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Abstract: This study reports on the successful use of a machine learning approach using attenuated
total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy for the classification and
prediction of a donor’s sex from the fingernails of 63 individuals. A significant advantage of ATR FT-
IR is its ability to provide a specific spectral signature for different samples based on their biochemical
composition. The infrared spectrum reveals unique vibrational features of a sample based on the
different absorption frequencies of the individual functional groups. This technique is fast, simple,
non-destructive, and requires only small quantities of measured material with minimal-to-no sample
preparation. However, advanced multivariate techniques are needed to elucidate multiplex spectral
information and the small differences caused by donor characteristics. We developed an analytical
method using ATR FT-IR spectroscopy advanced with machine learning (ML) based on 63 donors’
fingernails (37 males, 26 females). The PLS-DA and ANN models were established, and their
generalization abilities were compared. Here, the PLS scores from the PLS-DA model were used
for an artificial neural network (ANN) to create a classification model. The proposed ANN model
showed a greater potential for predictions, and it was validated against an independent dataset,
which resulted in 92% correctly classified spectra. The results of the study are quite impressive,
with 100% accuracy achieved in correctly classifying donors as either male or female at the donor
level. Here, we underscore the potential of ML algorithms to leverage the selectivity of ATR FT-
IR spectroscopy and produce predictions along with information about the level of certainty in a
scientifically defensible manner. This proof-of-concept study demonstrates the value of ATR FT-IR
spectroscopy as a forensic tool to discriminate between male and female donors, which is significant
for forensic applications.

Keywords: ATR FT-IR spectroscopy; machine learning; artificial neural network (ANN); partial
least-square discriminant analysis (PLS-DA); male; female

1. Introduction

Forensic Onychology (Greek Onuks = nail; Logia = study of), the study of fingernails
and toenails, has the potential to offer crucial insights to determine the individuality of
a person in criminal investigation [1]. Human phenotype profiling comprises a set of
critical characteristics that can be used to narrow down a potential suspect list against a
crime [2]. During the last few decades, both fingernails and toenails have become very
beneficial specimens for the detection of chemical substances, toxic materials, or drug
use and abuse [3–5]. Nails serve as valuable tissue specimens for human identification
as they retain discrete details of genetic information [1,6,7]. Fingernails are a reservoir
of keratin fibers for catching and trapping drugs [1,5,7], alcohol biomarkers [5], diet [1],
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explosive residues [1,6], or various pollutants. Conventionally, blood and serum are the
most common and useful specimens for phenotyping, diagnosis, and drug detection [8].
The increasing popularity of screening programs has led to a need for alternative human
tissue specimens that exhibit adequate sensitivity and specificity in detecting their intended
target. Nails have become an excellent alternative tissue specimen due to their low cost,
easy storage and transportation, sample size and sample process, and non-invasive and
non-destructive nature [8–11].

Chemically, human fingernails are composed of proteins (keratin), lipids (mostly
cholesterol), minerals (Cl, Ca, K, Na, Si, Mg, Zn, Fe, Al, Br, Cu), and water [12–14]. Nails
primarily consist of hard alpha-keratin, which is a fibrous protein. Environmental exposure
and genetic determinants [12,15–17] can influence trace elements and their composition
in nails. So far, research has focused only on a quantitative analysis of these organic and
inorganic chemical composition levels to differentiate gender/sex. In 2000, Rodushkin
et al. [16] studied elemental characterization to discriminate between male and female. They
revealed that males have higher levels of Na, K, and Mn and lower levels of bismuth and
silicon in comparison to females. Park and Kwon [15] conducted a comparative analysis
of the major mineral content between males and females. The study revealed that males
exhibit higher levels of nitrogen (N) and potassium (K) in comparison to females, while
females possess greater quantities of zinc (Zn), iron (Fe), chromium (Cr), and manganese
(Mn) when compared to males. Muddasani et al. [18] and Dittmar et al. [12] examined the
chemical profile of the keratinized nail matrix and the mineral composition of the nail plate.
The study by Dittmar et al. [12] found females to have a higher sulfur content than males,
but females exhibit a lower nitrogen–sulfur (N/S) ratio Despite higher sulfur levels in the
female nail matrix, males possess more alpha-keratin disulfide bonds and a greater quantity
of beta sheets in their nails at the amino acid composition level.It is hypothesized that the
application of nail polish and cosmetic treatments (pedicures and manicures) on nails by
females may block the alpha-keratin pores on their nails, which potentially impedes the
formation of disulfide bonds [19].

Sex determination based on a nail’s chemical composition analysis rather than through
a DNA approach is not very common. The most common instrumental techniques applied
for human nails’ chemical composition analysis include Fourier transform infrared spec-
troscopy (FT-IR), Atomic Absorption Spectroscopy (AAS), Neutron Activation Analysis
(NAA), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Laser-Induced Break-
down Spectroscopy (LIBS), Nuclear Magnetic Resonance (NMR), Raman Spectroscopy,
Gas Chromatography (GC), Liquid Chromatography (LC), High-Performance Liquide
Chromatography (HPLC), etc. [5,8,12,15,16,19]. All these techniques have been used for the
classification of sex based on chemical composition differences in nail keratin proteins. To
date, there has been only one study using fingernails for sex prediction without measuring
a nail’s chemical composition [8]. The aim of our study is to assess the applicability of
human nail samples for ATR FT-IR as an alternative to other methods for sex determina-
tion. Specifically, we are interested in whether the applied method has the potential to
differentiate male and female donors based on their nail clippings.

Recently, optical spectroscopies, such as fluorescence, infrared (IR), and Raman Spec-
troscopy, have been used in forensic science but are still very new [10]. Over the past
few decades, spectroscopic methods have become more popular since they can provide
information on the chemical-to-molecular level and have comprehensively been used to
investigate molecular structures, chemical bonds, and characterize the structural changes in
biomedical tissues due to the numerous advantages of spectroscopic methods like little or
no sample preparation, fast spectral measurements, their non-destructive nature, and their
qualitative and quantitative analysis methods [5]. FT-IR spectroscopy is an established
analytical tool that can be applied to identify both chemical and structural information from
a sample. The infrared spectrum shows the unique vibrational characteristics of a sample
based on the different absorption frequencies of functional groups [19]. Advanced FT-IR
spectroscopic imaging can capture both spatial and spectral information simultaneously,
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which allows the chemical distribution across the sample area to be visualized. Further-
more, its non-destructive nature enables it to utilize the same portion of the sample for
subsequent examinations [5,11]. Thus, ATR FT-IR is found to be a promising technique for
non-destructive, rapid, quantitative, and qualitative methods, which are ideal properties
for forensic analyses [5]. Nails have been studied to differentiate healthy and unhealthy
individuals by identifying different trace elements in nails [18,20]. ATR FT-IR has been
used for diagnosis and monitoring diabetes on fingernails [21–23]. Coopman R et al. [21]’s
study hypothesized that a nail’s keratin proteins are prone to glycation, and an ATR FT-IR
non-invasive diagnostic tool was used for assessing the glycation of nails. In Jurgeleviciene
et al. [22]’s study, ATR FT-IR was successfully used to examine the glycation process in nail
clippings. ATR FT-IR has been successfully used to differentiate chronic and acute diabetes
mellitus in patient fingernail specimens [23]. Recently, ATR FT-IR has been successfully
used in fingernails to evaluate chronic fatigue syndrome in patients. FT-IR spectral analyses
have unveiled a reduction in the α-helix content, while an increase in the β-sheet content
has been observed. This finding suggests an imbalance in the typical structural elements
within the nail plate [24]. Another ATR FT-IR study on nail specimens has shown that the
chemical penetration enhancer N-acetyl-L-Cysteine (a recognized penetration enhancer in
healthy nails) perturbs the nail plate [17]. FT-IR spectroscopy has been used for protein
secondary structural analyses based on the Amide I mode [5,17,24,25].

ATR FT-IR spectroscopy is becoming an interesting option for sensor research. Sensors
that measure molecular fingerprints possess the ability to identify and quantify complex
molecular information while maintaining inherent molecular specificity [26,27]. The FT-IR
sensor is composed of an infrared light source that generates a sensing platform in which
light–matter interactions occur. Mid-infrared radiation has been used mostly for funda-
mental research on molecular structures due to its high sensitivity and precise selectivity
for molecular conformations [17,26,28]. In addition, ATR-FT-IR spectroscopy enables us to
sense protein–protein interactions or ligand–receptor binding [28]. The IR sensing schemes
are divided into two groups: direct sensors and indirect sensors [27]. Direct sensors detect
optical property changes, whereas indirect sensors detect the chemical recognition pro-
cesses of the sample [27]. A membrane-based ATR FT-IR sensor has been used to determine
oil and surfactant indices in degreasing bath samples [29]. The ATR FT-IR sensor’s capabil-
ity to detect conformational changes has made it a valuable tool for assessing the efficacy
of anti-cancer drugs [25].

In this study, measured FT-IR nail spectra were used for a chemometric analysis to
determine “Male” and “Female” sex from fingernail clippings. A machine learning (ML)
algorithm was coupled to a nail clipping spectral analysis to predict and differentiate sex
from 63 donor’s samples. ML algorithms make decisions by using previously obtained
knowledge in a new situation without requiring programming at every step. As MLs are
highly automated and self-modifying, they continue to improve over time as they receive
new data. ML was developed to address multivariate, high-dimensional, and very complex
real-world data problems [30]. To distinguish between female and male donors, first, a
partial least-square discriminant analysis (PLS-DA, a discriminant analysis model) was
implemented. Then, an artificial neural network (ANN) was applied for sex prediction
and determination. Usually, an ANN acquires knowledge from a set of inputs, and based
on these inputs, it fine-tunes the model parameters with respect to new knowledge. Thus,
neural network processing is not based on any characteristics of a statistical distribution
but works similarly to the human brain on the principles of pattern recognition and error
minimization. Someone can think of this process as receiving information and learning
from each experience so that certain patterns can be found in the data [31]. The previously
applied PLS-DA model scores were used as input into the ANN model to reduce the
computational burden and decrease the chance of overfitting. Thus, this proof-of-concept
study investigates the performance of a non-linear ANN on PLS scores as compared to the
popular chemometric method for classification, PLS-DA.
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2. Materials and Methods
2.1. Sample Preparation

Human nail samples were collected from 63 volunteers of varied races and ages,
comprising 37 males and 26 females. The samples consist of 1–10 donated nail samples
from each volunteer, with a length of at least 1mm. The exclusion criteria for the donors
were unhealthy nails showing distinct symptoms of skin or nail disease and the use of nail
polish. All samples were cleaned first with 70% isopropyl alcohol. They were stored in zip
lock bags and coded.

2.2. Spectra Acquisition

The spectra of samples were acquired with a Fourier transform infrared (FT-IR) spec-
trometer (Nicolet iS10, Thermo Scientific, Waltham, MA, USA) in the spectral range of
600–4000 cm−1. The resolution was set at 4 cm−1. The time required to scan each sample
was set to 32 s; each sample was scanned 32 times; and the average spectrum was auto-
matically taken. For each nail, spectra were acquired at various spots of the sample to
consider the heterogeneity of the nail matrix. For each new sample, a background spectrum
was acquired prior to collecting the spectral data and subsequently subtracted from all
measured spectra. The OMNIC 9.8 software (Thermo Nicolet Corporation, Waltham, MA,
USA) was used to control and manage the measurement. For every sample, the diamond
crystal was cleaned with isopropanol and left to dry before further measurements. To
ensure sufficient contact between the sample and the crystal, each nail sample was simply
placed on the crystal and compressed using the ATR attachment. The spectral ranges of
600–1711 cm−1 and 2669–3800 cm−1 were used for further analyses as they showed the
contribution from the biochemical composition of the samples.

2.3. Data Pre-Processing and Statistical Analysis

The OMNIC spectral (.SPC) files, with a total of 824 spectra, were imported into
MathWorks MATLAB R2020b version 9.9.0.1570001 (Natick, MA, USA), supported by the
Eigenvectors Research Inc. PLS Toolbox 9.0 (Manson, WA, USA), for further processing
and the statistical analysis. PLS-DA modeling was performed using the PLS Toolbox 9.0
software. The ANN and ROC analyses were performed using R (4.2.2) software, the R
package “neuralnet” [32], and the package “pROC” [33]. The spectra were subjected to
preprocessing steps: the transformation of the transmission to absorbance (log(1/T)), a
second-order derivative with a second polynomial, normalization by the total area, and
mean centering. The preprocessing steps were first selected and applied on a training
dataset only.

A hold-out (test) dataset of eleven samples (donors) was randomly selected from
the group of 63 donors at the beginning of the analysis and used only at the end for
external validation. The remaining 52 nail samples were used as the training dataset. In
machine learning, there is no standard approach for the minimal sample size calculation
in bio-spectroscopic studies [34]. A very popular systematic approach for the sample size
calculation is the post hoc method of fitting a learning curve, which is a good indication of
the amount of data needed to train a model [35]. Since the number of donors was already
given, we focused on the training phase of the data analysis. The dataset was split in such
a way that the training data was sufficiently large. The exact ratio depends on the data, but
a larger portion of data in favor of the training data is typically optimal for small datasets.
In our case, we selected a data split when the calibration model showed a lower variance
during the training process, as has been shown elsewhere [5]. The samples were split
into a calibration dataset (training) and a test dataset (external validation), approximately
consistent with a 79:21 split, using donor-stratified random selection. Specifically, eleven
donors (155 spectra) were randomly selected for the external validation (EV) and were
moved to the test dataset, and the remaining 52 donors (669 spectra) were used for the
training dataset before the statistical analysis.
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2.4. Partial Least-Square Discriminant Analysis (PLS-DA)

An important aspect of any PLS-DA model is the determination of the number of
latent variables (LVs) to ensure that the model includes only the variability important for
prediction without introducing different types of noise [36]. Numerous different PLS-DA
models were built with an increasing number of LVs, and an estimate of the classification
error rate of each PLS-DA model was acquired via a single 10-fold venetian blind cross-
validation (CV) on the training dataset. In the PLS-DA environment, the CV involved a
series of ten steps, and in each step, 1/10th of the training dataset was moved out, and a
sub-model was built using the leftover spectra. This model was used to predict the class
assignment, i.e., “Female” or “Male”, on the moved-out spectra. The test set was then
moved back into the calibration dataset, and another 1/10th of the spectra was used as
the test set. This procedure continued until all the spectra were predicted. At the same
time, every predicted spectrum went through this process only once. The number of LVs
was defined during the CV of the PLS-DA so that the number of LVs that yielded the
lowest classification error rate during the CV was selected to be used for the final PLS-DA
model [5]. After successfully training and cross-validating the PLS-DA model, it was
externally validated with the spectra from the eleven donors moved aside at the beginning
of the data analysis. The PLS-DA method is easily interpretable and inherently a linear
algorithm, capable of modelling only linear latent covariance [37]. However, biological
data are often non-linear; thus, more complex non-linear machine learning methods may
be more suitable for the analysis of biological data.

2.5. Artificial Neural Network (ANN)

Here, the method for tuning the neural network was the resilient backpropagation
with weight backtracking method. The resilient propagation algorithm is a very popular
method in backpropagation training due to its fast convergence speed [38]. The inputs were
provided as LVs from the previously used PLS-DA method, and the output data classes
were labeled as either “Female” or “Male”. Before a model is trained, several parameters
must be successfully selected with an ANN.

To assess the prediction capacity of the final neural network, the model evaluation is
expected to be accomplished using totally independent datasets. In this study, the datasets
were divided into training and test sets, as described above. Further, cross-validation was
applied to the training dataset for tuning the ANN parameters; thus, we did not have
a separate validation dataset. The training process minimizes a training error, and the
error is evaluated on the corresponding validation dataset. Numerous neural networks
were built to tune the network architecture and parameters. Prediction on validation data
provides an evaluation of a network model; thus, the hyperparameters of the model that
gave the best results will be selected for the final model. A single 10-fold venetian blind
cross-validation on the calibration dataset [39] is a good compromise in the sense of a
bias–variance trade-off [40]. Once the ANN hyperparameters, together with the network
architecture (the number of layers and neurons), were validated through their performance
on the CV datasets, the final network was used to predict the labels of the unknown samples
in the hold-out dataset.

3. Results

The aim of this work was to explore the applicability of ATR FT-IR spectroscopy as a
suitable method for male and female donor differentiation based on human nail clippings.
The most appropriate project design was selected based on our preliminary results. Human
nail samples make excellent specimens. They make a reservoir substance out of tightly
bound keratin fibers. The matrix of nail plates is porous, making it a superb matrix for
trapping different biomarkers and analytes. Nail specimen collection is a noninvasive and
simple process, and the nails only need to be stored in a dry place at room temperature.
The ATR FT-IR spectra collected from the male and female nail samples showed similar
spectral patterns. To determine the donor sex from the human nail spectra, multivariate
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discriminant models were built using the PLS-DA algorithm and the ANN algorithm. The
ANN algorithm increased the discrimination performance of the model and identified the
spectral origins for sex discrimination.

3.1. Average Mean Raw Spectra of Nails

The average ATR FT-IR spectra of the two different groups based on human nails
are presented in Figure 1. The average “Male” and “Female” ATR FT-IR spectra are very
similar, characterized by the same bands of similar intensities. Since the basic components
of human nails are similar both in males and females, we look for every minute difference
in composition based on sex. The visual representation clearly (Figure 1) shows that it is
quite impossible to differentiate two groups for our purpose; therefore, it necessitated an
advanced multivariate analysis in our case. this proof-of-concept study did not include
a chemical analysis of the nails, we applied advanced ML techniques to acquire nuance
pattern differences to build the prediction models to differentiate gender in the unknown
samples. The spectral signature of nails reveals vibrational frequencies associated with var-
ious biomolecules and provides valuable insights about the essential components present
in human nails. The nail IR spectra can be well described by major regions assigned to
proteins, but they also show contributions from nucleic acids (1000–1250 cm–1), lipids
(2800–3000 cm–1), and carbohydrates (1000–800 cm–1). The peak assignment of molecular
vibrations for human nails is available in the literature from our previous study [5].
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Figure 1. Averaged raw spectra of nail clippings for the groups of males (blue line) and females (red
line). The spectral ranges from 600 to 1711 and 2669 to 3800 cm−1 showed contributions to the final
spectra and were used for further analysis. Spectral regions from 1711 cm−1 to 2669 cm−1 (grey
rectangle) were excluded from the analysis to avoid interference from the diamond ATR crystal.

The primary component of nails is keratin, a fibrous protein. Keratin can be classified
into alpha-keratin and beta-keratin. In the literature, there are other classifications being
used, where keratin can be classified as soft or hard keratin. The amount of sulfur and
lipids in soft keratin is lower. Nail keratins are hard keratins, where the amount of sulfur
is higher [41]. Many studies have been conducted on the chemical analysis of nails to
discriminate between “Male” and “Female”. Our study focus was to apply a multivariate
analysis using ATR FT-IR spectral data to acquire subtle spectral pattern differences between
“Female”- and “Male”-originated samples.

Although the spectral profiles appear similar, a difference spectrum of the calculated
mean spectra of the “Male” and “Female” classes shows some distinct features. The
differences could be associated with the ATR FTIR spectral band assignments based on
the human nails available from our previous study [5]. In our previous study, we showed
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the assignment of the main characteristic bands of the FTIR spectra of human nails. They
confirmed the presence of keratin proteins as the main component, as well as lipids and
nucleic acids. As highlighted in Figure 2, the biggest differences in the intensity of the
characteristic bands between the “Female” and “Male” classes are for lipids and proteins
at 2920 cm−1 and at 2849 cm−1, for Amide I at 1635 cm−1, and for Amide II at 1533 cm−1,
showing a higher intensity of bands in the female class. The Amide I band is typically
a very intense band in proteins, and differences found in this band are directly related
to the backbone conformation [42]. The largest difference was observed in the Amide II
band at 1533 cm−1, which is a rather complex band, so the identification of changes in
conformation is very complicated. Slight intensity changes were also revealed in the region
1240–1180 cm−1, which corresponds with the Amide III band, C–N stretching vibrations,
and the PO2

− asymmetric stretching of nucleic acids. Additionally, a small intensity
variation has been observed in the spectral region 1170–1080 cm−1, corresponding to the
PO2

− symmetric stretching of nucleic acids. The peak maxima of the difference spectrum
correspond to the absorbance bands of the female nails, whereas the peak minima are
associated with the male nail spectra.
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Figure 2. Difference spectrum of the calculated normalized average spectra of the “Female” class
and the “Male” class. Absorption peak intensities show the differences between the male and the
female groups; peak intensities above the line represent “Female” and below represent “Male”. The
horizontal blue dashed line represents the zero line. The grey shaded region represents the spectral
range excluded from the analysis.

3.2. Partial Least-Square Classification (PLS-DA)

The pre-processed spectral data were initially subjected to a PLS-DA analysis for
dimensionality reduction, and 12 latent variables (LVs) were included for further analysis
as they were considered to contain enough information to explain the variance in the
spectral data. In a PLS-DA, LVs are calculated as a linear combination of the associated
original variables rotated to maximize their relationship with a response variable. The
PLS-DA model was designed using the FT-IR spectra of males and females with 12 LVs and
was validated through 10-fold venetian blind cross-validation (CV), as described above.
Twelve LVs were determined during the CV when ten subsets of spectra were moved
aside, and their class assignment was predicted. The CV results were acquired as the
averages of sensitivity (true positive rate female) and specificity (false positive rate male)
and total discriminant accuracy. We achieved a sensitivity of 96% and a specificity of 95%
with 95% accuracy to differentiate between the male and female donors from their nail
clippings. After the PLS-DA calibration model was trained with the twelve LVs for the
“Male” and “Female” differentiation of nail specimens, we could predict spectra from
the test set that were never seen by the model during the calibration. This allowed us
to determine an unbiased evaluation of the final PLS-DA model. Figure 3a shows the
discriminant scores predicted for each individual nail spectrum through the CV process,
and Figure 3b shows the discriminant scores predicted for each individual nail spectrum
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through external validation (EV). Figure 3 shows the prediction scores for each spectrum
and the classification threshold (grey dashed line). Any spectrum found above the threshold
line is predicted as “Female”, and any spectrum below the classification threshold line is
assigned as the “Male” spectrum.
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Figure 3. (a) Calibration (CV) and (b) external validation (EV) prediction results for “Male” and
“Female” based on the human nail clippings. Each dot represents the individual ATR FT-IR spectrum
data for male and female nails. The red dot represents “Female”, and the blue dot represents “Male”.
The broken dotted line denotes the classification threshold.

The score plot in Figure 3b indicates that the PLS-DA model effectively worked to
distinguish the test data of each sex class into a specific range of scores. Any spectrum
located above the threshold is predicted to be “Female”, and any spectrum below the
threshold is predicted to be “Male”. However, some of the individual spectrum data
were misclassified (six male and seven female spectra) into incorrect classes. The external
validation (EV) on the test dataset resulted in a sensitivity of 91% and a specificity of 92%
with an accuracy of 92% to discriminate between the “Male” and “Female” classes. On the
donor level, the PLS-DA model showed an accuracy of 100% for differentiating between
the two groups when a standard 50% threshold was used. Each donor was classified as the
sex that received the most assignments (>50%).

Characteristic (AUROC) values indicate the probability that the discriminant model
can correctly classify the nail spectral data of each sex class. Figure 4a shows the perfor-
mance of the classification PLSDA model presented as an ROC curve plot, which shows
how sensitivity and specificity change depending on different thresholds. The obtained
AUROC value is 0.99 (95% confidence interval (CI), 0.98–1) and 0.96 (96% confidence inter-
val (CI), 0.93–0.99) for the CV and the EV, respectively, indicating that the female and male
groups are well separated.

3.3. Artificial Neural Network (ANN)

The use of a supervised ANN is a technique that relies on prior knowledge about
the class assignment of all the spectra in the training dataset. The ANN needs to first be
calibrated on the training dataset. The scores from the PLS analysis were introduced to
the model through the input layer to allow one or more hidden layers to perform the data
processing through weighted connections between neurons and the output layer to give
the classification results. A total of 669 labeled spectra were introduced to the network.
To calibrate the model, the network weights need to be adjusted to minimize the training
error. As mentioned before, this process of weight optimization was based on the resilient
backpropagation algorithm with weight backtracking with a threshold set to 0.01 described
for the partial derivatives of the error function [32]. The error function was selected as the



Sensors 2023, 23, 9412 9 of 15

cross-entropy error (CEE) that is recommended for classification problems. To find the best
network for our training dataset, different parameters must be optimized. Hyperparameter
tuning is a purely empirical process, so determining the number of hidden layers, the
number of neurons in each hidden layer, and tuning other hyperparameters of the network
algorithm requires testing many possibilities. All the created neural networks predicted
the class membership for the spectra of unknown labels in the validation datasets during
the CV (venetian blind CV) to determine the optimal ANN to differentiate the female and
male donors [43]. Choosing the correct model with appropriate parameters is crucial for
accurate predictions of the sexes of the nail donors. The neural network structure that
yielded the best CV results with the lowest prediction errors for the validation datasets was
a three-layer neural network with one input layer, one hidden layer with five neurons, and
an output layer. The initial weights of the network were randomly initialized. When the
final ANN with appropriate parameters was identified, the network weights were fixed.
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Figure 4. Comparing specificity versus sensitivity across different decision thresholds to assess a
dichotomous outcome of the PLS-DA model (a) and ANN model (b) presented as a receiver operating
characteristic (ROC) curve. In the PLS-DA model, the area under the ROC (AUROC) achieved was
0.99 (95% confidence interval (CI), 0.98–1) and 0.96 (95% confidence interval (CI), 0.93–0.99) during
cross-validation (CV) and external validation (EV), respectively. In the ANN model, the area under
the ROC (AUROC) achieved was 0.99 (95% confidence interval (CI), 0.98–1) and 0.95 (95% confidence
interval (CI), 0.92–0.99) during CV and EV, respectively. Such results show that the “Female” and
“Male” groups are well separated for both the PLS-DA and ANN classification models.

We trained our ANNs by minimizing the cross-entropy error (CEE) [44]. For all the
validated spectra during the CV, the classification results were calculated as the probabilities
of the spectra being assigned as female. For ten validated subsets from all 52 donors
(669 spectra), the “Female”/“Male” class predictions and associated probabilities were
reported for each spectrum throughout the CV. Figure 5a shows the ANN results for the
female vs. male FT-IR spectra binary classification, as determined through the venetian
blind CV. In all 10 validation sets, 19 spectra were misclassified, predicting the spectrum
of a female as a male, and vice versa. The threshold value was set by default to 50%. The
achieved sensitivity, specificity, and accuracy were 97% for all the parameters. The final
network achieved a performance, in terms of the AUC performance, on the validation
dataset of 0.99 (95% confidence interval (CI), 0.98–1). On the donor level, the ANN model
showed 100% accuracy for differentiating between the two groups when the standard
50% threshold was used, which means no donor was misclassified. Once an ANN was
trained and validated, an EV on the hold-out dataset was performed. Here, 155 spectra,
originating from eleven donors, were already separated before the statistical analysis. To
end up with the points from the training and test datasets in the same space without using
any knowledge about the test dataset during the training, first the PLS-DA analysis was
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performed on the training set, and the obtained LVs were saved and then used to transform
the points in our test set.
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Figure 5. Results of the final predictions of the ANN model showing the estimated classification
probability for each spectrum. All spectra were scored with the probability with which the spectrum
is assigned as “Female” from the venetian blind CV (a) and from the external validation (b) of the ATR
FT-IR spectra of nail samples. The calculated probability for each spectrum was classified as either
“Female” (when above 50% threshold) or “Male” (when below 50% threshold). The probability for
the correct assignment of an individual ATR FT-IR nail spectrum is marked with colors as “Female”
(red dots) and “Male” (blue dots). The broken dotted line denotes the 50% classification threshold.

The EV of the ANN model on the test dataset resulted in a sensitivity of 93%, a
specificity of 91%, and an accuracy of 92% to discriminate between the two classes. The
donor-based classification results showed a 100% accuracy rate to discriminate the donors
class. All the donors from the test dataset were correctly classified. The obtained AUROC
value is 0.99 (95% confidence interval (CI), 0.98–1) during the CV and an AUROC of 0.95
(95% confidence interval (CI), 0.95–0.99) in the EV in differentiating between “Females”
and “Males” using human nails as substrate.

4. Discussion

To distinguish between the male and female donors from the nail clippings, the PLS-
DA model and the ANN non-linear model were implemented. We tested several techniques
on our spectral data to select the most suitable algorithm for our particular problem.
Choosing the correct model with the appropriate parameters is crucial for accurately
predicting the sex of a nail donor.

The PLS algorithm is a linear regression method that may be used for classification.
When the PLS algorithm is used with a dummy response variable, the PLS model is called
the partial least-square discriminant analysis (PLS-DA) model [45]. The extra step in the
PLS-DA model is a thresholding of predicted y-values to assign class labels to a spectrum
(females vs. males). The PLS algorithm is a linear method that is responsible for reducing
the dimension of the data (i.e., the full FTIR spectrum) into a few alternative axes to
efficiently separate the data of each group [46]. The new PLS components’ latent variables
(LVs) are selected in a supervised manner to minimize the influence of irrelevant variables
and maximize covariance between the responses (female and male class assignment) and a
new linear combination of the original features. Then, the final dimensionality (the number
of the LVs) is resolved by deciding how many of these new predictors will be included in
a model.

Here, our primary objective for pattern recognition was to construct an effective
classification model. Building a classifier based on ATR-FTIR spectral data can be carried
out for various purposes, such as for a screening tool to determine alcohol presence, gender
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determination, phenotype profiling, evaluating the authenticity of any substances, etc. [47].
There are many chemometric classification models available these days, including principal
component analysis (PCA), partial least-square discriminant analysis (PLS-DA), support
vector machines (SVMs), random forests (RFs), logistic regression (LR), and artificial neural
networks (ANNs). Numerous citations in the Chemical Abstract Database highlight that
these classification models exhibit the potential to effectively handle extensive sets of high-
dimensional multivariate data with varying qualities, leading to reliable predictions [48,49].

The PLS-DA and PCA both are quite popular methodologies for dimensionality
reduction. Hence, PLS models are often better at capturing information relevant to the
given problem than a corresponding PCA model [50]. PLS has become a very popular
tool for multivariate data analyses because of the good performance of the calibration
models produced and how easy it is to implement the method, given the wide availability
of PLS software [51]. In the case of PLS models, the development of latent variables
(LV) takes place simultaneously with model calibration. In PLS models, the issue of
confounding and unwanted factors interfere with the desired signal, is typically less
problematic because a PLS model employs an iterative process that considers both the
response and the measurement variables to determine the PLS components. There is a
complex relationship between nail-metabolic fingerprinting and environmental/behavioral
factors, as we have already shown in our previous work [5]. In this study, a similar situation
is reflected in the fact that the final model complexity, i.e., the number of LVs, was estimated
to be twelve for the differentiation of the two groups of nail specimen donors.

Despite having a successful classification rate from the PLS-DA model for sex determi-
nation, we additionally built the ANN model to further validate and enhance the accuracy
of the sex determination process. ANNs have confirmed their ability to describe non-linear
relationships well, which has proven to be very useful, especially in recognizing patterns
and performing forecasting on spectroscopic data [43,46,52,53]. Artificial neural networks
(ANNs), inspired by the biological interconnections in the brain, can be described as several
layers of simple, weighted, interconnected mathematical operators called neurons. Each
neuron acts as a weighted sum of the outputs of the previous layer applied to an activation
function (typically a linear or logistic function). ANNs are composed of several layers:
the input layer, one or more hidden layers that perform processing through a system of
weighted connections, and the output layer, which finally gives the classification result [48].

During the training process, the neural network learns the relationship between the in-
dependent and dependent variables. Specifically, it may learn to associate varying intensity
values of specific wavelengths of the FT-IR spectral data with sample class assignments,
“Female” and “Male” labels. However, as the number of original input variables increases,
the number of weights in the network increases. Consequently, the amount of data needed
to determine the weights of the network also increases, and overfitting can become an issue.
A dimensionality reduction can reduce the size of the network and, hence, the amount of
data needed to train a model. The scores from the previously used PLS-DA method can be
used as an input for an ANN. This approach will ensure that representative spectral LVs
will be selected, and the nonlinearity between the spectral measurement and the sample
class membership will be effectively handled by the ANN [49].

Most neural networks are trained with supervised training algorithms. For an ANN,
this means that the network processes the known inputs and compares its actual outputs
against the expected outputs. The errors are then backpropagated via the network, and
the weights are adjusted considering the errors returned. This process is repeated until the
errors are minimized. The weights between the individual layers during this training are
gradually updated, so the same dataset is processed many times (number of iterations) for
the sake of learning. This supervised learning algorithm, which is very popular, is often
referred to as a backpropagation algorithm (backward propagation) [45].

ANNs are highly complex systems, which contribute to their efficiency, robustness,
fault tolerance, and resistance to noise. ANNs can learn from training data and generalize
their knowledge to handle new unknown data in previously unseen situations. Moreover,
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an ANN provides remarkable information-processing characteristics such as non-linearity,
which allows it to better fit the data, and noise insensitivity, which provides accurate
predictions in the presence of uncertain data and measurement errors. When an ANN is
given sufficient input data, it can learn through successive training and predict a specific
outcome. In this study, the original FT-IR spectral data were assigned as input values for the
PLS-DA algorithm, labelled as “Male” or “Female”. The PLS-DA scores, which represent
the original data in a lower-dimensional subspace, were used as input variables for the
ANN classification model. At the 50% threshold value, we obtained sensitivity, specificity,
and accuracy of 93%, 91%, and 92%, respectively, at spectral-level classification. On the
donor-level classification, we achieved 100% accuracy for differentiating between the two
groups based on an independent dataset during the external validation.

The PLS model is easily interpretable and is inherently a linear algorithm. It is
only capable of modelling linear latent covariance. Since our samples, nail data, are
heterogenous, we hypothesized that a more complex non-linear machine learning method
would be more suitable for the analysis of biological non-linear data. This hypothesis was
supported by our results. The PLS-DA was able to select the correct hyperplane on the
samples, achieving high accuracy, but the separation between the clusters was lower (the
values were close to the classification threshold). Even though the accuracy is almost the
same for both methodologies, the separation between the predictions of individual spectra,
whether they are females or males, is significantly greater in the case of the ANN, both in
the CV outcome and in the EV outcome.

Here, we demonstrated a novel method for determining a donor’s sex based on the
ATR FT-IR spectroscopy of human fingernails and a chemometric analysis using ANNs
applied to PLS-DA scores. The results strongly indicate the potential of this developed
method for donor sex determination in the forensic analysis of human nails. The established
model was found to give a better score–space separation between the two sex groups of
human nail spectra when an ANN was used on the PLS-DA scores. Additionally, compared
to the previously published results on sex screening from human nails based on FT-IR
spectra [8], our developed model clearly improved the separation between the groups. It
should also be mentioned that the results of a statistical analysis in the previous study did
not generalize to an independent dataset [5].

5. Conclusions

There is a high demand in forensic science for analytical methods that are rapid,
easy-to-use, inexpensive, and non-destructive, with selective capabilities that would make
them ideal for the presumptive or confirmatory testing of forensic evidence. Advances in
instrumentation, innovative algorithm development, the proficient handling of large data,
and computing resources are developing fast. The incorporation of multivariate methods
into forensic analyses is increasing tremendously as it helps in deciphering all the aspects
of an investigation, such as the identification, differentiation, and classification of trace
evidence. Despite the momentary limitations in forensic practical applications, it clearly
endorses the recent developments of different sensors for future applications in the forensic
field. Vibrational spectra reflect information about the overall molecular composition of
a sample. Mid-infrared radiation (MIR) spectroscopy is the FT-IR spectroscopic method
of choice when analyzing biological materials since it covers the fundamental vibrational
modes of important biomolecules. The combination of vibrational spectroscopy and ad-
vanced statistics provides high potential virtually for any industry and area of applications,
such as rapid diagnostics in clinical settings, environmental tests, measurements of food
quality, forensic applications, etc. Our technique for sex determination from human nails
based on ATR FT-IR spectra combined with an ANN approach can be applied to narrow
down a list of suspects with reliable information and potentially provide a novel strategy
to resolve crimes. The readiness of the portable ATR FT-IR instrument allows for the in situ
examination of samples, thus further increasing the potential of this novel approach.
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Here, we demonstrate the development of a novel method of ATR FT-IR spectroscopy
coupled with a machine learning analysis. The IR spectrum shows the specific vibrational
characteristics of a sample that originate from the different absorbance frequencies of
the functional groups [5]. The spectral features found through ATR FT-IR showed the
presence of prominent Amide A and B bands in the fingerprint region. Our previous study
confirmed the presence of the Amide I, Amide II, and Amide III bands through feature
selection using an sPLS model, which indicates the presence of keratin proteins along with
other hydrocarbon groups from lipids to proteins [5]. ML algorithms can reveal spectral
complexity information, including spectral compositions and the minute differences caused
by donors’ sexes, “Male” and “Female”. Both the PLS and ANN models successfully
differentiated between “Male” and “Female” from the nail clipping samples. Both the
PLS-DA and ANN models showed, during the external validation, an excellent AUROC
value of 0.96 and 0.95, respectively, to classify the “Male” and “Female” groups. The
established ANN model was found to give a better score–space separation between the
two sex groups though. Thus, the aim of our work was to examine the practicality of
human nail samples combined with ATR FT-IR as a replacement method for those methods
currently used for gender determination. Specifically, we were interested in whether the
applied method has the potential to differentiate between “Male” and “Female” donors
based on their nail clippings.

This study has shown that FT-IR spectroscopy coupled with multivariate classification
techniques can be a very useful analytical method for sex classification. Furthermore,
the promising results from this study make it possible to explore additional analytical
applications for other personal characteristic classifications in which the classes to be
differentiated show significant internal variations, such as age or race.
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