of the following steps:

1. Initialization of the identification procedure. The number of model branches ng (ng = 1
for the classical Wiener model), the number of hidden nodes in each nonlinear block
K1, . . . , Kng , the order of dynamics of linear blocks (defined by integers nA and nB),
the number of maximal optimization steps used during identification are defined. All
model parameters, i.e., parameters of linear dynamical blocks and nonlinear static
blocks, are initialized randomly.

2. A nonlinear optimization solver is used to calculate model parameters. The objective
of optimization is to minimize the model error for the training data set defined as

E =
kmax

∑
k=1

(
ymod(k)− y(k)

)2
, (40)

where ymod(k) and y(k) are the model output value and the output value from the
training data set, respectively, for the current sampling instant k; kmax is the number of
available data samples. This work uses the Sequential Quadratic Programming (SQP)
solver for nonlinear optimization. Model error for the training data set, denoted by
Etrain, is calculated when optimization is completed.

3. Model error for the validation data set, denoted by Eval, is also calculated.
4. Steps 1–4 are repeated a few times, which leads to finding a few models. Of course,

initialization of model parameters may have an impact on model accuracy and it may

Sensors 2023, 23, 9539 10 of 20

be necessary to repeat identification for the same structure. This is because gradient-
based nonlinear optimization is used during identification. Nonlinear optimization
may terminate at a shallow local minimum. The finally chosen model has the lowest
validation error.

The flowchart of the model identification procedure is presented in Figure 3.
The above identification procedure is independently repeated for different model

configurations. This work considers the influence of the number of branches in the parallel
model and the number of hidden nodes in neural networks used in nonlinear static blocks.
The second order of linear dynamic blocks is always used, i.e., nA = nB = 2. According to
previous research [16,36,38], the second order of dynamics is sufficient for the considered
process. Both training and validation data sets used in this work consist of 5000 data
samples each.

Figure 3. Graphical illustration of the Wiener model identification procedure.

Sensors 2023, 23, 9539 11 of 20

Many classical and parallel Wiener models have been identified using the abovemen-
tioned procedure. We consider the classical Wiener model and parallel ones with two, three
and four branches, i.e., ng = 1, . . . , 4. In each case, the number of hidden nodes in neural
networks varies from one to five, i.e., Kg = 1, . . . , 5. The activation function of hidden
nodes is ϕ = tanh. Table 1 shows the obtained numerical results of model errors. For each
model structure, training and validation errors of the best model are shown, Etrain and
Eval, respectively. Moreover, the percentage relative validation error denoted as Erelative

val
is specified. It indicates how the validation error of a particular model compares to that
of the best classical Wiener model, i.e., the model with five hidden nodes in the nonlinear
block. Such a classical Wiener model has been considered in previous research [16]; using a
greater number of nodes is discouraged as they do not lead to model improvement.

Firstly, we compare the results for parallel neural Wiener models with two branches,
i.e., ng = 2. We observe that the model with three hidden nodes, i.e., Kg = 3, results
in the lowest relative validation error, equal to 40.29% of that possible for the classical
Wiener model. Increasing the number of hidden nodes results in increasing the validation
error. Secondly, we compare the results for parallel Wiener models with three branches.
We observe that for one hidden node in both branches (Kg = 1), the relative validation
error is greater than that for the classical model with five nodes. The best results are
again obtained for three hidden nodes with the lowest relative validation error, equal
to 39.56%. Increasing the number of hidden nodes increases the number of validation
errors. Interestingly, the increase in the number of branches from two to three does not
significantly improve model accuracy; both models with three hidden nodes practically
have very similar errors. Finally, let us analyze parallel Wiener models with four branches,
i.e., Kg = 4. Generally, all obtained models are much worse than the classical Wiener
model. The best relative validation error equals 139.81% while the worst one is 3786.40%.
For the considered benchmark process, four branches turn out to be unnecessary and
badly influence model accuracy. Moreover, such models have multiple parameters and
the nonlinear optimization procedure takes more time to find a reasonable solution than
in the case of simpler model structures. We also verified parallel Wiener models with five
branches and the results are even worse.

Table 1. Training and validation errors of classical and parallel Wiener models.

Model Type ng Kg Etrain Eval Erelative
val

Classical neural
Wiener

1 1 5.01× 102 5.03× 102 122.08%
1 2 4.97× 102 4.99× 102 121.11%
1 3 4.81× 102 4.84× 102 117.47%
1 4 4.37× 102 4.42× 102 107.28%
1 5 4.07× 102 4.12× 102 100.00%

Parallel neural
Wiener

2 1 2.28× 102 2.61× 102 63.34%
2 2 1.39× 102 1.88× 102 45.63%
2 3 1.20× 102 1.66× 102 40.29%
2 4 1.35× 102 1.81× 102 43.93%
2 5 1.84× 102 2.24× 102 54.36%

3 1 4.81× 102 4.80× 102 116.50%
3 2 1.56× 102 1.91× 102 46.35%
3 3 1.41× 102 1.63× 102 39.56%
3 4 1.34× 102 1.75× 102 42.47%
3 5 1.47× 102 1.87× 102 45.38%

4 1 7.36× 103 6.73× 103 1633.50%
4 2 1.64× 103 1.65× 103 400.49%
4 3 6.19× 102 6.57× 102 159.47%
4 4 5.78× 102 5.76× 102 139.81%
4 5 1.53× 104 1.56× 104 3786.40%

Sensors 2023, 23, 9539 12 of 20

Let us compare some of the obtained models graphically. It shows how they try to
mimic the process represented by the validation data set. Figure 4 presents the results for
the classical Wiener model with five hidden nodes in the nonlinear static block (K = 5). The
top panel compares the first 1000 samples of the validation data set vs. the model output.
The bottom panel shows the relationship between the whole validation data set and the
model output. In general, we can see that the rudimentary Wiener model is quite precise.
Hence, whether and to what extent the parallel structure can increase the model accuracy
is interesting.

Figure 5 shows the efficiency of the parallel Wiener model with two branches, each
of which has three hidden nodes (ng = 2, K1 = K2 = 3); Figure 6 shows the efficiency
of the parallel Wiener model with three branches, each of which has three hidden nodes
(ng = 3, K1 = K2 = K3 = 3). We observe that these models have better accuracy than the
classical Wiener model. The second one, i.e., the model with three branches, is slightly
better. Figure 7 shows the efficiency of the parallel Wiener model with four branches, each
of which has four hidden nodes (ng = 4, K1 = K2 = K3 = K4 = 4). Unfortunately, although
the model is the best among all models with four branches, it is noticeably worse than the
classical model and parallel models with two and three branches. Finally, Figure 8 shows
the efficiency of the parallel Wiener model with four branches, each of which has five
hidden nodes (ng = 4, K1 = K2 = K3 = K4 = 5). In this case, due to overparameterization,
the model is very imprecise.

Figure 4. The classical Wiener model with five hidden nodes in the nonlinear static block (K = 5):
the first 1000 samples of the validation data set vs. the model output (top), the relationship between
the whole validation data set and the model output (bottom).

All things considered, parallel Wiener models with two branches make it possible to
obtain an error as low as 40% of that observed when the classical Wiener model is used.
A slight improvement is provided by models with three parallel branches, while more
complex models increase the error due to overparameterization.

Sensors 2023, 23, 9539 13 of 20

Figure 5. The parallel Wiener model with two branches, each of which has three hidden nodes
(ng = 2, K1 = K2 = 3): the first 1000 samples of the validation data set vs. the model output (top),
the relationship between the whole validation data set and the model output (bottom).

Figure 6. The parallel Wiener model with three branches, each of which has three hidden nodes
(ng = 3, K1 = K2 = K3 = 3): the first 1000 samples of the validation data set vs. the model
output (top), the relationship between the whole validation data set and the model output (bottom).

Sensors 2023, 23, 9539 14 of 20

Figure 7. The parallel Wiener model with four branches, each of which has four hidden nodes (ng = 4,
K1 = K2 = K3 = K4 = 4): the first 1000 samples of the validation data set vs. the model output (top),
the relationship between the whole validation data set and the model output (bottom).

Figure 8. The parallel Wiener model with four branches, each of which has five hidden nodes (ng = 4,
K1 = K2 = K3 = K4 = 5): the first 1000 samples of the validation data set vs. the model output (top),
the relationship between the whole validation data set and the model output (bottom).

Sensors 2023, 23, 9539 15 of 20

4.3. Predictive Control of the Neutralization Process

Having found a set of Wiener models and compared them in an open loop, evaluating
how they perform in closed-loop MPC control is interesting. In MPC algorithms, we mainly
use the classical neural Wiener model with five hidden nodes and the best parallel neural
Wiener model with three branches, each of which has three hidden nodes. We also use
more complicated models. We consider two MPC algorithms: the discussed MPC-NPLPT
algorithm with online linearization and quadratic optimization and the general MPC
scheme with Nonlinear Optimization (MPC-NO). The latter uses nonlinear models for
prediction, meaning a nonlinear optimization task must be solved at each sampling instant
online. We want to obtain the performance of our computationally efficient MPC-NPLPT
scheme as close to that of MPC-NO as possible. The following parameters are used in two
considered MPC algorithms: N = 10, Nu = 3 and λ = 0.25 [16].

This work performs a multicriterial control quality assessment of MPC algorithms.
For this purpose, we evaluate the control quality using the following statistical indices: the
Mean Squared Error (MSE), the Mean Absolute Error (MAE), the Gauss standard deviation
(σG), the Huber standard deviation (σH), the scale factor of the alpha-stable distribution
(γ) and the rational entropy (HR). The obtained numerical values of these indicators are
presented in Table 2 and the calculation times necessary by MPC algorithms are given in
Table 3. We consider MPC-NO and MPC-NPLPT algorithms for classical and the chosen
parallel Wiener models. We can formulate the following observations:

1. The control quality indicators obtained for the MPC-NPLPT algorithm are practically
the same as those for the MPC-NO control method. That means that our control
algorithm is very efficient. Advanced online trajectory linearization makes it possible
to use simple quadratic optimization; nonlinear programming is unnecessary. This
observation can also be verified when we consider process time trajectories. Figure 9
compares simulation results of MPC-NO and MPC-NPLPT algorithms; both of them
use the classical Wiener model. The controlled variable and the setpoint trajectory
are displayed in the top panel. The manipulated variable is shown in the bottom
panel. Although they use a completely different computational scheme, we can
see that both algorithms’ trajectories are very close. The same observations can be
noted from Figure 10, which compares simulation results of MPC-NO and MPC-
NPLPT algorithms, but now both algorithms use the parallel Wiener model with three
branches.

2. From Table 2, we can find out that better control quality is achieved when MPC
algorithms use the parallel Wiener model rather than the classical structure. The
following indices are significantly reduced when the parallel model is used: MAE, σH,
γ and rational entropy (HR). The rest of the indices (MSE and σG) are slightly lower.
Figure 11 presents the obtained trajectories possible when the same control algorithm
MPC-NPLPT is used, but classical and parallel Wiener models are used for prediction.
We can clearly see that the parallel model control scheme offers better control quality.
Namely, the settling time is shorter and the overshoot is smaller.

3. Of course, increasing the number of model branches is likely to increase the compu-
tation time. Therefore, Wiener models with as few branches as possible should be
used. Table 3 details calculation times of studied MPC algorithms for classical and
parallel Wiener models. As all simulations are performed in MATLAB (not in a real
industrial control system), we are interested in a relative comparison between the
studied algorithms. Hence, all results are scaled so that the calculation time for the
computationally demanding MPC-NO algorithm based on the classical Wiener model
is assumed to be equal to 100%. It is interesting to note that increasing the number of
branches significantly influences the calculation time of the MPC-NO algorithm with
nonlinear optimization. On the other hand, the time required by the MPC-NPLPT
algorithm developed and recommended in our work is significantly shorter and not
influenced by the number of model branches. It is because the MPC-NPLPT quadratic
optimization problem has a predominant influence on calculation time.

Sensors 2023, 23, 9539 16 of 20

Table 2. Multi-criteria control quality indicators of MPC algorithms with classical and parallel Wiener
models.

Model Type MPC Algorithm MSE MAE σG σH γ HR

Classical neural
Wiener

MPC-NO 1.4375× 100 5.3123× 10−1 1.2007× 100 1.1652× 10−1 4.9899× 10−2 4.4580× 10−1

MPC-NPLPT 1.4375× 100 5.3123× 10−1 1.2007× 100 1.1649× 10−1 4.9887× 10−2 4.4580× 10−1

Parallel neural
Wiener, ng = 3

MPC-NO 1.4329× 100 5.0995× 10−1 1.1971× 100 7.8351× 10−2 3.7433× 10−2 4.1628× 10−1

MPC-NPLPT 1.4332× 100 5.0992× 10−1 1.1972× 100 7.8945× 10−2 3.7596× 10−2 4.1060× 10−1

Table 3. Calculation times for MPC algorithms with classical and parallel Wiener models.

Model Type MPC Algorithm Time

Classical neural
Wiener

MPC-NO 100.00%
MPC-NPLPT 42.01%

Parallel neural Wiener,
ng = 3

MPC-NO 146.01%
MPC-NPLPT 56.01%

Figure 9. Simulation results: MPC-NO vs. MPC-NPLPT algorithms; both algorithms use the classical
Wiener model.

It is interesting whether more complicated parallel Wiener models may be used in
MPC. From Table 1 and Figures 7 and 8, we can see that increasing the number of model
branches does not lead to improving open-loop model accuracy. As far as closed-loop model
performance is concerned, let us consider Figure 12, which shows simulation results of MPC-
NO and MPC-NPLPT algorithms that use the parallel Wiener model with ng = 4 branches
and neural networks with Kg = 4 hidden nodes. This is the best model among all models
with four branches. Both algorithms produce the same trajectories, which is good because
it means that our MPC-NPLPT algorithm perfectly mimics the computationally demanding
MPC-NO method. Unfortunately, the control quality is generally much worse than in
the case of parallel Wiener models with three branches. The manipulated variable has an
oscillatory behavior, resulting in the controlled variable oscillating. Such an unwanted
phenomenon occurs when the controlled variable value is close to the current set point value.
Similarly, Figure 13 compares the same MPC algorithms, but now both algorithms use

Sensors 2023, 23, 9539 17 of 20

the parallel Wiener model with ng = 4 branches and neural networks with Kg = 5 hidden
nodes. This is the worst model among all models with four branches. The control results
are very bad. The controlled variable of the process practically does not stabilize on the
required setpoint. There are frequent oscillations of manipulated and controlled variables.
The amplitude of the oscillations is significant, and as a result, large overshoots are obtained.

Figure 10. Simulation results: MPC-NO vs. MPC-NPLPT algorithms; both algorithms use the parallel
Wiener model with three branches.

Figure 11. Simulation results: the MPC-NPLPT algorithm using the classical Wiener model vs. the
MPC-NPLPT algorithms using the parallel Wiener (ng = 1) model with three branches (ng = 3).

Sensors 2023, 23, 9539 18 of 20

Figure 12. Simulation results: MPC-NO vs. MPC-NPLPT algorithms; both algorithms use the parallel
Wiener model with ng = 4 branches and neural networks with Kg = 4 hidden nodes.

Figure 13. Simulation results: MPC-NO vs. MPC-NPLPT algorithms; both algorithms use the parallel
Wiener model with ng = 4 branches and neural networks with Kg = 5 hidden nodes.

5. Conclusions

This work is concerned with parallel Wiener models. Firstly, it details a computation-
ally efficient MPC algorithm for the parallel Wiener model. The idea is to avoid nonlinear
prediction and nonlinear online optimization. Conversely, an online linear approximation
of the process predicted trajectory is successively computed, leading to a relatively simple

Sensors 2023, 23, 9539 19 of 20

quadratic optimization. Secondly, parallel Wiener models are compared with classical ones
for a benchmark neutralization process. Model accuracy is compared in the open-loop
configuration. We find out that the parallel Wiener models really offer significantly better
accuracy than the classical model. It is also necessary to stress that excessively complicated
parallel models, with too many branches, suffer from overparameterization and cannot be
trained fast. Hence, we suggest using parallel Wiener models with only a few branches
for the considered process. Thirdly, parallel Wiener models are verified in MPC. Of note,
the discussed MPC algorithm with online linearization and fast quadratic programming
for the neutralization system produces practically the same results as the rudimentary
MPC method with a fully nonlinear approach. Interestingly, control quality based on MPC
algorithms based on parallel Wiener models is better than the classical model. However, the
gain of using more complex models is not very significant due to the closed-loop negative
feedback mechanism present in MPC.

Author Contributions: Conceptualisation R.N. and M.Ł.; methodology, R.N. and M.Ł.; software,
R.N. and M.Ł.; validation, R.N. and M.Ł.; formal analysis, R.N. and M.Ł.; investigation, R.N.;
writing—original draft preparation, R.N. and M.Ł.; writing—review and editing, R.N. and M.Ł.;
visualization, R.N.; supervision, M.Ł. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was financed by Warsaw University of Technology in the framework of the
project for the scientific discipline automatic control, electronics and electrical engineering.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tatjewski, P. Advanced Control of Industrial Processes, Structures and Algorithms; Springer: London, UK, 2007.
2. Zarzycki, K.; Ławryńczuk, M. LSTM and GRU neural networks as models of dynamical processes used in predictive control: A

comparison of models developed for two chemical reactors. Sensors 2021, 21, 5625. [CrossRef] [PubMed]
3. Andrei, A.M.; Bildea, C.S. Linear Model Predictive Control of Olefin Metathesis Process. Processes 2023, 11, 2216. [CrossRef]
4. Huyck, B.; De Brabanter, J.; De Moor, B.; Van Impe, J.F.; Logist, F. Online model predictive control of industrial processes using

low level control hardware: A pilot-scale distillation column case study. Control. Eng. Pract. 2014, 28, 34–48. [CrossRef]
5. Sokólski, P.; Rutkowski, T.A.; Ceran, B.; Złotecka, D.; Horla, D. Event-Triggered Communication in Cooperative, Adaptive Model

Predictive Control of a Nuclear Power Plant’s Turbo-Generator Set. Energies 2023, 16, 4962. [CrossRef]
6. Simmini, F.; Caldognetto, T.; Bruschetta, M.; Mion, E.; Carli, R. Model Predictive Control for Efficient Management of Energy

Resources in Smart Buildings. Energies 2021, 14, 5592. [CrossRef]
7. Ducaju, J.M.S.; Llobregat, J.J.S.; Cuenca, A.; Tomizuka, M. Autonomous Ground Vehicle Lane-Keeping LPV Model-Based Control:

Dual-Rate State Estimation and Comparison of Different Real-Time Control Strategies. Sensors 2021, 21, 1531. [CrossRef]
8. Vu, T.M.; Moezzi, R.; Cyrus, J.; Hlava, J. Model Predictive Control for Autonomous Driving Vehicles. Electronics 2021, 10, 2593.

[CrossRef]
9. Shi, J.; Li, K.; Piao, C.; Gao, J.; Chen, L. Model-Based Predictive Control and Reinforcement Learning for Planning Vehicle-Parking

Trajectories for Vertical Parking Spaces. Sensors 2023, 23, 7124. [CrossRef]
10. Eskandarpour, A.; Sharf, I. A constrained error-based MPC for path following of quadrotor with stability analysis. Nonlinear Dyn.

2020, 98, 899–918. [CrossRef]
11. Rodriguez-Guevara, D.; Favela-Contreras, A.; Gonzalez-Villarreal, O.J. A qLPV-MPC Control Strategy for Trajectory Tracking of

Quadrotors. Machines 2023, 11, 755. [CrossRef]
12. Aggelogiannaki, E.; Sarimveis, H. Nonlinear model predictive control for distributed parameter systems using data driven

artificial neural network models. Comput. Chem. Eng. 2008, 32, 1225–1237. [CrossRef]
13. Mendez, A.P.; Whidborne, J.F.; Chen, L. Wind Preview-Based Model Predictive Control of Multi-Rotor UAVs Using LiDAR.

Sensors 2023, 23, 3711. [CrossRef]
14. Li, P.; Tong, X.; Wang, Z.; Xu, M.; Zhu, J. Sensorless Model Predictive Control of Single-Phase Inverter for UPS Applications via

Accurate Load Current Estimation. Sensors 2023, 23, 3742. [CrossRef] [PubMed]

http://doi.org/10.3390/s21165625
http://www.ncbi.nlm.nih.gov/pubmed/34451065
http://dx.doi.org/10.3390/pr11072216
http://dx.doi.org/10.1016/j.conengprac.2014.02.016
http://dx.doi.org/10.3390/en16134962
http://dx.doi.org/10.3390/en14185592
http://dx.doi.org/10.3390/s21041531
http://dx.doi.org/10.3390/electronics10212593
http://dx.doi.org/10.3390/s23167124
http://dx.doi.org/10.1007/s11071-019-04859-0
http://dx.doi.org/10.3390/machines11070755
http://dx.doi.org/10.1016/j.compchemeng.2007.05.002
http://dx.doi.org/10.3390/s23073711
http://dx.doi.org/10.3390/s23073742
http://www.ncbi.nlm.nih.gov/pubmed/37050802

Sensors 2023, 23, 9539 20 of 20

15. Fu, H.; Yao, W.; Cajo, R.; Zhao, S. Trajectory Tracking Predictive Control for Unmanned Surface Vehicles with Improved Nonlinear
Disturbance Observer. J. Mar. Sci. Eng. 2023, 11, 1874. [CrossRef]

16. Ławryńczuk, M. Nonlinear Predictive Control Using Wiener Models: Computationally Efficient Approaches for Polynomial and
Neural Structures. In Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2014; Volume 389.

17. Bloemen, H.H.J.; Chou, C.T.; Boom, T.J.J.; Verdult, V.; Verhaegen, M.; Backx, T.C. Wiener model identification and predictive
control for dual composition control of a distillation column. J. Process. Control. 2001, 11, 601–620. [CrossRef]

18. Cervantes, A.L.; Agamennoni, O.E.; Figueroa, J.L. A nonlinear model predictive control system based on Wiener piecewise linear
models. J. Process. Control. 2003, 13, 655–666. [CrossRef]

19. Gómez, J.C.; Jutan, A.; Baeyens, E. Wiener model identification and predictive control of a pH neutralisation process. Proc. IEE
Part D Control. Theory Appl. 2004, 151, 329–338. [CrossRef]

20. Kalafatis, A.D.; Wang, L.; Cluett, W.R. Linearizing feedforward–feedback control of pH processes based on the Wiener model. J.
Process. Control. 2005, 15, 103–112. [CrossRef]

21. Al Seyab, R.K.; Cao, Y. Nonlinear model predictive control for the ALSTOM gasifier. J. Process. Control. 2006, 16, 795–808.
[CrossRef]

22. Arto, V.; Hannu, P.; Halme, A. Modeling of chromato-graphic separation process with Wiener-MLP representation. J. Process.
Control. 2001, 78, 443–458. [CrossRef]

23. Ławryńczuk, M.; Söffker, D. Wiener structures for modeling and nonlinear predictive control of proton exchange membrane fuel
cell. Nonlinear Dyn. 2019, 95, 1639–1660. [CrossRef]

24. Ławryńczuk, M. Identification of Wiener models for dynamic and steady-state performance with application to solid oxide fuel
cell. Asian J. Control. 2019, 21, 1836–1846. [CrossRef]

25. Zhang, C.; Meng, X.; Ji, Y. Parameter estimation of fractional Wiener systems with the application of photovoltaic cell models.
Mathematics 2023, 11, 2945. [CrossRef]

26. Mahfouf, M.; Linkens, D.A. Non-linear generalized predictive control (NLGPC) applied to muscle relaxant anaesthesia. Int. J.
Control. 1998, 71, 239–257. [CrossRef]

27. Patel, A.M.; Li, J.K.J. Validation of a novel nonlinear black box Wiener system model for arterialpulse transmission. Comput. Biol.
Med. 2017, 88, 11–17. [CrossRef] [PubMed]

28. Schoukens, M.; Rolain, Y. Parametric MIMO parallel Wiener identification. In Proceedings of the 2011 50th IEEE Conference on
Decision and Control/European Control Conference CDC-ECC, Orlando, FL, USA, 12–15 December 2011; pp. 5100–5105.

29. Schoukens, M.; Rolain, Y. Parametric identification of parallel Wiener systems. IEEE Trans. Instrum. Meas. 2012, 61, 2825–2832.
[CrossRef]

30. Schoukens, M.; Rolain, Y. Parallel Wiener identification starting from linearized models. In Proceedings of the 2012 IEEE Interna-
tional Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012; pp. 1411–1415.

31. Hermansson, A.W.; Syafiie, S. Model predictive control of pH neutralization processes: A review. Control. Eng. Pract. 2016,
45, 98–109. [CrossRef]

32. Åkesson, B.M.; Toivonen, H.T.; Waller, J.B.; Nyström, R.H. Neural network approximation of a nonlinear model predictive
controller applied to a pH neutralization process. Comput. Chem. Eng. 2005, 29, 323–335. [CrossRef]

33. Dougherty, D.; Cooper, D. A practical multiple model adaptive strategy for single-loop MPC. Control. Eng. Pract. 2003, 11, 141–159.
[CrossRef]

34. Galán, O.; Romagnoli, J.A.; Palazoglu, A. Real-time implementation of multi-linear model-based control strategies–an application
to a bench-scale pH neutralization reactor. J. Process. Control. 2004, 14, 571–579. [CrossRef]

35. Grancharova, A.; Kocijan, J.; Johansen, T.A. Explicit output-feedback nonlinear predictive control based on black-box models.
Eng. Appl. Artif. Appl. 2011, 24, 388–397. [CrossRef]

36. Ławryńczuk, M. Modelling and predictive control of a neutralisation reactor using sparse Support Vector Machine Wiener
models. Neurocomputing 2016, 205, 311–328. [CrossRef]

37. Mahmoodi, S.; Poshtan, J.; Jahed-Motlagh, M.R.; Montazeri, A. Nonlinear model predictive control of a pH neutralization process
based on Wiener-Laguerre model. Chem. Eng. J. 2009, 146, 328–337. [CrossRef]

38. Nebeluk, R.; Ławryńczuk, M. Computationally efficient nonlinear model predictive control using the L1 cost-function. Sensors
2021, 21, 5835.

39. Janczak, A. Identification of Nonlinear Systems Using Neural Networks and Polynomial Models: A Block-Oriented Approach. In
Lecture Notes in Control and Information Sciences; Springer: Berlin, Germany, 2004; Volume 310.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/jmse11101874
http://dx.doi.org/10.1016/S0959-1524(00)00056-1
http://dx.doi.org/10.1016/S0959-1524(02)00121-X
http://dx.doi.org/10.1049/ip-cta:20040438
http://dx.doi.org/10.1016/j.jprocont.2004.03.006
http://dx.doi.org/10.1016/j.jprocont.2006.03.003
http://dx.doi.org/10.1016/S0959-1524(00)00053-6
http://dx.doi.org/10.1007/s11071-018-4650-y
http://dx.doi.org/10.1002/asjc.2038
http://dx.doi.org/10.3390/math11132945
http://dx.doi.org/10.1080/002071798221858
http://dx.doi.org/10.1016/j.compbiomed.2017.06.020
http://www.ncbi.nlm.nih.gov/pubmed/28667939
http://dx.doi.org/10.1109/TIM.2012.2193689
http://dx.doi.org/10.1016/j.conengprac.2015.09.005
http://dx.doi.org/10.1016/j.compchemeng.2004.09.023
http://dx.doi.org/10.1016/S0967-0661(02)00106-5
http://dx.doi.org/10.1016/j.jprocont.2003.10.003
http://dx.doi.org/10.1016/j.engappai.2010.10.009
http://dx.doi.org/10.1016/j.neucom.2016.03.066
http://dx.doi.org/10.1016/j.cej.2008.06.010

	Introduction
	Classical and Parallel Wiener Models
	Predictive Control Using Classical and Parallel Wiener Models
	Preliminaries
	Derivation of Fast MPC Algorithm
	Classical Formulation of the MPC Quadratic Optimization Task

	Simulations
	Neutralization Process Description
	Model Identification and Validation
	Predictive Control of the Neutralization Process

	Conclusions
	References

