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Abstract: Active mapping is an important technique for mobile robots to autonomously explore and
recognize indoor environments. View planning, as the core of active mapping, determines the quality
of the map and the efficiency of exploration. However, most current view-planning methods focus on
low-level geometric information like point clouds and neglect the indoor objects that are important for
human–robot interaction. We propose a novel View-Planning method for indoor active Sparse Object
Mapping (VP-SOM). VP-SOM takes into account for the first time the properties of object clusters in
the coexisting human–robot environment. We categorized the views into global views and local views
based on the object cluster, to balance the efficiency of exploration and the mapping accuracy. We
developed a new view-evaluation function based on objects’ information abundance and observation
continuity, to select the Next-Best View (NBV). Especially for calculating the uncertainty of the sparse
object model, we built the object surface occupancy probability map. Our experimental results
demonstrated that our view-planning method can explore the indoor environments and build object
maps more accurately, efficiently, and robustly.

Keywords: view planning; object active mapping; planning under uncertainty; sparse object model

1. Introduction

To better serve humans in coexisting human–robot environments, service robots
need to comprehend objects’ semantics and geometric information and to execute human
interaction commands, like “bring the cup” or “go to the side of the table”. Traditional maps
that only contain geometric landmarks, such as points, lines, and surfaces, cannot meet
the needs of human–robot interaction. Thus, the object map containing object models and
semantic labels is increasingly vital. Object landmarks in the map enrich the map’s semantic
information and enhance the robustness of robot localization. The types of object models
in object mapping in previous works can be divided into two categories: dense object
models and sparse object models. A dense object model’s surface is finely modeled using
elements like surfels or voxels, as seen in Co-fusion [1], MaskFusion [2], etc. Dense object
modeling costs massive computing resources and increases the costs of map construction
and maintenance. The detailed surface of the object needs further processing, to obtain the
object’s pose and size required for robot manipulation. As a result, a dense object model
cannot directly serve human–robot interaction. By contrast, sparse object models store
only the object’s center, orientation, and size. A sparse object model generally takes the
form of a cuboid or an ellipsoid and is constructed by multi-view geometry methods, such
as Cubeslam [3] and QuadricSLAM [4–6]. Sparse object models can also be calculated
directly by the bounding box of an object point cloud obtained by clustering the object’s
internal point clouds, such as EAO-SLAM [7], or extracted from SDF models of objects using
continuous signed distance functions [8]. Sparse object models require fewer computing
resources and can directly serve human–robot interaction.
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However, observation views in active mapping highly impact the quality of the sparse
object model. Firstly, objects, as individual and complete units, often extend beyond the
sensor’s Field of View (FoV). Also, indoor objects frequently overlap and occlude one
another. Therefore, a bad observation view can readily lead to incomplete object extraction
and incorrect object segmentation. Secondly, the perception view of indoor mobile robots
is limited by the robot’s movement trajectory, so the continuous observation of objects
is hard to realize, which leads to the issue of unobservability [9], increasing the risks of
erroneous data association and the probability of objects being erroneously deleted due to
insufficient observations. Continuous multi-angle observation of objects can mitigate the
unobservability, improve the accuracy of the object model, and reduce the estimation errors
in the size and depth of sparse object models. However, no view-planning method currently
targets indoor sparse object models. Therefore, exploring a view-planning method for
indoor sparse object models is critically important.

The Next-Best View (NBV) for active mapping is defined as the new view that of-
fers the richest information and the observation most-continuous with previous views.
The pose of the NBV is the position and orientation vector where the sensor acquires new
data. The classic view-planning method, as the core of active mapping, involves selecting
candidate views and calculating the NBV from these candidates. Previous view-planning
methods have mostly relied on low-level information, such as the map frontier [10,11] and
the grid occupancy probability [12]. Object information has been neglected or has only
been used in the form of object surface deficits, which is unsuitable for sparse object models.
Notably, such sparse object models only contain size and pose information and cannot be
directly integrated into the view-evaluation function. Furthermore, indoor objects are often
arranged randomly: thus, they form multiple object clusters in coexisting human–robot
environments. The traditional methods do not take into account the characteristics of
objects in real indoor scenes. For example, they select candidates around individual objects.
Finally, the traditional methods focus only on the endpoints of exploration and neglect
each position during movement, leading to the problem of unobservability.

This paper proposes a novel View-Planning method for indoor Sparse Object Mapping
(VP-SOM) based on information abundance and observation continuity. VP-SOM aims to
solve the view-planning problem of sparse object models in coexisting human–robot scenar-
ios. We first studied the characteristics of objects in coexisting human–robot environments.
We propose the concept of the object cluster, to take into account the uses and activity
attributes of different objects. NBVs are divided into the Global Best View (GBV), which
aims to explore more information, and the Local Best View (LBV), which aims to observe
object clusters continuously. We developed a view-evaluation function incorporating the
uncertainty of the object model, the observation Line of Sight (LoS), non-occlusion, and the
effects of data association. In particular, we built an object surface occupancy probability
map, to incorporate sparse object models conducive to human–robot interaction into the
view-evaluation function.

In summary, we made the following contributions:

• We propose a view-planning method for indoor object active mapping, including the
selection of candidate views and NBVs.

• We propose a view-evaluation function for sparse object models, to ensure the infor-
mation abundance and observation continuity of objects.

• We validated our method through the accuracy, precision of object maps, and observa-
tion efficiency in the simulation environments.

The rest of the paper is organized as follows. Section 2 discusses related work about
information-entropy-based methods and object-based methods. Section 3 presents our
view-planning method for indoor sparse object mapping, including the view-evaluation
function, GBV, LBV, and termination condition. Sections 4 and 5, respectively, explain the
two components of the view-evaluation function. Section 6 constructs the active mapping
system based on VP-SOM. Section 7 contains the experimental results between VP-SOM
and two other view-planning methods.
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2. Related Work
2.1. Information-Entropy-Based Methods

Information entropy, as proposed by Shannon [13], provides a measure of uncertainty
that can be used to evaluate the uncertainty in maps. View-planning methods based
on information entropy tend to select views as the NBV that most rapidly reduces map
uncertainty. Therefore, information gain, which means the reduction in information entropy,
becomes an important indicator in the view-evaluation function for these approaches.

Early work [10,11] used the map frontier and the reachable space of robot motion as
candidate views. Based on these methods, Bourgault et al. [14] first introduced the entropy
of the map and robot pose into the view-evaluation function. The map entropy is calculated
by the occupancy probability of a grid map, and the robot pose entropy is determined from
the covariance matrix of robot pose estimates from particle filter-based SLAM.

To characterize pose entropy in a graph-based SLAM system, Carrillo et al. [15]
attempted employing the Renyi entropy. Subsequently, Isler et al. [16] extended the entropy-
based method into 3D space. They used the occupancy probability of each voxel in OctoMap
to calculate their information entropy and considered factors such as the camera FoV and
the object occlusion by assigning different weights to different voxels. Wang et al. [17]
applied this 3D method to large-scale industrial scenes. Zheng et al. [18] introduced
semantic segmentation entropy of the environment, which is measured by the semantic
labels of voxels and their corresponding confidence probability in semantic segmentation.

Similar to information-entropy-based methods, the Theory of Optimal Experimental
Design (TOED) can also be used to account for the utility of performing the active mapping
action, and each action is considered as a stochastic design, while comparisons among
designs are made using their associated covariance matrices via the optimality criteria,
including A-opt, D-opt, and E-opt. The work in [19,20] discussed the general relation-
ship between optimality criteria and connectivity indices when using TOED for active
Graph-SLAM.

Like the methods mentioned above, this paper also employed information entropy
to evaluate the view and the effect of the object map. Unlike 2D/3D occupancy grid
maps with grid/voxel occupancy probabilities, which can be directly used for entropy
calculation, sparse object models only contain simple size and pose information. Therefore,
we constructed a surface occupancy probability map and inverse sensor model for such
sparse object models.

2.2. Object-Based Methods

Object-based view-planning methods can be divided into model-based and model-free
methods. Model-free methods can be further divided into volumetric-based and surface-
based methods [21]. Their application depends on how the object is modeled. Model-based
methods [22,23] rely on prior knowledge of the object’s geometry or appearance. Model-free
methods are more general and can adapt to the various needs of object mapping. Surface-
based methods are effective when the object model is composed of curves or surfaces,
such as triangle mesh modeling [24], ellipsoidal surface fitting [25], or cross-sectional B-
spline fitting [26]. Under the assumption of spatial continuity, surface-based view-planning
methods can predict the invisible parts of the object surface by boundary detection and
surface trend analysis.

The volumetric model method is commonly used in current object mapping, i.e., octree,
TSDF, and cube. Therefore, volume-based methods are more popular in view planning.
In the early stages, Wong et al. [27] selected the view from which the largest number of
unknown voxels of the object can be seen as the NBV. Dornhege et al. [28] extracted the
boundary from the map based on the occupancy status of the voxels as the NBV. Currently,
volume information gain is predominantly used. Isler et al. [16] summarized and compared
five commonly used Volume Information (VI) calculation methods in object mapping,
including occlusion aware VI, which considers voxel occlusion, unobserved voxel VI,
which tends to explore unknown areas, rear side entropy VI, which tends to go to the back
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side of the object, etc. Monica et al. [29] extended frontier exploration to the TSDF model.
Wu et al. [30,31] considered cube models as a whole and projected points inside the object
onto surfaces, constructing a surface grid map of which the surface grids’ information
entropy can represent the completeness of the object models.

Most object-based methods focus on individual objects or a singular object cluster [32],
inadequately addressing complex indoor environments’ realities. To overcome this limita-
tion, we optimized the selection of candidate views and categorized the NBVs as LBVs and
GBVs. Additionally, we propose a view-planning method based on sparse object models.

3. View-Planning Method for Indoor Sparse Object Mapping

The view-planning method is a core component of active mapping, with two main
parts: candidate view selection and NBV evaluation. We propose a novel View-Planning
method for indoor Sparse Object Mapping (VP-SOM) based on information abundance
and observation continuity, as shown in Figure 1a. First, our method takes into account the
properties of the object cluster. Indoor objects tend to be grouped into multiple clusters. We
define an object cluster as a collection of one background object and multiple foreground
objects. Background Objects (BOs) refer to large, static/semi-static, hard-to-move objects,
e.g., a table, a sofa, or a cabinet. Background objects are commonly used as reliable
landmarks in dynamic SLAM [33] and life-long SLAM. Foreground objects refer to small
indoor objects whose positions are easily changeable, e.g., a cup, a book, or a computer.
Generally, the background object provides a supporting plane for foreground objects.
Objects within a cluster interact with each other during mapping, so we selected candidate
views around object clusters and evaluated candidate views at the cluster level. Second,
our method aims to address the unobservability problem. In addition to information
abundance from candidate views, we considered observation continuity between adjacent
views. This helped ensure all objects received sufficient, persistent observations throughout
mapping to reconstruct accurate models.

Global Best View

Local Best View

Object Map

& robot pose 
Select Global Candidates

(b)

Sparse object model GBV

Moving direction of robot Moving trajectory of robot 
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Figure 1. View-planning method for indoor sparse object mapping. (a) The workflow of VP-SOM;
(b) a round of view planning.

Figure 1a shows the workflow of VP-SOM, including: the view-evaluation function,
global best view, local best view, and termination condition. As shown in Figure 1b, one
global best view and multiple local best views constitute a round of view planning in the
active mapping. The robot moves from its starting position to the GBV. It continuously
adjusts the sensor towards the LBVs using the sensor’s Degree Of Freedom (DOF) relative



Sensors 2023, 23, 9415 5 of 21

to the robot body. The generation process of the GBV includes the selection of global
candidate views and the selection of the GBV. The goal of the GBV is to obtain more
object information, to make up for objects’ information deficits and to improve the object
model’s quality. Considering the characteristics of object clusters in indoor environments,
the selection and evaluation of global candidate views will be processed at the level of the
object cluster. The system generates multiple global candidate views around the object
cluster by reading the map information and the robot’s pose. Then, the best candidate
view is selected from the candidate views as the GBV using the global view-evaluation
function. When there are multiple object clusters in the indoor environment, the system
continues to process the same object cluster until all objects of the current object cluster
are completely modeled. The GBV will be published to the robot’s motion module as the
navigation goal. Unlike traditional methods that only select an NBV during one round of
view planning and neglect each position during movement, our method will also constantly
generate local NBVs to adjust the sensor’s posture, as the map updates and the robot moves.
The generated NBV at the local position is called the local best view. The LBV-generation
process includes local candidate view selection and LBV evaluation. The goal of LBVs
is to ensure the continuous observation of objects, in order to optimize the quality of the
object model. The local candidate views are generated uniformly within the range of
activity of the sensor relative to the robot body. From these candidate views, the LBV is
selected using the local view-evaluation function. The LBV will be published to the motion
module to adjust the pose of the sensor. It is important to note that the view-evaluation
function is critical for selecting both the GBV and LBV. Since our goal was to build a sparse
object map of an indoor environment, it is essential that the view-evaluation function be
constructed based on the properties of sparse object models. Specifically, we conducted in-
depth research into the information abundance and observation continuity characteristics
of the sparse object models. These concepts were then integrated into the design of the
view-evaluation function. There are some differences between the global-view-evaluation
function and local-view-evaluation function. These differences cause the GBV and LBV to
have different functional focuses. When the robot reaches the determined GBV, one round
of view planning ends. At this point, we check if the termination conditions have been met.
If the object reconstructions are complete, view planning will terminate. Otherwise, a new
round of view planning will be executed.

Algorithm 1 shows the VP-SOM. The candidate view is defined as {pose, value}, where
pose is the pose of the candidate view and value is the evaluation value used for selecting
the NBV. The NBV is defined as {pose, type}, where type is the type of NBV (GBV or LBV).

3.1. View-Evaluation Function

The view-evaluation function serves to select the NBV from the candidate views.
Our view-evaluation function of the candidate view v, denoted as F(v), is v’s information
entropy calculated from the indoor sparse object models. The function is defined as:

F(v) = α · fa(v) + β · fc(v) (1)

The view-evaluation function F(v) consists of two parts: the object information abun-
dance fa(v) and the observation continuity fc(v). The weights of these two parts are
adjusted using α and β. The view with the maximum F(v) will be selected as the NBV from
the candidate views V.

NBV = arg max
vεV

(F(v)) (2)

fa(v) emphasizes obtaining more object information to quickly complete the object
model, while fc(v) concentrates on the quality of the continuous observations of objects
to minimize object mapping errors. Considering the different objectives and the real-time
requirements of the GBV and LBV, we chose different α and β values in the evaluation
function when selecting the GBV and LBV. We used a higher value of α (α = 1.0 and β = 0.2
in our experiments) in the evaluation function of the GBV, which makes the GBV focus
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on the object information abundance, so as to obtain information about the objects and
improve the object models faster and accelerate the speed of active mapping. The value of
β is higher in the evaluation function when selecting the LBV (α = 0 and β = 1.0 in our
experiments). The LBV only depends on the observation continuity. Therefore, the LBV
can be calculated in real-time based on changes in the robot’s position, reducing errors in
object modeling and robot localization. See Section 3.1 for more information.

fa(v) = ∑
f oεv

(Hsopm( f o) + HIoU( f o)) · cos(θsopm( f o)) · Casso (3)

where f o refers to the foreground objects within the field of view of candidate view v,
Hsopm( f o) is the uncertainty of f o, HIoU( f o) is the non-occlusion of f o, θsopm( f o) is the
angle deviation between f o’s best observation LoS and the view v, the Casso is the confidence
of the object–point cloud association.

fc(v) = Ncp · cos(θc) (4)

where Ncp represents the co-visibility proportion between the FoV of v and the object
cluster and θc represents the angle deviation between the object cluster’s best observation
LoS and the candidate view v. The above components of fa(v) and fc(v) will be detailed in
Sections 4 and 5.

Algorithm 1 VP-SOM.

Input: Object map M, robot pose P
Output: NBV

1: while Active mapping not end do
2: Sort object clusters OC by time
3: for oci in OC do
4: if oci not end mapping then
5: Generate global candidates GV around ogi
6: for v ∈ GV do
7: v.value = F(v)
8: end for
9: break

10: end if
11: end for
12: GBV = v in GV with max value
13: Publish GBV
14: while P 6= GBV.pose do
15: Generate local candidates LV in DOF of sensor
16: for v ∈ LV do
17: v.value = F(v)
18: end for
19: LBV = v in LV with max value
20: Publish LBV
21: end while
22: end while

3.2. Global Candidates and Global Best View

Lines 2–13 outline how to select global candidate views and the GBV. The GBV aims
to explore unknown spaces and perceive more object information, enabling faster object
mapping. Consequently, the weight of fa(v) in the evaluation function for the GBV is
greater. As illustrated in Figure 2a, N candidate views are sampled uniformly around the
object cluster, which is not fully modeled while maintaining a safe distance. The LoS points
to the center of the object cluster. Based on (2), the GBV is selected and published as the
robot exploration’s endpoint.
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GBV
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Figure 2. Candidate views and NBV. (a) Global candidate views and GBV; (b) local candidate views
and LBV.

3.3. Local Candidates and Local Best View

Lines 14–21 describe how to select local candidate views and the local best view
(LBV). LBVs are periodically generated when the robot moves towards the GBV. The LBV
focuses on maintaining the continuous observation of the current object cluster, which helps
improve mapping accuracy and reduce mapping errors. Therefore, the weight of fc(v) in
the evaluation function for the LBV is greater. As depicted in Figure 2b, M candidate views
are uniformly sampled within the sensor’s motion range. By (2), the LBV is selected and
published to adjust the sensor’s pose.

3.4. Termination Condition

The modeling of a foreground object f o is considered complete when its uncertainty
Hsopm( f o) is less than a set threshold εsopm. The modeling of an object cluster OC is
determined to be finished once all of its constituent foreground objects have been completed.
View planning terminates when all object clusters have been completed.

4. Evaluation on Information Abundance

The object information abundance fa(v) is used to evaluate the quantity and quality
of object information in the candidate view v’s FoV. A higher fa(v) indicates a view that is
likely to provide more-complete and -accurate observations of objects, thereby accelerating
the completion and reconstruction of object models.

4.1. Model Uncertainty Hsopm

The higher the model uncertainty Hsopm is, the less complete the object model. To com-
pute Hsopm as the information entropy, we constructed a surface occupancy probability
map (Figure 3), which represents the occupancy probability of each grid on the object
model surface. The surface occupancy grid map revolves around the object model and is
divided into (n × m) grids. The map shape can be cylindrical, spherical, hemispherical,
etc., depending on the degrees of freedom of the sensor relative to the robot. The grid
occupancy probabilities will be updated based on the new observations.

Based on the occupancy probabilities p of the grids, grid states can be classified into
three states:

• Unknown: The grid is not observed, and p = 0.5. This state is represented by the
gray grid.

• Occupied: The grid is occupied by points, and p > 0.5. This state is represented by
the deep-colored grid.

• Free: The grid is observed, but not occupied, and p < 0.5. This state is represented by
the light-colored grid.
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Z
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Y

Roll

(c)
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Figure 3. Various types of object surface occupancy probability map. (a) Object with 6 degrees
of freedom and internal points; (b) cylindrical shape, suitable for camera platforms with x, y, z,
and yaw DOFs, e.g., ground robot; (c) hemispherical shape and (d) spherical shape, suitable for
camera platforms with full degrees of freedom, e.g., a sensor mounted on a drone.

Initially, the occupancy probability p for all grids was set to 0.5, indicating an un-
known state. For illustration, we uses the cylindrical surface occupancy probability map
in Figure 3b to demonstrate the method for updating grid probabilities. Following [34],
at time t, the occupancy probability pt(g) of grid g is updated in the logarithmic form lt as:

lt(g) = log2

pt(g)
1−pt(g) (5)

The lt is updated as follows:

lt(g) = lt−1(g) + linv(g)− l0 (6)

where l0 equals 0 because p0(g) equals 0.5 at Time 0. linv(g) is the logarithmic form of the
inverse sensor model pt(g|zt).

linv(g) = log
pt(g|zt)

1−pt(g|zt)
2 (7)

pt(g|zt) refers to the occupancy probability of grid g given the sensor data zt at time
t. The traditional inverse sensor model [34] does not apply to sparse object models and
cannot be used to calculate linv(g). Therefore, we constructed an inverse sensor model
suitable for the sparse object model. We projected the inner points to the grids of the surface
occupancy probability map. The projection direction varies depending on the types of
object surface occupancy probability map. For the cylindrical shape, the projection direction
starts from the center z-axis of the object model along the horizontal rays. For the spherical
shape and hemispherical shape, the projection direction starts from the center of the object
model along the radius. Considering the mobile robots in the experiments, we used the
cylindrical object surface occupancy probability map to explain the inverse sensor model
in detail, illustrated in Figure 4. Each column of the surface grids corresponds to a different
observation angle. In Figure 4, inner points are projected into grids along the horizontal
rays from the center z-axis of the object model. sum(g) is the sum of projected points in
the column where grid g exists. np(g) refers to the number of projected points in grid g.
no(g) refers to the number of observations of grid g. The inverse sensor model is defined
as follows:

• If sum(g) < εn, the observation for g is unknown, and pt(g|zt) = pprior, no(g) = 0.
• If sum(g) > εn and np(g) > 0, the observation for g is occupied, and pt(g|zt) = pocc,

no(g) = np(g).
• If sum(g) > εn and np(g) = 0, the observation for g is free, and pt(g|zt) = p f ree. no(g)

equals the minimum observation number of occupied grids in the same column.
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Figure 4. Inverse sensor model for sparse object model.

εn is the minimum value required for valid observation and was set artificially. pprior,
pocc, and p f ree are consistent with the traditional inverse sensor model. According to (7)
and the inverse sensor model, linv(g) is computed. Then, (6) is transformed into:

lt(g) = no(g) · linv(g) (8)

pt(g) is computed by (5). The information entropy H(g) of each grid g is defined as:

H(g) = −p(g) · logp(g)
2 − (1− p(g)) · log1−p(g)

2 (9)

The model uncertainty Hsopm of the object f o equals the average information entropy
of all surface grids:

Hsopm( f o) = ∑
gε f o

H(g)/(N ·M) (10)

4.2. Deviation of Foreground Object’s Best LoS θsopm

When the object model has only been observed from a limited range of views, grids
with fewer observations tend to be unknown and to have higher uncertainty on the sur-
face occupancy probability map. To quickly complete the object model and reduce its
uncertainty, the NBV should point to unknown grid regions. We define lbest as the best
observation Line of Sight (LoS) for observing the foreground object, as shown in Figure 5.

lbest( f o) = ∑
gε f o

(c(g)− c( f o)) · H(g) (11)

where c(g) is the coordinate of grid g and c( f o) is the coordinate of f o’s center. The devia-
tion of the best LoS is defined as the angle between lbest( f o) and the LoS lv( f o) of candidate
view v pointing to the object f o.

θsopm( f o) = arccos
lbest( f o) · lv

|lbest( f o)| · |lv( f o)| (12)

4.3. Object–Point Cloud Association Confidence Casso

The point cloud inside an object is associated and gradually merged from multiple
observations and determines the quality of the sparse object model. Figure 6 shows the
merging between the new object points from the new observation (blue points) and the
existing or init points in the object (red points). They are judged to belong to the same object
by the association method, like the semantic label, IoU, nonparametric statistic tests [7],
nonparametric pose graph [35], etc. In reality, there are outliers in the point cloud and
errors in the observation due to the wrong semantic recognition and wrong point extraction.
Incorrect point cloud association would reduce the accuracy of the object map. Therefore, it
is extremely necessary to observe objects with potential erroneous point cloud associations
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at close range, enrich the internal correct object point, and remove outliers. To evaluate the
possibility of erroneous object point cloud associations, we designed an object–point cloud
association confidence Casso.

Figure 5. Deviation of candidate view and object’s best LoS for different types of object surface
occupancy probability map. (a) cylindrical shape; (b) hemispherical shape; (c) spherical shape.

Object

new point from 

the observation

existing point in 

the object model

New

Observation

New

Observation

Figure 6. Merging between new points from observation and existing points in the object model.

To verify whether points P from the new observation (blue points in Figure 6) and
existing points Q in the object model (red points in Figure 6) belong to the same object, we
adopted a hypothesis testing method. The null hypothesis H0 is defined as: the point cloud
P and the point cloud Q belong to the same object and have the same distribution. We
calculated the test statistic to verify whether the null hypothesis is true. Considering that
the point cloud distribution inside the object does not satisfy the normal distribution, we
adopted the multivariate Wilcoxon rank sum test method [36]. The three-dimensional coor-
dinates of the points in P and Q were used as the statistical data, and a multidimensional
Mann–Whitney statistic U was constructed. The effectiveness of the Wilcoxon rank-sum
test method for the point clouds of the sparse object model was verified in [7].

First, we merged two point clouds P and Q into one point cloud X = [P|Q] =[
p0, p1, . . ., pi, . . ., p|X|

]
, where pi represents a point from P or Q and |X| represents the

number of points in the set X. We ranked the points of X in the three x, y, z coordinate
dimensions according to the coordinate values from small to large, assigning a rank R to
each point. We calculated the rank sums Uj,k of P and Q, respectively, in the three x, y, z
coordinate dimensions.

Uj,k =
sum

∑
i=0

Rk{pi ∈ j}, j = [P, Q], k = [x, y, z] (13)

where Rk{pi ∈ j} represents the rank of pi from j in the kth dimension. We took the average
approach to construct the multidimensional rank sum statistic U:

U = min
(

UP,x, UP,y, UP,z

3
,

UQ,x, UQ,y, UQ,z

3

)
(14)

The mean and variance of X is calculated as follows:

µ(X) =
|P| · |Q|

2
(15)
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σ(X) =
|P| · |Q| · (|P|+ |Q|+ 1)

12
(16)

Normalize U to obtain Û:

Û =
U − µ(U)√

σ(U)
(17)

Calculate the probability value (p-value) p. The p-value p is a probability index used
in statistical hypothesis testing to judge whether the sample observation results support or
oppose the null hypothesis.

p = 2.0 ·
(

1− 0.5 · er f
(

1 +
Û
12

))
(18)

where er f () represents the error function, which is used to calculate the Cumulative
Distribution Function (CDF) of the Gaussian distribution and the probability density of the
normal distribution.

To make the null hypothesis stand, p should meet the following constraints:

p > a (19)

where a represents the significance level. We set a = 0.05 in this work. In summary, if p is
greater than the confidence level a, it is considered that the null hypothesis is true, and the
point cloud P in the new observation and the object point cloud Q in the object model
belong to the same object.

We constructed the object–point cloud association confidence Casso for all the object
models in the map.

Casso = 1− p (20)

where p is the p-value of the point cloud association in the object’s newest observation.
The closer Casso is to 1, the higher the possibility of errors in the point cloud fusion and the
higher the priority of observing this object.

4.4. Non-Occlusion HIoU

The occlusion of objects can easily lead to errors in object recognition and feature
extraction. We selected the view v that can fully observe each foreground object according
to its non-occlusion HIoU .

To calculate the non-occlusion HIoU of foreground object f oi in the field of view of
v, we projected f oi onto the image plane to obtain its 2D bounding box bi. We calculated
the IoU of bounding box between f oi and each other foreground object f oj. The closer
HIoU( f oi) is to 1, the less occluded f oi is.

HIoU( f oi) = 1−∑
j 6=i

bi ∩ bj

bi
(21)

5. Evaluation on Observation Continuity

The observation continuity fc was used to choose the NBV, especially the LBV, which en-
ables multi-angle continuous observation of indoor objects. This improves the quality of asso-
ciation between adjacent observations by achieving a more-continuous observation sequence.

5.1. Co-Visibility Proportion Ncp

The point cloud within objects is crucial not only for selecting the NBV, but also for
the quality of the object model. Thus, we propose a point co-visibility model, as shown in
Figure 7a. By maximizing the number of co-visible points ncp between the candidate view
and the object cluster tracked, we achieved better data association and improved the object
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mapping. The point p that meets the following four conditions is recorded as the co-visible
point, e.g., the green point in Figure 7a:

• The point p is inside the FoV of candidate view v;
• The point p is inside the object cluster tracked;
• The distance between point p and the candidate view is within the camera’s sensing

range, to ensure the performance of the point feature descriptors;
• The co-visibility angle θcp between the candidate view lv(p) and the old co-visible

LoS l(p) is less than the threshold θthresh. The old co-visible LoS l(p) is the mean LoS
of point p in the neighboring views.

Define the co-visibility proportion Ncp between the FoV of the candidate view and the
object cluster:

Ncp =

{
1, i f (ncp ≥ εcp)

ncp
εcp

, i f (ncp < εcp)
(22)

where ncp is the number of co-visible points and εcp represents the maximum number of
co-visible points, which was pre-set artificially. Ncp was constrained within the range of
[0, 1] to preclude it from expanding excessively.

Figure 7. View evaluation based on the continuous observation. (a) Point co-visibility model;
(b) deviation of object cluster LoS and view.

5.2. Deviation of Object Cluster’s Best LoS θc

We hoped that the robot continuously observes objects that have not yet been fully
modeled (the red cubes in Figure 7b). We considered the LoS from the robot to the centroid
of unmodeled objects as the best observation LoS lbest, of object cluster OC. Like (12), θc is
defined as the deviation between lbest and the candidate view LoS lv.

θc = arccocs
lbest · lv

|lbest| · |lv|
(23)

A lower θc enables more-continuous observation of the object cluster and also reduces
the fluctuations in adjacent observation view angles, thereby improving the accuracy of the
data association.

6. Active Mapping System Based on View-Planning Method for Indoor Active Sparse
Object Mapping

We developed an object active mapping system based on VP-SOM, illustrated in
Figure 8, to validate VP-SOM. The system comprises a sparse object mapping module,
a view-planning module, and a motion module. Together, these form a closed-loop for
incrementally exploring and mapping indoor objects. The view-planning module selects
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the GBV and LBV according to the existing sparse object map and our VP-SOM method
described in Section 3, then publishes them to the motion module. The motion module exe-
cutes the movement of the robot chassis and sensors based on the instructions. The sparse
object mapping module adopts a classic SLAM architecture for constructing a sparse object
map and estimating the robot’s pose within the map. Algorithm 2 delineates the workflow
of active mapping. The active mapping system cycles until no new NBV can be generated.

Point Cloud

Camera 

Pose Supporting Plane Sparse Object Map

Exploration Map Robot Pose

View Planning ModuleMotion Module
GBV & 

LBV

Global 

Path

vase

book1

laptop

cup1

book2

cup2

diningtable

keyboard

bottle1

bottle2

         Sparse Object Mapping Module

RGB & Semantics

Depth

Figure 8. Active mapping system based on VP-SOM.

Algorithm 2 Active mapping based on VP-SOM

1: Initialize sparse object map M and robot pose P
2: NBV = VP-SOM(M, P)
3: while NBV not ∅ do
4: Move to NBV
5: Update M
6: NBV = VP-SOM (M, P)
7: end while

The inputs of the sparse object mapping module consist of RGB images, depth images,
and object semantic detections. To model indoor objects, we extracted point clouds and
planes from the inputs and endowed them with semantic information. We then fused
the point clouds belonging to the same object to form an object point cloud based on
the semantic tags and the hypothesis testing method described in Section 4.3. For the
foreground objects, we estimated their translation and size from their object point clouds.
The point clouds within the background object tend to be highly scattered. For background
objects, we approximated the space between their supporting plane and the ground as
their occupied space, to estimate their translation t and size s. We calculated the objects’
orientation θ using a line alignment method [7]. The sparse object model was parameterized
as O = {t, θ, s}. Finally, we jointly optimized the pose of the camera C, object O, and point
P by a nonlinear optimization problem:

Ĉ, Ô, P̂ = arg min
C,O,P

(
∑ H(FO) + ∑ H(FP)

)
(24)

where FO is the camera–object observation constraint and FP is the camera–point obser-
vation constraint. Both constraints were introduced in detail in [5,6]. Based on (24), we
calculated the poses and sizes of every object and constructed a sparse object map. We also
calculated the camera pose from which we can infer the robot pose.
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7. Experiment
7.1. Experiment Setup

In this section, we conducted experiments to evaluate our VP-SOM method. The sim-
ulation environment was constructed in Gazebo and contained three indoor scenes with
foreground objects (e.g., book, cup, computer) and background objects (e.g., table, chair),
as shown in Figure 9a. The robot platform was the FABO humanoid robot shown in
Figure 9a, equipped with a Kinectv2 RGB-D camera installed on its head. The robot can
obtain RGB and depth images from the RGB-D camera and extract object semantics using
YOLOv5 [37]. As FABO’s neck has a 360◦ rotation range, the camera has four degrees of
freedom. Since navigation was not our focus, we utilized the Robot Operating System
and Cartographer’s pre-built 2D grid map. Our code and simulation environments are
open-sourced at https://github.com/TINY-KE/VP-SOM (accessed on 16 November 2023).

(b) (c) (d)

(a)

robot

chassis

RGB-D camera

neck
vase

cup

book bottle

desk1

desk2

chair

laptop

mouse

cup

robot

chassis

RGB-D camera

neck
vase

cup

book bottle

desk1

desk2

chair

laptop

mouse

cup

Figure 9. Experimental environments and robot platform. (a) the components of experimental
environments and robot platform; (b–d) three types of simulation environments.

Except for our VP-SOM method, we selected two other view-planning methods for
comparison: all-views’ coverage and frontier exploration:

• VP-SOM: We applied Algorithm 1 to generate the GBVs and LBVs and directed the
robot to autonomously explore the indoor environment. The robot navigated to the
GBVs using its chassis navigation. Simultaneously, the robot continuously rotated its
neck to align the camera with the LBVs. Foreground object mapping ended when the
model uncertainty was less than 0.42.

• All-views’ coverage: The robot walked a complete circle around every object cluster,
while its top camera constantly pointed at the center of the current object cluster,
ensuring coverage of all observation angles of the object cluster. Every view on the
observation trajectory of this method can be considered as one LBV. This method
ended when the robot revolved around each object cluster once.

https://github.com/TINY-KE/VP-SOM
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• Frontier exploration: According to [10], frontiers of 3D point cloud were used as GBVs
to guide robot exploration of the indoor environment. This method ended when there
are no more reachable frontiers in the map.

We conducted five experiments for each of the three methods in every simulation
environment in Figure 9b–d. Figure 10 depicts the results of the sparse object maps and
observation trajectories generated by the three methods in the parts of the experiments.
In Figure 10, each colored cube represents an object, with its geometry indicating the
object’s pose and size and its color indicating its semantic type. The black cubes denote the
ground-truth objects extracted from the simulation environment. The ground-truth objects
can be used to evaluate the accuracy and precision of the sparse object maps. The blue
pyramids represent the local best view of each method, while the red pyramids represent
the GBV.

VP-SOM All-views coverage Frontier exploration

Groudtruth of object GBV LBV Moving Trajectory of Robot Sparse object model

Home 1

Home 2

Home 3

View Planning Method
Environment

Figure 10. Results of sparse object map and observation trajectory.

The following will discuss the three types of methods in terms of the sparse object
map and observation trajectory.

7.2. Sparse Object Map

The objective of object active mapping is to autonomously build an object map without
human intervention. Therefore, we evaluated each method based on the accuracy and
precision of the generated object maps. The evaluation metrics were as follows:

• Precision: An object was considered to be accurately modeled if its semantic label
matched its ground-truth and the center distance was less than 0.1m. Precision is the
ratio of the number of correct models nsucc to the total number of models nmodel .
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• Recall: Recall is the ratio of the number of correct models nsucc to the total number of
ground-truths ngt.

• IoU: Align the centers and orientations of the object model and its ground-truth, then
calculate their 3D IoU, which reflects the size accuracy of the object model.

• Center Distance Error (CDE): the center distance (in meters) between the object model
and its ground-truth.

Table 1 displays the evaluation results of the sparse object maps by the three methods.
Our method significantly improved the accuracy and precision of the object maps compared
to the other methods.

Table 1. Comparison of sparse object map. VP-SOM, Cover, Frontier denote proposed VP-SOM, All-
views’ coverage, Frontier exploration, respectively. Scene 1–3 corresponds to Figure 9b–d, respectively.
Bold numbers represent the best performances.

Scene Metrics VP-SOM Cover Frontier

1

Precision 0.90 0.50 0.38
Recall 1 1 0.67

IoU 0.769 0.558 0.590
CDE(m) 0.041 0.084 0.113

2

Precision 0.79 0.64 0.41
Recall 1 0.82 0.63

IoU 0.789 0.562 0.728
CDE(m) 0.089 0.127 0.103

3

Precision 0.59 0.45 0.35
Recall 0.91 0.82 0.73

IoU 0.795 0.647 0.401
CDE(m) 0.052 0.062 0.534

Ave

Precision 0.76 0.53 0.38
Recall 0.97 0.88 0.68

IoU 0.784 0.589 0.573
CDE(m) 0.061 0.091 0.250

Our method took into account indoor characteristics and object information abun-
dance, which ensured that most objects received sufficient observation. The frontier explo-
ration method ignored objects, resulting in poor and insufficient object observations. Its
accuracy and recall were the lowest (50.0% and 29.9% lower than ours). Although all-views’
coverage guaranteed the complete observation of the indoor objects, it did not consider the
quality of information, so its accuracy and recall were 30.1% and 9.3% lower than ours. Our
method acquired less-erroneous information through non-occlusion and more-accurate
information by increasing the observations of complex regions and objects (such as the
bottles and notebook in Figure 10 of Home 1).

In addition to higher-quality data, our method improved the data association through
observation continuity, making object poses and sizes more accurate. Our 3D IoU was
33.1% and 36.8% higher than all-views’ coverage and frontier exploration, respectively,
and the CDE was 32.9% and 75.7% lower than them.

7.3. Observation Trajectory of Active Mapping

On the basis of ensuring the accuracy and precision of the object map, the observa-
tion process of object active mapping should be efficient and robust. We evaluated the
observation trajectories of each method based on the following metrics:

• Trajectory length: The distance traveled by the robot’s chassis from the start to the end
of active mapping.

• Object non-occlusion degree: Calculate the average non-occlusion degree of the objects
from all NBV perspectives according to (21).
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• Number of localization failures: When visual localization failed in SLAM, we let the
robot keep moving until successful relocalization. If the time interval between failure
to localize and successful relocalization exceeded 1s and the distance exceeded 0.3 m,
the number of failures increased by one.

Table 2 displays the evaluation results of the observation trajectories generated by
the three methods in the three experimental scenarios. In terms of the trajectory length,
while frontier exploration was the shortest, it did not focus on observing objects, leading to
terrible object mapping results. Compared to all-views’ coverage, our method reduced the
trajectory length by 17.1% while ensuring map quality.

Table 2. Comparison of observation trajectory. VP-SOM, Cover, Frontier denote proposed VP-
SOM, All-views’ coverage, Frontier exploration, respectively. Scene 1–3 corresponds to Figure 9b–d,
respectively. Bold numbers represent the best performances.

Scene Metrics VP-SOM Cover Frontier

1

Length of path 10.39 12.05 8.58
Cost time 248 295 273

Non-occlusion 0.631 0.426 0.279
Localization failure 3 4 7

2

Length of path 17.94 21.22 11.25
Cost time 385 463 472

Non-occlusion 0.601 0.519 0.200
Localization failure 7 9 14

3

Length of path 18.80 23.62 19.55
Cost time 664 830 807

Non-occlusion 0.464 0.383 0.239
Localization failure 5 6 13

Ave

Length of path 15.71 18.96 13.13
Cost time 432 529 517

Non-occlusion 0.565 0.443 0.239
Localization failure 5 6 11

The object non-occlusion degree of our method was 56.5%, which was 27.7% higher
than all-views’ coverage, which is one of the reasons why our method reduced the wrong
observations and improved the data quality. Our average number of localization failures
was 20.6% and 55.8% lower than the other two methods, because our continuous, robust,
and accurate observations ensured SLAM safety. When the robot lost its localization, it
needed to rotate or draw back to relocalize, which cost much time. Therefore, our method’s
cost time was less than the other two by 28.34% and 16.44%, respectively, despite our
trajectory not being the shortest.

As is evident from Figure 10, the active mapping’s observation trajectory generated by
our method prioritized objects that were challenging to model and viewed with less object
occlusion. Hence, the robot did not have to fully circle the object clusters, thereby saving
exploration time and distance. Simultaneously, the high-quality observation information
enhanced the robustness and safety of localization.

7.4. The Role of Each View-Evaluation Item

To better understand the role of each term in the view-evaluation function (1), we
demonstrate and analyze the intermediate dataof each view-evaluation item when choosing
the GBV and LBV in Figure 2.

When choosing the GBV, VP-SOM selected 36 candidate views (Figure 11 shows parts
of the candidates) around the background objects and calculated the model uncertainty
Hsopm, the deviation of the best LoS θsopm, the object–point cloud association confidence
Casso, and the non-occlusion HIoU for each object (shown around the object model) within
the field of view of the candidate views. We also calculated the co-visibility proportion
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Ncp and the deviation of the object cluster’s best LoS θc for the current background object.
According to Equation (1), the evaluation value F(v) of each candidate view v was cal-
culated. The candidate view with the highest evaluation value was selected as the GBV.
In Equation (1), we applied α = 1.0 and β = 0.2, such that the GBV tended to focus on the
information richness, in order to acquire the object information and complete the object
models faster. At this stage of active mapping, most objects were basically completed,
except Bottle 1, Cup 1, and Cup 2 with uncertainties of 0.849, 0.796, and 1.000, respectively.
Therefore, candidate views that can observe and supplement these three objects with the
best observation angle and minimum occlusion received a higher information abundance
evaluation value. Considering that the deviation of the best LoS for Cup 2 of the candidate
in Figure 11b was bad, the system chose the candidate in Figure 11d as the GBV, which had
a good observation view for Bottle 1. Nonparametric tests were used to merge the internal
point clouds of the objects during the object modeling, and the significance level was set
to 0.05, so the object–point cloud association confidence Casso was above 0.95, with little
impact on the evaluation value F(v).
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0.251/0.866/  

0.992/1.000 

bottle1:0.849/0.864/0.974/0.85  
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0.251/0.313/
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book2:
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(b)

FoV of 

sensor

Figure 11. Intermediate data during the global candidate view evaluation. (a–d) demonstrate the
evaluation process of four global candidate views. The object’s model uncertainty Hsopm, deviation
of the best LoS θsopm, object–point cloud association confidence Casso, and non-occlusion HIoU are
shown around the object model. The co-visibility proportion Ncp, the deviation of the object cluster’s
best LoS θc, and the final evaluation value F(v) are displayed below the each image. Some objects
with significant modeling deviations are not displayed in the object map. The red view in (d) with
largest evaluation value is GBV.

When choosing the LBV, the system selected 18 candidate views (Table 3 only shows a
part of the candidates) within the range of activity of the sensor relative to the robot body
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and calculated the co-visibility proportion Ncp and the deviation of the object cluster’s best
LoS θc for the current background object. The evaluation value of each candidate view
F(v) was calculated. The candidate view with the highest evaluation value was selected
as the LBV. For the LBV selection, we applied α = 0 and β = 1.0 in Equation (1) such
that the LBV depended entirely on the observation continuity. Robot localization relies on
object SLAM, and the continuous observation of the object can improve the robustness of
object SLAM and reduce the number of localization failures. Moreover, the LBV needs to
be calculated in real-time by the changes of the robot’s position, while the computation of
the information abundance was somewhat slow and did not meet real-time requirements
during fast robot movement.

Table 3. Intermediate data during the local candidate view evaluation. Local candidate 1–7 are parts
of the local candidate views. Evaluation value is the evaluation result computed by Equation (1).
Bold number represent the largest value. The candidate view corresponding to the bold number
is LBV.

Local Candidate 1 2 3 4 5 6 7

Ncp 0 0.073 0.637 0.9 1.383 0.773 0.133

θc −0.494 0.111 0.413 0.674 0.979 0.994 0.739

Evaluation value 0 0.008 0.263 0.607 1.354 0.768 0.098

8. Conclusions

In summary, we proposed a view-planning method for indoor sparse object mapping
based on information abundance and observation continuity during active mapping. This
approach is well suited for coexisting human–robot environments by taking into account
for the first time the properties of object clusters. Our view-planning method incorporates
a view-evaluation function, a global best view selection, a local best view selection, and a
termination condition. In particular, we constructed an object surface occupancy probability
map and a point co-visibility model for sparse object models to incorporate them into the
view-evaluation function. Multiple experiments in indoor environments were conducted
to verify our method. By the comparison of the object maps and observation trajectories,
the experimental results showed that our method guided the indoor object active mapping
more efficiently and accurately.

For future work, we plan to expand the mapping scenario to multiple interconnected
rooms and focus on improving the efficiency of multi-room exploration. We will apply our
view-planning method to other robotic platforms like robotic arms and drones, integrating
it with motion planning to enhance the overall performance of active mapping. We also
intend to continue our in-depth research on information abundance and observation conti-
nuity to adapt the approach to more-complex object models, such as those represented by
DeepSDF [8]. This will allow us to map environments with a wider variety of object shapes.
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