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Abstract: Service robots perform versatile functions in indoor environments. This study focuses
on obstacle avoidance using flock-type indoor-based multi-robots. Each robot was developed with
rendezvous behavior and distributed intelligence to perform obstacle avoidance. The hardware
scheme-based obstacle-avoidance algorithm was developed using a bio-inspired flock approach,
which was developed with three stages. Initially, the algorithm estimates polygonal obstacles and their
orientations. The second stage involves performing avoidance at different orientations of obstacles
using a heuristic based Bug2 algorithm. The final stage involves performing a flock rendezvous
with distributed approaches and linear movements using a behavioral control mechanism. VLSI
architectures were developed for multi-robot obstacle avoidance algorithms and were coded using
Verilog HDL. The novel design of this article integrates the multi-robot’s obstacle approaches with
behavioral control and hardware scheme-based partial reconfiguration (PR) flow. The experiments
were validated using FPGA-based multi-robots.

Keywords: multi-robot; collision avoidance; object orientation; behavioral control

1. Introduction

Unmanned ground mobile robots provide prompt services in certain indoor environ-
ments. For the last two decades, individual autonomous mobile robots have provided
services that support humans. A recent survey by Globe Newswire [1] indicates that the
mobile robot market size is expected to grow from USD 3.36 billion in 2023 to USD 6.94 billion
by 2028. These autonomous robots require artificial intelligence to accomplish indoor services
with new computational technologies. Current research focuses on two aspects, one related to
co-bots (human and machine) and the other related to multi-mobile-robot-based services for
various applications in logistics, medicine, and other industries. This paper focuses on the un-
raveling challenges of multi-mobile robots toward achieving indoor services. Researchers [2]
have reviewed various aspects like navigation, sensory fusion, obstacle identification and
avoidance, and the challenges posed by autonomous mobile robots.

Sensory information and its fusion play a vital role in evaluating the environment.
Sensors like infrared, ultrasonic, PIR, LIDAR, LASAR, and cameras have been used by
various researchers [3,4] for the validation of their research. There is a tradeoff between
the sensor types, on the one hand, and cost and computational challenges, on the other.
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These sensors are used for robotic actions such as localization, navigation, and parking.
For the last two decades, in the abovementioned studies, robotics have been used with a
single type of sensor. The new trend involves the integration of different sensors as per
robotics requirements. Ciuffreda et al. [5] discussed the localization of robots by integrating
two different sensors: PIR and ultrasonic. The other approach is the integration of similar
multiple sensors and framing the sensor fusion to achieve better results, as mentioned by
the authors of [2,6]. This sensor fusion allows for the estimation of objects and obstacles.
Each obstacle is classified as static or dynamic in the ground environments. Static obstacles
are considered as the boundary of the environment [7], and, as per the house/workplace,
where objects are essential, including furniture such as chairs and tables in the indoor
environment, these are treated as obstacles.

Autonomous robots struggle with the estimation of objects in 2D and 3D. In this respect,
the avoidance of obstacles has been addressed by various researchers using Bug, iBug, Bug2,
general Voronoi diagram (GVD), and heuristic approaches. Howie Choset et al. [8] have
presented various bug algorithms for static-obstacle avoidance. Several recent studies have
used dynamic obstacle-avoidance methods [9,10]. Obstacle avoidance is challenging when
the multi-robot performs cooperative [11] and distribution [12] tasks. Cooperative robots
are dependent on formation and deformation methods. Bai et al. [13] reported on obstacle
avoidance with multi-robot formation control, and geometric measures for deformation
have been addressed by Aranda et al. [14]. The existing challenges posed by flock groups
are performing obstacle avoidance with decentralization and participating in formation
once again in the flock group. This challenge of decentralization and obstacle avoidance has
been addressed by Choi et al. [15]. The proposed research work addresses centralization to
decentralization and vice versa; it performs obstacle avoidance with decentralization using
the heuristic-based Bug2 algorithm.

Real-time sensory data were computed continuously to perform the robot’s tasks such
as obstacle avoidance, path planning, navigation, formation and deformation behavioral
control methods, which required effective computational devices. The new computational
technologies are cloud and edge-based systems. CPU (microprocessors), Raspberry Pi,
microcontrollers, and FPGA were used in the edge computing part of the study, and
cloud computing was performed with GPU and FPGA. The selection of the computing
devices was based on the requirements of algorithm dynamics, parallel computation, lower
power consumption and cost of the devices. In the last decade, FPGA has been used
in robotic applications and obstacle avoidance [16–19]. A recent survey [20] provides
comparative results of FPGA-based robotics, which are effective in real-time applications
while consuming less power.

This paper presents the following innovations:

1. Hardware scheme-based algorithms for the identification of obstacle types and their
orientation in the indoor environment.

2. The behavioral control mechanism approach has been developed for switching be-
tween formation to deformation and vice versa to execute obstacle avoidance.

3. The decentralization of multi-robots using a hardware scheme-based heuristic al-
gorithm to perform obstacle avoidance with respect to the type of the obstacle and
its orientation. Partial reconfiguration (PR) flow integration was used to achieve
optimized resource utilization on run-time implementation.

This section of the paper elaborates on the literature and related research on multi-robot
obstacle avoidance for polygonal objects in an indoor environment. Section 2 describes
the hardware scheme-based algorithms and architectures for the proposed approach. The
results, which validate the proposed algorithm, are discussed in Section 3. An overall
summary of the research contribution is provided in Section 4.

2. Hardware-Based Algorithms

This section describes the multi-robot’s hardware-based obstacle-avoidance algorithm
for moving around indoor obstacles with different orientations.
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2.1. Hardware-Based Algorithm for Obstacle Identification and Orientation

Our approach is based on the identification of an obstacle and its orientation. Obstacles
that were located in the path of robots required obstacle avoidance. The obstacles are
classified based on the position in the view of the robot’s 2D plane. An indoor-environment
object mostly manifests visually as a plane surface contour, as shown in Figure 1a. Some
objects, such as chairs and sofas, have integrated depth and plane contours, as shown in
Figure 1b.
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Figure 1. (a,b) Indoor-environment-based polygonal object identification and orientation.

Algorithm 1 presents details of the identification of the obstacles in the environment
and their orientation. Each robot interfaced with six sensors; SFT and SFM appear on the
front side of the robot. All the sensors will sense the environment with the distances
as mentioned in Line 1. To avoid a collision, the maximum (max) and minimum (min)
distances are assigned as 2 and 1 m, respectively. In the 2D view, the robots’ front sensors
estimate which path is free and which contains obstacles (Line 3). When an obstacle is in the
way, the robot evaluates what type of object it is, such as cupboards and tables, as shown in
Figure 1a (Line 5). When the distances detected by both front sensors are differentiated, SFT
will estimate the depth of the object and SFM will establish the plane of the object (Line 6).
This sensory fusion confirms whether there are chairs and sofas in the environment as
mentioned in Figure 1b. When sensory distances are determined, SFT maximum and SFM
minimum define such objects as small stools (Line 7). In this environment, the objects are
positioned with different angular orientations (Line 9–13). The sensors estimate the object
orientation with respect to the present plane, and object identification is performed in a
similar way to that mentioned in Lines 2–7.

Algorithm 1: Pseudo code for identification of obstacle and orientation

1. Initialize sensory distance and reference distances
2. Case (Obstacle)
3. State_1: if ((SFT && SFM) > dmax_ϑ0

0)? forward: State_2;
4. State_2: if ((SFT && SFM) ≤ dmax_ϑ0

0)? State_3: State_5;
5. State_3: if ((SFT == SFM) ≥ (dmin_ϑ0

0))? Alg_2@ Case_1: State_4;
6. State_4: if ((SFT ≥ dmin_ϑ0

0) && (SFM < dmin_ϑ0
0))? Alg_2@ Case_1: Orientation;

7. State_5: if ((SFT ≥ dmax _ϑ0
0) && (SFM ≥ dmin_ϑ0

0))? Alg_2@ Case_1: Orientation;
8. end case
9. Case (Orientation):
10. State_11: if ({SFT, SFM} @ ϑ ± 15

0, ±30
0, ±45

0, ±60
0, ±75

0) ≥ dmin)? Alg_2@ Case_2:
State_12;
11. State_12: if ((SFT ≥ dmin_ϑ ± 15

0, ±30
0, ±45

0, ±60
0, ±75

0) &&
(SFM < dmin_ϑ ± 15

0, ±30
0, ±45

0, ±60
0, ±75

0))? Alg_2@ Case_2: State_13;
12. State_13: if ((SFT ≥ dmax_ϑ ± 15

0, ±30
0, ±45

0, ±60
0, ±75

0) &&
(SFM ≥ dmin_ϑ ± 15

0, ±30
0, ±45

0, ±60
0, ±75

0)), Alg_2@ Case_2;
13. end case
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2.1.1. Hardware-Based Algorithm for Obstacle Avoidance of Indoor Polygonal Objects

Figure 2a–d and Algorithm 2 represent the obstacle avoidance of the multi-robot for
various indoor environment obstacles with different orientations. Algorithm 2 collects the
information from Algorithm 1 and confirms an obstacle and its orientation. In the robot’s
view, there is an obstacle with a 2D plane in the right orientation, as presented in case_1,
and different orientation object avoidance, as presented in case_2. In case_1, obstacle
avoidance is performed in the Bug2 algorithm with odometer techniques (Lines 2–11). Both
front sensors’ distance is equal to the minimum distance in the line of sight (dmin_ϑ0

0)
(Line 3), and it is evaluated based on the Euclidean distance method. Using the rendezvous
approach, multi-robots, while performing obstacle avoidance, execute as left flock (FL),
which is positioned on the left side, whereas right flock (FR) is positioned on the right side
among the group. The flock group performs a ϑ90

0 turn with respect to their side from
dmin_ϑ0

0 values and applying a wall-following approach, which continues until it reaches
the edge of the object (Line 4). In parallel, the internal soft odometer evaluates the distance
traveled from the turn position to the edge (Line 4). The flock team, FL and FR, takes a
ϑ90

0 turn right and left (Line 5). The proposed research work addresses obstacle avoidance
for polygonal objects such as rectangles, squares (four sides), triangles (equilateral), and
these polygonal objects are classified by the flock group using right (SR) or left (SL) sensory
distance with respect to the object plane (Line 6). The flock group evaluates the distance and
follows the object with a parallel (rectangle/square) or perpendicular (triangle) movement
(Lines 7–10). Based on the edge of the object, the flock team takes a ϑ90

0 turn towards
the object side and forward to crucial part of the Bug2 point. In this heuristic approach,
odometer distance evaluated in the initial stage will be decremented until equal to the
null value (Line 11). This technique is one of the novel approaches for a multi-robot flock
performing obstacle avoidance. Moreover, case_2 has similar lines to case_1 (Line 13). In
this case, the robots move in parallel to the object until they reach the edge, while the
odometer records the distance and evaluates the angle from the initial position (dmin_ϑ0

0)
to the edge of the object (ϑx± 0) (Line 14). The flock group performs the turn with respect
to the invert value of ϑx± 0 (Line 15). The next stage of obstacle avoidance is performed in
Lines 6–11.

Algorithm 2: Pseudo code for obstacle avoidance

1. Initialize obstacle identification and orientation
2. Case_1 (Obstacle avoidance)
3. State_1: if ((SFT == SFM) ≥ (dmin_ϑ0

0))? State_2: Case_2.
4. State_2: turn ϑ90

0 FL -> L & FR -> R; Wall follow (odometer++),
5. turn @edge ϑ90

0, FL -> R & FR -> L.
6. State_3: if ((FL (SR)) && (FR (SL)) = dmin_ϑ0

0)
7. Wall follow in Parallel to object, Take turn @edge ϑ90

0 FL -> R & FR -> L,
8. else
9. Wall follow in Perpendicular to object, Take turn @edge ϑ90

0 FL -> R & FR ->
L.
10. end
11. Forward (odometer - -), Take turn ϑ90

0 FL -> L & FR -> R, end case.
12. Case_2 (Obstacle avoidance _ Orientation):
13. State_11: if ((FL (SFT)) && (FR (SFT)) 6= dmin_ϑ0

0)? State_12: Case_1.
14. State_12: turn w.r.t to object orient ϑx± 0, FL -> L & FR -> R; Wall follow (odometer++).
15. turn @edge ϑx± 0, FL -> R & FR -> L.
16. State_13: Repeat; State_3.
17. end case
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2.1.2. Formation and Deformation of Multi-Robot in Indoor Environment

Figure 3a,b presents the multi-robot behavioral control mechanism for a formation
of multi-robots with a rendezvous approach and deformation into linear form at dynamic
situations in the environment. When robots navigate through the indoor environment past
objects at different orientations, they are able to transform from formation to deformation
flock approaches. Fxy denotes the flock (F), the side (x) and the role (y) of the group;
thus, in the four-robot group, two are on the left side and the other two are on right
side. Preferably, front robots are considered as leaders, and those behind are enrolled as
followers. Figure 3b presents the network topology between the multi-robots based on the
static and dynamic conditions of the environment. Upon entry into the environment, leader
robots communicate with each other and maintain a flock group by sharing information
about the environment. When an obstacle like a sofa appears in front of the leader robots
at node A, the flock group makes the decision to traverse in their respective directions
and, like the leaders, communicates with other robots. Meanwhile, leaders exchange
details of their respective angles and odometer information. This information matches
their odometer and angles based on the previously reached group, which waits for the next
flock group at the end point. In this regard, after obstacle avoidance at node A, it reforms
back in its original location as the rendezvous formation group moves forward. In certain
conditions, such as node B, multi-robots cannot perform the operation of either the flock
group or the rendezvous group. Multi-robots transform from formation to deformation
or decoupling, i.e., robots reframed with a bio-inspired system including ant movements,
into a line approach. In this process, the robots FLL, FRL, FLF and FRF move in an odd-and-
even-number sequence. Upon completion of this sequence, the sequence transforms into
formation using a first-in first-out (FIFO) approach. The flock of robots at node D is reached
through node C, which contains a triangle-shaped object with a different orientation that
incorporates prior algorithms and behavioral control. It is similar in terms of formation
after the obstacle avoidance of the multi-robot.

As per our proposed approach, a finite-state machine for the algorithms is presented.
The proposed model consists of four main states. Obstacle Detection: It identifies the object
with respect to the sensor(s) data received. Obstacle Orientation: The main function is
to identify obstacle orientation for flat and polygonal shapes. Obstacle Avoidance: To
perform the action, avoiding the obstacle is the functionality of this state by performing
robot maneuvers and interchange. Obstacle Avoidance and Orientation: To correct its
orientation (dmin_ϑ = {15◦, . . ., 75◦}) with respect to the identified object so that the flock
of robots can navigate through the environment. The left half of the FSM shows obstacle
detection and orientation, and the right half of the FSM shows obstacle avoidance and
avoidance orientation, as shown in Figure 3c. A detailed explanation is provided below.
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state machine of proposed algorithm.

The framework for the flock of mobile robots is the reset condition in which the
control unit fetches the instruction through the “Obstacle Detection and Orientation” state.
According to this case, the robots first set up their sensors and system while they are in
the “Initialization” condition. The next step is “Obstacle Avoidance (Case_1)”, which is
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meant to help recognize and avoid things that have flat surfaces. In this scenario, the robots
transition through several states, including “State_1”, where they detect the presence of
an object at node point A, and “State_3”, where they perform actions according to the
proximity of the object. When the robots discover an object that is irregular and requires
more advanced navigation, they have the option to switch to “Obstacle Avoidance &
Orientation (Case_2) at node B”. Here, they pass through states such as “State_11”, which
permits them to modify their orientation in relation to the object they have identified, and
“State_12”, which enables them to avoid obstacles while preserving their orientation.

The obstacle detection and navigation system depicted in the state transition graphic
(right half) is centered around two primary scenarios: “Obstacle Avoidance (Case_1)” and
“Obstacle Avoidance and Orientation (Case_2)”. This system starts at the “Initialization”
state upon reset of the condition to the “Obstacle Avoidance (Case_1)”, where the sensors
and actuators are initialized. With SFT and SFM sensor information is greater than the
minimum distance, the transition to “State_1” happens, signaling that an object has been
identified at corresponding orientation degree. The system determines whether the distance
of the detected object falls under a predetermined range in “State_1”, at node B to node
point C the algorithm switches to “State_2” to enable maneuvers like turning in an angle
of 0◦ to 90◦ with wall following as FL -> L & FR -> R. In order to handle increasingly
complicated items or circumstances, the system falls back to “State_11” if the condition is
not satisfied. When the barrier has been overcome, the looping state “State_3” can return to
“Obstacle Avoidance (Case_1)” or return to “State_3” where wall following and turns are
carried out according to the object’s properties as FL -> R & FR -> L.

To correct its orientation with respect to the identified object, the system switches from
“State_11” to “State_12” in “Obstacle Avoidance and Orientation (Case_2)”. Turning and
wall following may be necessary for this at node C to node D. The system goes back to
“State_13” and continues the obstacle avoidance and orienting procedure with the help
of internal odometer incremented states to store the odometer value in the FIFO. Once
the data are retrieved from the FIFO, the odometer value is decremented to deal with
impediments effectively, and the system can then carry on with Obstacle Avoidance in
“State_3” of “Obstacle Avoidance (Case_1)” by returning to case_1 of obstacle avoidance
and checking for necessary action to be triggered to control the actuators.

The transitions and states of this model make it easier for the robot to maneuver around
objects of varying sizes and orientations. It is a flexible method for obstacle recognition and
avoidance in a dynamic environment because it can easily transition between situations and
adjust to flat and irregular barriers. Hence, a flock of robots can navigate their surroundings
efficiently and handle barriers that are both flat and uneven by looping through these states
as needed.

2.2. Hardware Schemes

The proposed method features hardware-based pipeline architectures for the decen-
tralized and distribution-type multi-mobile robot obstacle avoidance, as shown in Figure 4.
This architecture is deployed in the programmable logic (PL) of the FPGA. The architecture
consists of two aspects, inter and intra module, which are integrated into each mobile robot.
Environments with and without obstacles were analyzed based on sensory information.

Obstacles are classified as static or dynamic; the proposed contribution focuses on the
estimation of a polygonal static obstacle and its orientation. The inter module presents the
actions within an individual robot, such as interfacing ultrasonic sensors and triggering
at every 1 ms, and pulse-width modulation (PWM) echo signal converted into the 32 bit
distance using PWDC_sensor fusion. This module consists of six ultrasonic sensors, and
each sensor FIFO size is 32 × 64. The internal architecture frames the sensor fusion using
the FIFO data, the same as is transmitted for the other modules in the system. The ESP8266
Wi-Fi module has been integrated through a UART module with a baud rate of 9600, which
is utilized while performing the behavioral control mechanism in avoiding collisions and
positioning among the flock group. The servo motors play a more significant role in the
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estimation of obstacle orientation: ultrasonic sensors are positioned on top of the servo
motors and as per control unit instruction, it rotates with a step size of 15◦ toward the right
and left up to ±90◦. The hardware scheme algorithms employ a pipeline architecture that
consists of a control unit which drives the inter and intra modules.
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Figure 4. Hardware scheme for distribution multi-mobile robot obstacle avoidance.

The intra module of the architecture is embedded with obstacle identification and
orientation modules, obstacle avoidance and the behavioral control mechanism module,
along with the partial reconfiguration control module. As per hardware scheme-based
Algorithm 1, an equivalent architecture is the obstacle identification and orientation module.
Based on the sensor fusion, this module estimates the type of polygonal obstacle such as
rectangular and triangular. The estimation of the obstacle orientation is challenging, as
the orientations are considered with respect to the robot in the environment. These 8 bits
comprise primary data that extend their operations to accomplish their purpose in the
architecture. Obstacle avoidance is central to this research; it was developed based on the
hardware scheme for Algorithm 2. This architecture addresses obstacle avoidance for static
objects with and without orientation as per the environment. Dynamic objects include
humans and other robots. A human walking at a normal speed of 1.44 m/sec and the other
robots’ speed are known information; with this information, delay units are developed until
they reach the robots. The behavioral control mechanism is a state-of-the-art architecture,
which is event driven based on switching from formation to deformation and vice versa.
This module depends on sensory information, event-driven conditions with respect to the
obstacle type and avoidance, and robot localization among the flock group. The flock group
will maintain a minimum of 50 cm between team members who are positioned in front or
behind and to the left or right.

Deformation is the switching module, which links centralization to distribution to
perform obstacle avoidance. After accomplishing obstacle avoidance, the module switches
from distribution to centralization, which is embedded in the formation module. The
event-driven conditions are replicated by the partial reconfiguration module, which drives
the respective module based on the event or situation. It is one of the novel approaches to
implementing hardware schemes for multi-mobile robot obstacle avoidance. This approach
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controls some modules as active, while others are in sleep mode; this decreases power
consumption due to the lack of computation by modules in sleep mode. The execution
unit is driven based on the modules’ activities and respective motor actions are mapped
and operated. In this mobile robot, two motors are positioned on its left and right, and
respective actions are performed as per the instructions of the execution unit.

2.2.1. Hardware Schemes of Obstacle Identification and Orientation

Figure 5 illustrates the internal architecture of the polygonal type of obstacle identifi-
cation and its orientation. This module consists of two processing elements (PEs): PE_1
performs obstacle identification and shape, PE_2 provides evaluation of obstacle orienta-
tion. The sensory fusion data are collected from the FIFO and directed towards CORDIC
modules and the direction-based sensor distance module. The direction module switches
the sensory information using a shuffle network approach to assign the distances to SFT and
SFM based on the current position versus objects in the environment. The Xilinx CORDIC
IP core was utilized in this module to generate angles of sensory distance and was assigned
based on the requirements of SFT_ϑx

0 and SFM_ϑx
0. The predefined distance is calculated

based on the Euclidean distance approach and is prestored in FIFO array 2 × 32 × 10; dmin
and dmax are two reference distances with respect to 10 angles such as ϑ ± 15

0, ±30
0, ±45

0,
±60

0 and±75
0 with 32-bit width. Initially, the hardware confines either obstacle presence or

obstacle absence. In the absence of an object, it instructs the execution unit to take forward
action. When an object is present, it switches to PE_1; when the conditions are satisfied in
PE_1, it drives to the obstacle avoidance module with respect to various conditions; it is
presented using a digital encoder in this design. The PE_2 presented in Figure 5 represents
obstacle orientation. The obstacles are oriented towards an obtuse or acute angle from the
perception position. The set of digital rulers provides a solution for the identification of
object orientation. PE_2 consists of the 10 array modules for evaluating the angles ϑ ± 15

0,
±30

0, ±45
0, ±60

0 and ±75
0. It uses the matching approach with respect to the reference

dmin_ϑx
0, dmax_ϑx

0 and real-time distances SFT_ϑx
0, SFM_ϑx

0. Once the orientation of
the object is confirmed, it progresses to the next stage of the system. The digital encoder
designed with 30 (3 i/p each module @10 folds) inputs and 5 lines of output is used to
share information in the same way as the obstacle avoidance module.

2.2.2. Hardware Schemes of Obstacle Avoidance for Distributed Multi-Robots

The obstacle avoidance of the proposed research work was based on Bug2 lines
with integration of Euclidian distance measurement and real-time digital computation
using CORDIC [21]. Figure 6 presents the internal architecture of PE_11; after obstacle
identification, the robot takes angle ϑ90

0, and it is designed by using the counters. The
counter integral part of the execution up to ϑ90

0 and proportionality verifies the real-time
angle movement of the robot using the CORDIC modules versus the reference value (ϑ90

0

training data defined as event). These angle actions are performed at both edges of the
polygonal object as per the algorithm. While performing a forward action from a ϑ90

0 turn
to the next edge, the hardware increments the counter as odometer ++, which registers
this information. PE_12 is similar to PE_22 without the angle orientation of the objects
as mentioned in Figure 7. In the next stage, PE_12 follows two actions, one of which
follows the boundary of the obstacle and recognizes with sensor fusion if the object is
parallel (rectangular polygon object) to the robot’s position. Concerning either surface
with inclination, its distances vary for every forward step by the robot; then, Euclidean
distance and computation are performed to continue to the next edge of the object, and
next, a ϑ90

0 turn is performed. From this, the odometer’s previous value is a decrement
for every step size until the odometer -- reaches a null value. PE_21 operates in line with
PE_11 based on the orientation of the object, and PE_22 performs as PE_12 does in terms of
object orientation. The CORDIC module is used a number of times to provide the distance
with respect to angles. The robots from this position switch back to formation among
the robots using the behavioral control mechanism in similar a way to that described
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by Divya et al. [22]. The robots are positioned in a first-come, first-served approach: the
front-line robots move forward and create space for follower robots in the group as per the
behavioral approach. The total design consists of four processing elements as mentioned in
Figure 8: PE_11 and PE_12 determine the obstacle avoidance for normal cases such as ϑ0

0,
PE_21 and PE_22 work towards orientation-based obstacle avoidance.
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Figure 5. Architecture of obstacle identification and orientation in an indoor environment.
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3. Results

The results presented in this article take the form of a resource utilization with synthe-
sis report, and a Xilinx-based FPGA was used for the experimental setup and experimental
validation. Xilinx Vivado 2017.3 was preferred for the complete cycle of the implementa-
tion. Verilog HDL was used for scripting the hardware scheme equivalent code and was
simulated, synthesized, and implemented on a Zed board FPGA.

3.1. Resource Utilization

The hardware schemes for polygonal object avoidance were developed with the
equivalent code for multi-robots. The individual modules with HDL were developed and
integrated with AXI lite for system integration. The obstacle identification modules were
framed with combinational circuit designs, obstacle avoidance and communication between
robots dependent on a 100 MHz clock frequency, which was synchronized using the AXI
lite type system integration. The novel approach was developed in this article using partial
reconfiguration for decreasing the power consumption. This state-of-the-art approach is
the first of its kind for multi-mobile robot obstacle avoidance. This reconfiguration was
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performed on a run time with respect to an event-driven situation, and the control unit
plays a vital role in the execution of the dynamic partial reconfiguration module.

Table 1 presents the device/resource utilization of the proposed approach in this
article. The Zynq XC7Z020 (Xilinx, San Jose, CA, USA) device was used for deployment of
the Verilog HDL. Its overall resource of FPGA is 53.2 K look-up tables (LUT), block RAM
140 (4.9 Mb), and DSP slice with 220. Figure 9a presents a resource utilization summary
of general and PR flows with respect to an event or situation. The PR plays an important
role in the behavioral control mechanism as the multi-robots switch from formation to
deformation, and vice versa.

Table 1. Resource utilization for multi-robot obstacle avoidance.

Module LUT BRAM DSP Slice

Obstacle Identification and Orientation 3724 18 8

Obstacle Avoidance 8416 28 30

Interfacing Modules (sensors, motors,
communication, Xilinx IP cores) 6852 24 36

Control Unit and PWDC Sensor Fusion 4468 20 42

Partial Reconfiguration Module 5586 12 14

Behavioral Control Module 6628 16 12

Total 35,674 134 142

The general flow presents the resource utilization of LUT, BRAM, and DSP slice as
67%, 84% and 65%, respectively. We observed that BRAM occupied a higher level, affecting
the performance in relation to run time. The hardware resources are limited in such an
evaluation board as the Zed board; if a switch to a high-end board is desired, there is a
trade-off in terms of cost versus resource availability. In this regard, we considered utilizing
partial reconfiguration (PR) flow, and it has since been approved by researchers [23–25]. The
PR flow provided interesting results, which were observed by using the Xilinx Integrated
Logic Analyzer (ILA) while estimating the performance of the device. The PR values in
different events or situations with LUT, BRAM and DSP slice were as follows: obstacle
identification 38%, 52% and 46%; obstacle avoidance 48%, 60% and 56%; behavioral control
mechanism 44%, 52% and 48%. The PR impacts static power consumption as mentioned
in Figure 9b; general flow uses 2.4 watts, whereas PR flow uses an average of 1.8 watts,
individual module power consumptions are obstacle identification 1.65 watts, obstacle
avoidance 1.95 watts and behavioral control 1.8 watts. These data were captured using the
Xilinx Power Estimator (XPE) and Vivado tool.

3.2. Experimental Results

The multi-robots were designed using a CAD model that is suitable for indoor envi-
ronment services. In this study, four non-holonomic robots were used for the experimental
validation of multi-robot obstacle avoidance using the formation and deformation of the
robots’ approach. The robots’ mechanical hardware consisted of three levels of circular
plates, and the ground level in the robot was established with two 24 V/7 A batteries. The
intermediate level comprised computational devices and sensors. The ultrasonic sensors
were positioned on the four sides of the robot, and two other sensors were positioned
between the front and the right and left sides.
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Two stepper motors were interfaced to each robot for both sides with wheels as illus-
trated in Figure 10a,b. Servo motors were positioned under the sensors, which are useful
for the estimation of object orientation. The top layer was used for service applications,
such as carrying food and other materials.

The FPGAs were powered by batteries using a 7805-voltage regulator. Stepper motors
were powered with two 24 V/7-amp batteries (coupled in series to generate 24 V). The
flock between robots was performed based on their dimensions, as shown in Figure 10b.
The robots were localized to the boundary and maintained distances Xd and Zd. The other
robots maintained the distance between the boundary robots as a delta. The distance
between the flocks was maintained at 1 to 1.5 × the robot diameter in all directions, and
it made sense to perform kinematic movements of the mobile robots. Every angular
movement and distance were computed using an algorithm based on CORDIC.

The proposed research has two sets of experimental results: The initial method presents
obstacle identification, obstacle avoidance and behavioral control, which allows the robot
flock group to transition from formation to deformation and reform into a linear formation
flock group. The other method involves identification of the obstacle with its orientation,
which performs respective obstacle avoidance. At the same time, behavioral control
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transitions from linear formation mode to deformation with decentralization obstacle
avoidance and finally reaches the flock group.
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Figure 10. (a) Mobile robot experimental setup. (b) Multi robot flock.

• Experimental results of multi-robot obstacle identification and avoidance

Figure 11a–f illustrates experimental validation for the obstacle identification and
avoidance of the multi-robots. According to the algorithm, the foremost action among the
robots is the identification of their role based on the location in the flock group using the
behavioral control module. The front-line robots lead their respective side and the back-line
robots act as followers in the flock group. Figure 11a presents the leader robots analyzing
the object type and its orientation, which is communicated to their team members as shown
in Figure 3b. The robots transition from formation to deformation and perform obstacle
avoidance with a distributed approach, as illustrated in Figure 11b–e. Obstacle avoidance
was performed with Algorithm 2 and using the architectures shown in Figures 6 and 7.
This obstacle avoidance was performed using the Bug2 approach; our proposed integration
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of the soft odometer was designed to achieve successful obstacle avoidance. Figure 11f
presents an environment that is blocked on both sides with a narrow free space between the
objects. This is another state-of-the-art aspect of the multi-robot behavioral control switch
from deformation to linear formation (robots move back-to-back based on their respective
role or approach).
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Figure 11. (a–f) Experimental results of obstacle identification and avoidance by multi-robots.

In Figure 11f, the four robots fulfilled their role until there was a maintained delay
to avoid collisions between them. Figure 12a–h provides snapshots of the experimental
results of the multi-robots moving from linear formation to deformation, before reaching
the flock group rendezvous and returning to formation.

• Experimental results of multi-robot identification of oriented objects and avoidance.

In this process, as shown in Figure 3b at node c, the robots identify the object with an-
gular orientation; they perform obstacle avoidance using the PE_21 and PE_22 architectures
mentioned in Figures 6–8. The robots moving on the right side of the object move parallel to
the wall as wall followers, and on the other side, the robots take a perpendicular approach.
Once the robots reach the end of obstacle avoidance (after odometer −−), the leader robots
move forward and create space for the followers to satisfy the flocks’ roles by restoring the
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formation among the robots. This dynamic and varied object-based obstacle avoidance
is successfully performed using FPGA-based robots and PR flow. Experimental valida-
tion provided in the public link: https://www.youtube.com/watch?v=KmKvLk-DJOw
(accessed on 11 October 2023).
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Figure 12. (a–h) Experimental results of obstacle identification with orientation and avoidance by
multi-robots.

Table 2 presents a comparison of the various methods employed in the field of multi-
robot obstacle avoidance. The parameters are considered based on how essential they are
for obstacle avoidance. Various sensory approaches have been addressed by the researchers;
the proposed approach took ultrasonic sensors into account to avoid resource issues in
FPGA implementation. The vision-based obstacle avoidance methods require higher FPGA,
which is more costly and creates computational issues such as pose estimation. Optimized
algorithms are required for vision-based obstacle avoidance in the future. Based on the
comparison to other methods, for the proposed method, we selected FPGA and partial
reconfiguration flow for better results, as presented in Table 1. Multi-robot behavioral

https://www.youtube.com/watch?v=KmKvLk-DJOw


Sensors 2023, 23, 9480 17 of 20

control reforming approaches also feature in this table as formation-to-deformation (or vice
versa)-based event conditions.

Table 2. Comparison of multi-robot obstacle avoidance with relevant research methods.

Reference
Papers

Sensory Approach
Algorithm Hardware Pros Cons

Method Fusion

[26] RGB-D camera X Multi-attribute
decision making CPU Reinforcement

learning (RL)
Limited to
simulation

[27] Virtual force X Hybrid force/
position CPU Fuzzy adaptive

controller
Limited to
simulation

[28] LIDAR X Multi-robot collision
avoidance CPU Leader–follower

formation control
Higher power
consumption

[29] - X Nonlinear model
predictive control CPU Dynamic obstacle

avoidance
Limited to
simulation

[30] _ X

Dynamic obstacle
avoidance of

differential-drive
wheeled mobile robot

CPU
Skidding and

slipping analysis in
obstacle avoidance

Limited to
simulation

[11] Ultrasonic
sensor X Centralized obstacle

avoidance FPGA

Hardware schemes
for centralized
multi-mobile

robot’s
obstacle avoidance

Partial
reconfiguration not

part of the
hardware design

Proposed Ultrasonic
sensor

√
Centralization at

formation and
distribution at

deformation method
for obstacle avoidance

FPGA

Partial
reconfiguration-
based hardware

schemes are a
novel approach

Velocity-based
obstacle avoidance
will be addressed

in future

The experiments conducted with different perspectives in various environmental
scenarios to calculate the error rate of the proposed algorithm are tabulated in Table 3.
Obstacle identification in the angular orientation is the hot core of the proposed approach,
and the error rate is reduced to 3.8%. The error rate is much improved from node C to
node D when the flock of robots forms a linear shape as the formation approach changes
to a deformation approach and cross the obstacle in an odd-and-even-number sequence
method with 3.2%. At node D, the error rate is possibly reduced when the flock of robots
takes a deformation-to-formation approach. Figure 13 shows the statistical analysis of the
proposed algorithm, which enhances the efficiency of our algorithm in estimating the error
rate compared to previous approaches. In Table 2, X stands unavailable and

√
represent

available of sensor fusion.

Table 3. Ultrasonic sensor data fusion error rate at various scenarios.

Environment
Scenario Ultrasonic Sensor Data Fusion

Capture Sensory
Data Fusion @
Positive Rate

Error Rate

A
# Obstacle identification at normal orientation 98.2% 1.8%

$ Obstacle identification at normal orientation 99.4% 0.6%

B
# Linear formation at normal orientation 94.6% 5.4%

$ Linear formation at normal orientation 97.8% 2.2%

C
# Obstacle identification at angular orientation 78.8% 21.2%

$ Obstacle identification at angular orientation 96.2% 3.8%
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Table 3. Cont.

Environment
Scenario Ultrasonic Sensor Data Fusion

Capture Sensory
Data Fusion @
Positive Rate

Error Rate

Transmission
C to D

# Obstacle avoidance at angular orientation 79.4% 20.6%

$ Obstacle avoidance at angular orientation 96.8% 3.2%

D
# flock formation 86.4% 13.6%

$ flock formation 97.4% 2.6%
# Without servo motor integration, $ With servo motor integration.
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4. Conclusions

In this study, multi-robot obstacle avoidance was performed using hardware schemes
and a behavioral control mechanism. Obstacle avoidance depended on the identification
of obstacles and their orientation. Multi-robot flocks depended on their behavioral con-
trol mechanism, which allowed them to perform avoidance without colliding with other
robots, using formation and deformation along with decentralization methods to achieve
better results in multi-robotic fields. The integration of these methods was performed
with a reconfigurable computing device, FPGA, using partial reconfiguration flow. The
multi-robots performed obstacle avoidance with respect to any situation or event such
as flock formation, linear formation, and deformation. This article attempted to provide
experimental validation using FPGA-based robots. Each robot was competent in executing
the general FPGA flow and PR flow. The PR flow provided better results in the format of
LUT, BRAM, and DSP slice: obstacle identification of 38%, 52% and 46%; obstacle avoidance
of 48%, 60% and 56%; and behavioral control mechanism of 44%, 52% and 48%, respectively.
This represents state-of-the-art research by the integration of hardware schemes with PR
flow for behavioral-control-based obstacle avoidance. The PR impacts the static power
consumption in general flow by 2.4 watts, whereas PR flow uses an average of 1.8 watts.
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