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Abstract: Passive wireless surface acoustic wave (SAW) resonant sensors are widely used in measur-
ing pressure, temperature, and torque, typically detecting sensing parameters by measuring the echo
signal frequency of SAW resonators. Therefore, the accuracy of echo signal frequency estimation
directly affects the performance index of the sensor. Due to the exponential attenuation trend of the
echo signal, the duration is generally approximately 10 µs, with conventional frequency domain
analysis methods limited by the sampling frequency and data points. Thus, the resolution of fre-
quency estimation is limited. Here, signal time-domain fitting combined with a genetic algorithm is
used to estimate SAW echo signal frequency. To address the problem of slow estimation speed and
poor timeliness caused by a conventional genetic algorithm, which needs to simultaneously estimate
multiple parameters, such as signal amplitude, phase, frequency, and envelope, the Hilbert transform
is proposed to remove the signal envelope and estimate its amplitude, and the fast Fourier transform
subsection method is used to analyze the initial phase of the signal. The genetic algorithm is thereby
optimized to realize the frequency estimation of SAW echo signals under a single parameter. The
developed digital signal processing frequency detection system was monitored in real time to estimate
the frequency of an SAW echo signal lasting 10 µs and found to have only 100 sampling points. The
proposed method has a frequency estimation error within 3 kHz and a frequency estimation time of
less than 1 s, which is eight times faster than the conventional genetic algorithm.

Keywords: resonant sensors; surface acoustic wave (SAW); echo frequency estimation; genetic algorithm

1. Introduction

Passive wireless surface acoustic wave (SAW) resonant sensors are used in various
fields, such as train wheels, artillery, tank tracks, high-voltage electricity, and strong
electromagnetic fields, due to their non-contact feature, fast speed, anti-interference aspect,
easy coding, small size, and robustness. They do not require a power supply but rely on
receiving electromagnetic waves for energy supply to measure physical quantities such as
temperature, strain, torque, gas, and pressure [1–8]. According to the detection principle,
SAW sensors can be divided into delay types and resonance types. Among the latter, the
resonance frequency change in SAW resonators reflects the measured change, and the
echo signal contains the measured information of the sensor. Therefore, by analyzing the
frequency of the echo signal, changes in the physical characteristics of the sensor can be
detected [9–11].

However, the characteristics of high frequency, narrow band, exponential decay,
and short duration create inconveniences in the measurement of echo signal frequencies.
Conventional frequency domain algorithms and hardware counting methods are limited
by the signal sampling length and produce significant errors. In addition, modern spectral
estimation methods, such as the Music algorithm, Autoregressive (AR) model algorithm,

Sensors 2023, 23, 9401. https://doi.org/10.3390/s23239401 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23239401
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-4488-9361
https://doi.org/10.3390/s23239401
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23239401?type=check_update&version=1


Sensors 2023, 23, 9401 2 of 14

and maximum likelihood estimation algorithm, are limited in further application due to
their complexity, large calculation quantity, and difficulty in achieving real-time processing.

This article is focused on the characteristics of SAW sensing signals and uses the
time-domain signal fitting method to estimate the frequency parameters of SAW sensing
echo signals. The traditional fitting method uses the least squares method for parameter
fitting, but its application is limited to linearization problems, leading to a large calculation
quantity and low accuracy. Therefore, the genetic algorithm for signal parameter fitting is
adopted. However, in the application of classical genetic algorithms [12–15], it is necessary
to clarify multiple parameters of the estimated signal, such as amplitude, phase, frequency,
and the envelope attenuation coefficient, which will lead to low fitting efficiency. Herein,
the signal was preprocessed to optimize the local operation of the genetic algorithm by
analyzing the sensing characteristics of SAW echo signals. Finally, only the optimized
genetic algorithm was used to estimate the frequency of the SAW echo signal with a single
parameter, thereby improving the fitting speed and meeting accuracy requirements for
frequency estimation.

2. The Characteristics of a SAW Resonator

Figure 1a is a structural schematic of the typical SAW device. The SAW resonator
converts the electromagnetic wave into a SAW by emitting an interdigital transducer
(IDT), and the SAW is converted into an electrical signal after the SAW has propagated a
certain distance through the medium to reach the receiving IDT. During the transmission
of the SAW, changes in the material and structure of the IDT sensor cause changes in
the transmission medium, resulting in changes in the frequency of the SAW. Therefore,
measuring changes in the frequency of the SAW enables the detection of sensing parameters.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 14 
 

 

by the signal sampling length and produce significant errors. In addition, modern spec-
tral estimation methods, such as the Music algorithm, Autoregressive (AR) model algo-
rithm, and maximum likelihood estimation algorithm, are limited in further application 
due to their complexity, large calculation quantity, and difficulty in achieving real-time 
processing. 

This article is focused on the characteristics of SAW sensing signals and uses the 
time-domain signal fitting method to estimate the frequency parameters of SAW sensing 
echo signals. The traditional fitting method uses the least squares method for parameter 
fitting, but its application is limited to linearization problems, leading to a large calcula-
tion quantity and low accuracy. Therefore, the genetic algorithm for signal parameter fit-
ting is adopted. However, in the application of classical genetic algorithms [12–15], it is 
necessary to clarify multiple parameters of the estimated signal, such as amplitude, 
phase, frequency, and the envelope attenuation coefficient, which will lead to low fitting 
efficiency. Herein, the signal was preprocessed to optimize the local operation of the ge-
netic algorithm by analyzing the sensing characteristics of SAW echo signals. Finally, on-
ly the optimized genetic algorithm was used to estimate the frequency of the SAW echo 
signal with a single parameter, thereby improving the fitting speed and meeting accura-
cy requirements for frequency estimation. 

2. The Characteristics of a SAW Resonator 
Figure 1a is a structural schematic of the typical SAW device. The SAW resonator 

converts the electromagnetic wave into a SAW by emitting an interdigital transducer 
(IDT), and the SAW is converted into an electrical signal after the SAW has propagated a 
certain distance through the medium to reach the receiving IDT. During the transmis-
sion of the SAW, changes in the material and structure of the IDT sensor cause changes 
in the transmission medium, resulting in changes in the frequency of the SAW. There-
fore, measuring changes in the frequency of the SAW enables the detection of sensing 
parameters. 

Figure 1b is a physical diagram of the SAW device. The SAW device consists of a 
SAW resonator, matching network, and onboard antenna. The resonant frequency of the 
SAW resonator is 433 MHz, provided by Zhongke Crystal Electronics Co., Ltd. The 
matching network, comprising of inductors and capacitors, is employed between the an-
tenna and the SAW for the modulation of the sensor signal to the SAW’s response signal 
and impedance matching. Changes in the matching network parameters will pull the 
resonance frequency of the SAW and change the matching conditions, thus leading to a 
returned response signal consisting of a frequency shift and a change in the amplitude. 

 

                 (a)                                    (b) 

Figure 1. (a) Structure of SAW resonant sensor ; (b) Physical diagram of SAW resonant 
sensor. 

Figure 2a shows the SAW resonator system composed of the excitation and sensing 
signal reception and processing. The radio frequency (RF) oscillator generates a signal of 

Figure 1. (a) Structure of SAW resonant sensor; (b) Physical diagram of SAW resonant sensor.

Figure 1b is a physical diagram of the SAW device. The SAW device consists of a SAW
resonator, matching network, and onboard antenna. The resonant frequency of the SAW
resonator is 433 MHz, provided by Zhongke Crystal Electronics Co., Ltd. The matching
network, comprising of inductors and capacitors, is employed between the antenna and the
SAW for the modulation of the sensor signal to the SAW’s response signal and impedance
matching. Changes in the matching network parameters will pull the resonance frequency
of the SAW and change the matching conditions, thus leading to a returned response signal
consisting of a frequency shift and a change in the amplitude.

Figure 2a shows the SAW resonator system composed of the excitation and sensing
signal reception and processing. The radio frequency (RF) oscillator generates a signal
of a specified frequency, which is amplified by the RF power amplifier, and sends out an
excitation signal through the antenna, which is received by the SAW sensor. The system
stops the transmission of excitation signals through a single-pole double throw switch
and receives the echo signal from the SAW resonator, which is then amplified by the
RF power amplifier with RF down-conversion, IF amplification, low-pass filtering, and
A/D acquisition, and finally transmitted to a PC terminal for processing. The SAW RF
interrogator and SAW echo signal data collector are shown in Figures 2b and 2c, respectively.
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Figure 2. (a) Passive wireless SAW sensor measurement system; (b) RF interrogator of SAW sensor;
(c) Data collector of SAW sensor.

The echo signal received by the receiving unit is mixed with the excitation signal
and other noise. The down-conversion changes the high-frequency SAW signal into an
intermediate frequency, while the shape envelope of the signal does not change. The
sensing signal model x(t) is expressed as [16]:

x(t) = s(t) + c(t) + n(t) (1)

Among them:
s(t) = A(t)sin(w0t + σ) (2)

A(t) = me−kt+l

c(t) = Csin(wct + θ) = A cos(wct) + B sin(wct) (3)

A = C sinθ, B = C cosθ

T = (mR + mL + 2N)·τ0 (4)

τ0 = 1/(2 fd)

where s(t) is the transient and attenuated sensing signal of the resonator; it is a useful signal
containing the characterization of sensing information. The transient duration T is usually
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approximately 10 µs, and its expression is shown in Formula (4): mR is the interdigital
logarithm of the output IDT, mL represents the interdigital interaction logarithm in the
transducer, N is the number of interdigital electrode cycles, and fd is the resonant frequency
of the resonator. A(t) is the envelope of the sensor signal with an exponential attenuation
trend, w0 is the frequency of the useful signal, k is the attenuation coefficient, l is the
unknown of the attenuation envelope, and σ is the random initial phase. Therefore, it can
be seen that the sensor signal model s(t) contains five unknown parameters. c(t) is the
sinusoidal excitation signal that leaks through the system switch during signal reception.
For s(t), c(t) is a noise interference that needs to be suppressed. wc is the known excitation
frequency, and θ is the random initial phase. n(t) is the additive noise with white noise
characteristics generated by the channel.

Figure 3 reveals the signal time-domain waveform obtained by different wireless
distance d. The sampling frequency of the signal is 10 MHz, and 600 sampling points are
intercepted. When d = 10 cm, the sensing signal is significantly stronger than the leaking
excitation signal and channel noise due to the close distance, so it is the front end of the
signal time-domain waveform, and the transient attenuation trend of the sensing signal is
clearly visible. However, the useful signal is submerged in the leaking excitation signal
and channel noise at the signal of 2 ∼ 3 m, and there is no obvious attenuation trend.
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3. The Principle of Single-Parameter Genetic Algorithm Estimation for SAW
Resonance Frequency

Since the amplitude, initial phase, frequency, and attenuation envelope information
of the SAW echo signal are unknown, when using a genetic algorithm to estimate signal
frequency, other parameters except frequency need to be fitted simultaneously, which
greatly reduces the fitting efficiency. The research purpose of this article was to estimate the
frequency of the signal. Therefore, the amplitude, initial phase, and envelope information
of the signal were first estimated, and only a single frequency parameter of the signal
was fitted.

3.1. Research on a Frequency Detection Method for the Surface Acoustic Wave Echo Signal

The design process of the surface acoustic wave signal processing scheme is shown in
Figure 4. The cross-correlation method was used to suppress excitation noise, and the model
was simplified through envelope analysis using the Hilbert transform. Then, the initial
phase of the envelope signal was estimated based on the segmented FFT phase difference.
Furthermore, the impact of the initial phase error estimated using the single-parameter
genetic algorithm on frequency estimation is further investigated. Thus, the optimized
genetic algorithm was used to perform single-parameter frequency fitting on the selected
signal after determining the initial phase of the amplitude. And the genetic algorithm
selection operator was optimized, greatly reducing the complexity and computational
complexity of the program, and further improving the genetic selection operator.
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3.2. Estimation of the Amplitude and Phase of the Sensing Echo Signal

According to Formula (2), a useful signal consists of an envelope signal and a sine
signal. Therefore, Hilbert envelope demodulation was used to remove the envelope signal,
and the amplitude and initial phase information of the sine signal after envelope removal
were analyzed.

3.2.1. Hilbert Complex Analytic Envelope Demodulation

The definition of the Hilbert transform [17] for the real signal s(t) is as follows:

ŝ(t) = H{s} = h(t) ∗ s(t) =
∫ ∞
−∞ s(t)h(t− τ)dτ

= 1
π

∫ ∞
−∞

s(τ)
t−τ dτ

(5)

where h(t) = 1/πt , and its frequency domain characteristics are:

H(jω) = F
(

1
π

)
= −j sgn(ω)

sgn(ω) =

{
1, ω ≥ 0
−1, ω < 0

(6)

That is:
Ŝ(jω) = H(jω)·S(jω) = −j sgn(ω)·S(jω) (7)

Thus, the Hilbert transform of the real signal is equal to the output response of the
signal after passing through a linear system with an impulse response h(t) = 1/πt. After
the Hilbert transform, the amplitude of each frequency component in the frequency domain
remains unchanged, and the phase shifts 90◦; that is, the positive frequency lags π/2 and
the negative frequency leads π/2, respectively. Therefore, the Hilbert converter is called a
90◦ phase shifter.

The analytical signal of s(t) is expressed as:

š(t) = s(t) + ŝ(t) = Kejϕ(t) (8)

The mode of š(t) is the envelope of s(t):

K = |š(t)|
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After removing the envelope, the real signal becomes a sine wave of equal amplitude:

s(t) = sin(w0t + σ) (9)

3.2.2. Segmented FFT Initial Phase Analysis

Suppose the expression of the real signal s(t) is

s(t) = a·cos(2π f0t + σ) (10)

where f0 and σ are the amplitude, frequency, and initial phase of the sinusoidal signal,
respectively. Set the sampling time as T, the sampling number as N, and sampling interval
T0 = T/N; then, the sampling sequence of real signal s(t) is

s(nT0) = a·cos(2π f0nT0 + σ), n = 0, 1, 2, . . . , N − 1 (11)

The discrete Fourier transform is performed on s(nT0):

Sk =
a·sin[π(k− f0T)]
2·sin[ π

N (k− f0T)
] ·ej[σ− N−1

N π(k− f0T)], k = 0, 1, 2, . . . ,
N
2
− 1 (12)

Here, only the positive half axis of the frequency is analyzed; that is, the first half of N
points of the discrete spectrum are analyzed. The phase information σk of Sk is

σk = σ− N − 1
N

π(k− f0T)

Set k̂ as the maximum spectral line, and the phase information σ̂k at the same time is

σ̂k = σ− N − 1
N

π
(

k̂− f0T
)

(13)

k̂− f0T = ∆k; ∆k represents the deviation between the maximum spectrum line and the
actual spectrum line, and the range is −0.5 to 0.5.

The sampling sequence of the real signal s(t) is divided into two equal length se-
quences, s1(t) and s2(t). For the convenience of calculation, the number of data points of
s(t) is set as 2N; then, the number of data points of sequence s1(t) and s2(t) are both N.
The expression of s1(t) and s2(t) is as follows:

s1(t) = a·cos(2π f0t + σ) = a·cos(2π f0t + σ1) (14)

s2(t) = a·cos[2π f0(t + T) + σ] = a·cos(2π f0t + σ2) (15)

σ1 = σ, σ2 = σ + 2π f0T

According to Formula (13), after the discrete Fourier transformation of signals s1(t)
and s2(t), the phases obtained are respectively:

σ̂k1 = σ1 −
N − 1

N
π
(

k̂− f0T
)
= σ1 −

N − 1
N

π∆k (16)

σ̂k2 = σ2 −
N − 1

N
π
(

k̂− f0T
)
= σ2 −

N − 1
N

π∆k (17)

Subtract Formula (17) from Formula (16) to obtain:

σ̂k2 − σ̂k1 = σ2 − σ1 = 2π f0T = 2πk̂− 2π∆k = −2π∆k (18)

From the range of k, it can obtain the range of σ̂k2 − σ̂k1 is (−π, π).
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Substitute Formula (18) into Formula (16) to obtain:

σ = σ1 = σ̂k1 −
N − 1

N
· σ̂k2 − σ̂k1

2
(19)

σ is the initial phase of s(t).

3.3. Single-Parameter Genetic Algorithm Estimation of the Signal Frequency

When genetic algorithms solve problems, they first encode the solution to form an
individual. Different individuals form a population, and the fitness function is determined
according to the objective function, which then makes the population evolve into a new
generation of a better population through three operators: selection, crossover, and muta-
tion. Evolution continues in this way until a solution that meets the requirements is found.
This article presents local optimization on traditional genetic algorithms and uses the upper
bound deterministic selection method for replication operations to improve the iteration
efficiency of genetic algorithms.

3.3.1. Determine Selection Operator

The selection (replication) operation plays a crucial role in genetic algorithms, as it
helps individuals in a population survive and eliminate the fittest, constantly approaching
the optimal solution. The quality of the selection operator directly affects the calculation
results of genetic algorithms. Classical genetic algorithms typically use roulette wheel
selection as the selection operator [12,15], but the error is large, and it easily falls into local
optima. Through comparison, it was found that the deterministic selection method had
the best effect. The deterministic selection method includes two methods: upper limit
determination and lower limit determination. Here, the upper limit deterministic selection
method was used to achieve selection operations, which can achieve better results. The
specific implementation process is as follows:

(1) The survival expectation number of individual j in a population with size N is

Ej = N
Fj

∑N
k=1 Fk

, and
⌈

Ej
⌉

is the fitness function value of the jth individual.

(2) The determined survival number of the jth individual selected into the next generation
population is

⌈
Ej
⌉
; then, the number of individuals in the next generation population

is M = ∑N
j=1
⌈

Ej
⌉
, and

⌈
Ej
⌉

is Ej rounded upward.
(3) M individuals are arranged in descending order according to the value of the fitness

function, and the first N individuals are selected.

3.3.2. Optimization of the Fitness Function

The fitness function is a standard used to distinguish between good and bad individu-
als in a group, which promotes the evolution direction of genetic algorithms and is used to
simulate natural species selection. What is more, the function value of the fitness function is
always positive, and its value is larger, which indicates the higher superiority. Individuals
with higher fitness function values are more likely to be passed on to the next generation.

The Hilbert transform removes the signal envelope and transforms the attenuation
curve fitting problem into a sine curve fitting problem. Sinusoidal curve fitting is a mea-
surement method based on time-domain least squares error analysis, which can obtain the
accurate value of the sum of squared residuals of sinusoidal parameters.

The sine curve fitting model is represented as

s(nT0) = Asin(2π f0nT0 + σ) (20)
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where A is the signal amplitude, σ is the initial phase, T0 is the sampling time interval, and
f0 is the signal frequency. According to the criterion of minimum fitting residual error,

ρ =
n

∑
i=1

[xi − Asin(2π f0nT0 + σ)]2 (21)

When the mean square error ρ is the minimum, the estimated parameter is the characteristic
parameter of the signal.

The fitness function ε was determined according to fitting residual Formula (22):

ε = m− ρ (22)

where m is a constant and m > ρ; m = 600 was selected in this paper.

4. Experimental Data Analysis
4.1. Hilbert Envelope Demodulation Analysis

The SAW signal with wireless distance d = 10 cm in Figure 3 was analyzed, and the
attenuated signal with a duration of approximately 10 µs between 100 and 200 sampling
points was intercepted. Cross-correlation [18,19] was used to remove mixed excitation
noise in the signal. Then, Hilbert complex analytic envelope demodulation was used
to de-envelope the useful signal after removing the noise. Figure 5 shows the envelope
obtained, where the blue line is the envelope of the echo signal, and Figure 6 is the echo
signal after de-enveloping.
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After removing the envelope via Hilbert complex analytic envelope demodulation, it
was observed that due to the incomplete removal of excitation noise, there was an error
in the amplitude of the tail end of the de-enveloped echo signal. To further simplify the
signal model, it was assumed that the signal after removing the envelope was a constant
amplitude sine wave with an amplitude of 1.
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4.2. Segmented FFT for Signal Phase Estimation

Sinusoidal signals from 0.90 to 0.99 MHz with an interval of 0.01 MHz were selected.
The sampling rate of 10 MHz was used to sample 100 points of selected signals; the signal
amplitudes of each frequency were identical, and all were 1. Three initial phases were set
for testing the signals of each frequency [20], which were randomly set at 17◦, 41◦, and
−18◦. The initial phase estimation results are shown in Figure 7.
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In Figure 7, each image sequentially represents the initial phase estimation of signals
at different frequencies with initial phases of 17◦, 41◦, and −18◦. The red part represents
the true initial phase value, while the remaining color parts represent the phase estimation
value using segmented FFT. In Figure 7, it is easy to see that the maximum error of phase
estimation at each frequency occurs at 0.95 MHz, and the maximum error of three initial
phase estimations at each frequency is approximately 0.45◦.

4.3. Upper Bound Deterministic Selection Method for Iterative Algebra

Sine signals with an interval of 0.01 MHz from 0.90 MHz to 1.03 MHz were selected,
and 100 points of the selected signal were sampled at a 10 MHz sampling rate, as well as
with the unchanged amplitude and phase for signals under each frequency.

Roulette wheel selection and the upper bound deterministic selection method were
used to observe the iterative algebra. Then, the crossover probability was set as 0.6,
mutation probability as 0.02, chromosome number as 20, and encoding method as binary.
The experimental results are shown in Figures 8 and 9. Among them, the line’s color of
Figures 8 and 9 is only to distinguish the curves at each frequency.
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By comparing Figures 8 and 9, the fitness function value curve is disorderly and
random without a clear trend for when the roulette wheel selection was used. Conversely,
the iteration curve shows a regular upward growth trend for when the upper bound
deterministic selection method was used for iteration, reaching the maximum value of
fitness function in about the sixteenth generation. With the increase of algebra, the value of
the fitness function remains basically unchanged.

4.4. Accuracy Analysis of Genetic Algorithm Frequency Estimation

Signals ranging from 0.9 to 1.03 MHz with frequency intervals of 0.01 MHz were
used for denoising and de-enveloping to determinate the amplitude, as well as segmented
FFT analysis to determine their initial phase, and genetic algorithms were then used for
frequency estimation. The frequency estimation by the genetic algorithm of the replication
operation, using the upper bound deterministic selection method at the sixteenth genetic
algebra, and the frequency estimation by the genetic algorithm of the replication operation,
using the roulette selection method at the twenty-ninth genetic algebra, are shown in
Figure 10. It should be noted that the settings of genetic algebra need to ensure that the
maximum fitness function value can be reached by using different selection operators.
Therefore, the crossover probability was set as 0.6, the mutation probability as 0.02, the
chromosome number as 20, and the encoding method as binary.
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Figure 10a shows the frequency estimation effects of two selection operators, while
Figure 10b shows the frequency estimation errors of the two selection operators. The
roulette wheel selection for copying operations was used, the frequencies ranging from 0.9
to 1.03 MHz had an ~22 KHz maximum frequency estimation error, and the estimation
effect was unstable. When using the upper bound deterministic selection method for
replication operations in genetic algorithms, the frequencies ranging between 0.9 and
1.03 MHz had a ≤3 KHz frequency estimation error.
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4.5. Comparison of Single-Parameter and Multi-Parameter Genetic Algorithms

As shown in Table 1, in terms of frequency accuracy, the single-parameter genetic
algorithm is approximately seven times more accurate than the multi-parameter genetic
algorithm. In terms of genetic algebra, the fitness function value curve of multi-parameter
genetic algorithms is disorderly. Because there is high randomness and not a clear trend,
the iteration algebra corresponding to the maximum fitness function value may not be
clearly determined. However, single-parameter genetic algorithms reach the maximum
fitness function value at the sixteenth generation. As the number of iterations increases, the
fitness function value remains basically unchanged. Therefore, single-parameter genetic
algorithms not only have a regular iteration curve to follow but also very high iteration
efficiency. In terms of running time, the running time of the multi-parameter genetic
algorithm in DSP is eight times longer than that of the single-parameter genetic algorithm.

Table 1. Comparison of single-parameter and multi-parameter genetic algorithms.

Type
Accuracy of
Frequency
Estimation

Genetic Algebra Running Time

Single-parameter
genetic algorithm error ≤ 3 KHz 16th generation 0.952 s

Multi-parameter
genetic algorithm error ≤ 22 kHz irregularity 7.975 s

It should be noted that a frequency detection system with low power and a 200 MHz
main frequency (TMS320VC5509A chip as the core) was built. The running times of the two
genetic algorithms were estimated using the software Code Composer Studio V5, which
determined the times by calculating the number of CPU clocks.

5. Conclusions

In this study, a single-parameter genetic algorithm was used to estimate the frequency
of SAW echo signals in response to the challenge of frequency detection in echo signals
for passive wireless resonant sensors. By estimating the amplitude and initial phase
of removing the envelope signal, it achieved the goal of estimating the frequency of
only a single parameter. The selection operator of the genetic algorithm was optimized,
which greatly reduced the program complexity as well as the amount of calculation, and
improved the efficiency of the algorithm. Hilbert complex analytic envelope demodulation
technology was used to remove the envelope part without frequency information, obtaining
a constant amplitude sine wave and simplifying the useful echo signal model. Second,
the disadvantages of conventional frequency detection technology were analyzed, and a
frequency estimation technique based on a genetic algorithm was used. In addition, in
order to solve the problem of low efficiency caused by the simultaneous fitting of multiple
parameters in the standard genetic algorithm, the amplitude of the useful echo signal after
de-enveloping was estimated, and the initial phase was evaluated via the segmented FFT
phase difference method to realize the single-parameter frequency estimation. Finally, the
standard genetic algorithm was optimized, and the roulette wheel selection was replaced
with the upper bound deterministic selection method as the selection operator to further
improve the performance of the frequency estimation algorithm. The frequency estimation
accuracy of the upper bound deterministic selection method was within 3 KHz, and,
compared to the standard multi-parameter fitting genetic algorithm, the fitting efficiency
was improved by eight times under the same platform conditions.



Sensors 2023, 23, 9401 13 of 14

Author Contributions: Y.W. planned the study and guided the whole project. Y.W. conceived the
idea, designed the experiments, analyzed the data, and wrote the manuscript. Y.L. performed all
the experiments with the assistance of Y.W., J.Y., X.W. and J.Z. All the authors reviewed and made
technical comments on the manuscript. Y.W. submitted the manuscript and is the Lead Contact. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Project (2021YFA
1201602) and the Science and Technology Funds of the Chongqing Municipal Education Commission
(KJQN202100539, KJQN202100533).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kang, A.; Lin, J.; Ji, X. A high-sensitivity pressure sensor based on surface transverse wave. Sens. Actuators A Phys. 2012, 187,

141–146. [CrossRef]
2. Martin, G.; Berthelot, P.; Masson, J. Measuring the Inner Body Temperature using a Wireless Temperature SAW-sensor-based

System. In Proceedings of the 2007 Ultrasonics Symposium, New York, NY, USA, 28–31 October 2007; pp. 2089–2092.
3. Bardong, J.; Aubert, T.; Naumenko, N. Experimental and theoretical investigations of some useful langasite cuts for high-

temperature SAW applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 814–823. [CrossRef] [PubMed]
4. Bell, D.L.T.; Li, R.C.M. Surface-acoustic-wave resonators. Proc. IEEE 1976, 64, 711–721. [CrossRef]
5. Guo, J.; Luo, Z.; Liu, B. Discrimination of echo signal of acoustic surface wave resonator. In Proceedings of the 2017 Symposium

on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Nanjing, China, 11–14 October 2017; pp. 70–76.
6. Wang, W.; Xue, X.; Fan, S. Development of a wireless and passive temperature-compensated SAW strain sensor. Sens. Actuators A

Phys. 2020, 308, 112015. [CrossRef]
7. Liu, B.; Han, T.; Zhang, C. Error correction method for passive and wireless resonant SAW temperature sensor. IEEE Sens. J. 2015,

15, 3608–3614. [CrossRef]
8. Rodríguez-Madrid, J.G.; Iriarte, G.F.; Williams, O.A. High precision pressure sensors based on SAW devices in the GHz range.

Sens. Actuators A Phys. 2013, 189, 364–369. [CrossRef]
9. Pohl, A.; Ostermayer, G.; Reindl, L. Monitoring the tire pressure at cars using passive SAW sensors. In Proceedings of the 1997

IEEE Ultrasonics Symposium Proceedings, an International Symposium (Cat. No. 97CH36118), Toronto, ON, Canada, 5–8
October 1997; Volume 1, pp. 471–474.

10. Mandal, D.; Banerjee, S. Surface acoustic wave (SAW) sensors: Physics, materials, and applications. Sensors 2022, 22, 820.
[CrossRef] [PubMed]

11. Dixon, B.; Kalinin, V.; Beckley, J. A second generation in-car tire pressure monitoring system based on wireless passive SAW
sensors. In Proceedings of the 2006 IEEE International Frequency Control Symposium and Exposition, Miami, FL, USA, 4–7 June
2006; pp. 374–380.

12. Qiu, M.; Ming, Z.; Li, J. Phase-change memory optimization for green cloud with genetic algorithm. IEEE Trans. Comput. 2015, 64,
3528–3540. [CrossRef]

13. Lee, Y.H.; Park, S.K.; Chang, D.E. Parameter estimation using the genetic algorithm and its impact on quantitative precipitation
forecast. In Annales Geophysicae; Copernicus Publications: Göttingen, Germany, 2006; Volume 24, pp. 3185–3189.

14. Arabali, A.; Ghofrani, M.; Etezadi-Amoli, M. Genetic-algorithm-based optimization approach for energy management. IEEE
Trans. Power Deliv. 2012, 28, 162–170. [CrossRef]

15. Tuhus-Dubrow, D.; Krarti, M. Genetic-algorithm based approach to optimize building envelope design for residential buildings.
Build. Environ. 2010, 45, 1574–1581. [CrossRef]

16. Wen, Y.M.; Li, P.; Yang, J.; Zheng, M. Detecting and evaluating the signals of wirelessly interrogational passive SAW resonator
sensors. IEEE Sens. J. 2004, 4, 828–836. [CrossRef]

17. Mitra, S.K. Digital Signal Processing: A Computer-Based Approach; McGraw-Hill: New York, NY, USA, 2011.
18. Shahriar, M.R.; Borghesani, P.; Randall, R.B. An assessment of envelope-based demodulation in case of proximity of carrier and

modulation frequencies. Mech. Syst. Signal Process. 2017, 96, 176–200. [CrossRef]

https://doi.org/10.1016/j.sna.2012.08.017
https://doi.org/10.1109/TUFFC.2013.2630
https://www.ncbi.nlm.nih.gov/pubmed/23549542
https://doi.org/10.1109/PROC.1976.10200
https://doi.org/10.1016/j.sna.2020.112015
https://doi.org/10.1109/JSEN.2015.2394776
https://doi.org/10.1016/j.sna.2012.09.012
https://doi.org/10.3390/s22030820
https://www.ncbi.nlm.nih.gov/pubmed/35161565
https://doi.org/10.1109/TC.2015.2409857
https://doi.org/10.1109/TPWRD.2012.2219598
https://doi.org/10.1016/j.buildenv.2010.01.005
https://doi.org/10.1109/JSEN.2004.837493
https://doi.org/10.1016/j.ymssp.2017.04.020


Sensors 2023, 23, 9401 14 of 14

19. Zhang, Y.; Xu, C.; Zhao, B. Frequency evaluation of SAW torque response signal using Hilbert envelope-demodulation. In
Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; Volume 9,
pp. 4069–4073.

20. Guoqing, Q. Digital signal processing in FMCW radar marine tank gauging system. In Proceedings of the Third International
Conference on Signal Processing (ICSP’96), Beijing, China, 18 October 1996; Volume 1, pp. 7–10.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	The Characteristics of a SAW Resonator 
	The Principle of Single-Parameter Genetic Algorithm Estimation for SAW Resonance Frequency 
	Research on a Frequency Detection Method for the Surface Acoustic Wave Echo Signal 
	Estimation of the Amplitude and Phase of the Sensing Echo Signal 
	Hilbert Complex Analytic Envelope Demodulation 
	Segmented FFT Initial Phase Analysis 

	Single-Parameter Genetic Algorithm Estimation of the Signal Frequency 
	Determine Selection Operator 
	Optimization of the Fitness Function 


	Experimental Data Analysis 
	Hilbert Envelope Demodulation Analysis 
	Segmented FFT for Signal Phase Estimation 
	Upper Bound Deterministic Selection Method for Iterative Algebra 
	Accuracy Analysis of Genetic Algorithm Frequency Estimation 
	Comparison of Single-Parameter and Multi-Parameter Genetic Algorithms 

	Conclusions 
	References

