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Abstract: Cloud computing (CC) is an internet-enabled environment that provides computing ser-
vices such as networking, databases, and servers to clients and organizations in a cost-effective
manner. Despite the benefits rendered by CC, its security remains a prominent concern to overcome.
An intrusion detection system (IDS) is generally used to detect both normal and anomalous behavior
in networks. The design of IDS using a machine learning (ML) technique comprises a series of
methods that can learn patterns from data and forecast the outcomes consequently. In this back-
ground, the current study designs a novel multi-objective seagull optimization algorithm with a deep
learning-enabled vulnerability detection (MOSOA-DLVD) technique to secure the cloud platform.
The MOSOA-DLVD technique uses the feature selection (FS) method and hyperparameter tuning
strategy to identify the presence of vulnerabilities or attacks in the cloud infrastructure. Primarily, the
FS method is implemented using the MOSOA technique. Furthermore, the MOSOA-DLVD technique
uses a deep belief network (DBN) method for intrusion detection and its classification. In order to
improve the detection outcomes of the DBN algorithm, the sooty tern optimization algorithm (STOA)
is applied for the hyperparameter tuning process. The performance of the proposed MOSOA-DLVD
system was validated with extensive simulations upon a benchmark IDS dataset. The improved
intrusion detection results of the MOSOA-DLVD approach with a maximum accuracy of 99.34%
establish the proficiency of the model compared with recent methods.

Keywords: cloud computing; deep learning; intrusion detection system; sooty tern optimization
algorithm; seagull optimization algorithm

1. Introduction

Cloud computing (CC) offers numerous services to users including infrastructure,
storage capabilities, and applications [1]. A cloud user can manipulate or access software
and hardware over the internet based on their requirements. Though CC provides several
advantages to its users, it also has certain limitations and challenges. These challenges
include performance management, privacy, security, cost, and load balance [2]. Among the
issues encountered by the cloud computing phenomenon, security plays a major role in
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user data and applications on the cloud infrastructure. CC security encompasses policies
and procedures to protect cloud-based information, applications, and frameworks from
unauthorized access and attacks [3]. Also, it protects data and infrastructure against
Structured Query Language (SQL) injection, software vulnerability, flooding attacks, cross-
site scripting, data alteration, and data leakage. In parallel, cloud providers and subscribers
continuously report security problems raised by different types of attacks. Hence, it is
necessary to provide security against malicious activities and attacks [4].

Intrusion detection systems (IDSs) [5] in cloud networks play a crucial role in terms
of providing security against attacks from both outsiders as well as insiders [6]. Tradi-
tional IDSs are used in the detection of attacks in internet environments. However, they
cannot adjust their working mechanisms for cloud platforms and so remain non-scalable.
Furthermore, researchers found them to be not appropriate for cloud platforms and not
deterministic [7]. Therefore, new and reliable anomaly based IDSs have been proposed,
developed, and validated. Mostly, the existing methods for anomaly detection from cloud
platforms used machine learning (ML) approaches. These methods can enhance their
performance by upgrading their data according to the pattern detected from the input
datasets [8]. When a novel pattern is detected from the input dataset, the ML technique
parameters are upgraded for the detection of the same anomalies in future traffic flow.
According to the data extracted from the prior outcomes, the solution of the method is
enhanced by altering the implementation approach, if required. The feature selection
(FS) process helps to focus only on the most related information. FS is an ML method
that reduces the quantity of the data to be analyzed [9]. It can be achieved by detecting
the relevant features (such as the attributes) of a dataset, leaving behind the insignificant
ones. By reducing the dimensionality of a dataset, i.e., retaining only the relevant features,
the ML technique can make the classification prediction process an efficient and effective
one [10]. This efficacy is particularly related to the intrusion detection (ID) process that
needs real-time performance.

The current study designs a new multi-objective seagull optimization algorithm with
a deep learning-enabled vulnerability detection (MOSOA-DLVD) system for a secure cloud
platform. In the developed MOSOA-DLVD algorithm, the feature selection process is per-
formed with the help of the MOSOA technique. Furthermore, the MOSOA-DLVD technique
uses a deep belief network (DBN) method for intrusion detection and classification. To
enhance the detection results of the DBN algorithm, the sooty tern optimization algorithm
(STOA) is implemented for the hyperparameter tuning process. The performance of the
MOSOA-DLVD system is examined with simulations using a benchmark IDS database.
The main contributions of the current study are briefly given below.

• Development of an automated intrusion detection system for the cloud platform,
named the MOSOA-DLVD algorithm, which involves MOSA-based FS, DBN-based
classification, and STOA-related hyperparameter tuning. To the best of the authors’
knowledge, the MOSOA-DLVD system was previously non-existent in the literature.

• The development of the MOSOA approach supports the selection of related features,
increases accuracy, and reduces higher dimensionality issues.

• Hyperparameter tuning of the DBN model, using the STOA, enhances the prediction
outcomes of the MOSOA-DLVD algorithm for hidden data.

The remaining sections of this paper are explained here. Section 2 offers the related
works, and Section 3 provides details about the developed model. Next, Section 4 discusses
the outcomes of the analyses, and Section 5 concludes this paper.

2. Related Works

Kavitha et al. [11] examined filter-based ensemble-FS (FEFS) and used the DL method
to overcome the problems faced in CC. FEFS is an integration of three feature extraction
approaches, namely, embedded, filter, and wrapper methods. In these feature extraction
models, the important features were selected to enable the trained model in the DL tech-
nique. Lastly, the classifier accomplished the FS. The DL method was an integration of two
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techniques including the Tasmanian devil optimization (TDO) and the recurrent neural net-
work (RNN). The authors [12] developed an innovative IDS, which incorporates the fuzzy
C-means (FCM) technique with SVM to improve the accuracy of the recognition systems
at CC platforms. Maheswari et al. [13] suggested a hybrid soft computing-assisted IDS,
i.e., ST-IDS for cloud and web platforms. The authors proposed an IDS system for CC and
web infrastructure by utilizing the hybrid teacher learning-enabled-DRNN (TL-DRNN) and
cluster-related feature optimizer. In their study, the modified manta ray foraging optimizer
(MMFO) was used after feature extraction in the selection of optimum features for accurate
detection. The hybrid TL-DRNN was devised to classify the intrusions from the web and
cloud platforms. In [14], the authors proposed a dual-channel capsule generative adversar-
ial network (GAN) optimized with RFO algorithm-fostered IDS (IDS-CC-DCCGAN-RFOA)
to ensure privacy and secure the CC platform from different types of attacks. According to
the best features, the data were categorized into two models, namely, privacy attack and
secured data, depending on the DCCGAN outcome. Then, the weight of the DCCGAN
model was optimally fine-tuned utilizing the RFO method to accomplish the efficient and
best outcomes in terms of intrusion detection.

In a study conducted earlier [15], the authors developed the LR-based oppositional
tunicate FCM (LR-OTSFCM) method for cloud ID. The important part of this study is
the identification of the attacks in the cloud platform. In [16], a novel hybridization
approach was suggested for the IDS to enhance the complete security of the cloud-based
computing platforms. In addition, the SMO technique was also used in that study to
reduce the dimensionality reduction. The datasets were fed into a neural network (NN).
The authors [17] recommended the efficient dragonfly-improved invasive weed optimizer-
assisted Shepard-CNN (DIIWO-based ShCNN) technique for identifying the attackers and
alleviating the attacks in the cloud model. It is highly possible for the model to detect
intruders with ShCNN. In [18], an efficient IDS, termed the chronological salp swarm
algorithm-based DL model, was designed to identify suspicious intrusions in the cloud
platform. The presented method was developed by combining the chronological idea
and SSA. The optimum solution to detect the intrusion was exposed by utilizing the
fitness function (FF), which considers the minimum error value as the optimal result. In
a study conducted earlier [19], a novel design for deep LSTM-based IDS was presented
for detecting the network traffic flow designs from the cloud platform and distinguishing
them as malicious or normal patterns. The presented IPS avoids the malicious attacks
received in the IDS by improving the recognition rate of the malicious attacks and reducing
the computational time. The DNN with game theory for cloud security (GT-CSDNN)
model was presented in a study conducted earlier [20]. The developed model covered
either attacker or defender approaches but used the game theory algorithm. Furthermore,
the DNN model utilized the presented game theory approach for classifying the attacks
from regular data. In [21], a new ML-based hybrid IDS was presented. In that study, the
integrated SVM and GA approach was established with a novel FF to evaluate the accuracy
of the system.

Alohali et al. [22] presented the improved metaheuristics with a fuzzy logic-based
intrusion detection system for cloud security (IMFL-IDSCS) technique. For their study, an
individual IDS sample was deployed, and the IMFL-IDSCS technique used the enhanced
chimp optimization algorithm-based feature selection (ECOA-FS) method for the selection
of the optimal features, followed by the adaptive neuro-fuzzy inference system (ANFIS)
model. In a study conducted earlier [23], the authors suggested a novel IDS by combining
leader-based K-means clustering (LKM) and an optimal fuzzy logic system. Initially, the
input dataset was grouped into clusters using the LKM technique. Then, the cluster data
were fed into the fuzzy logic system (FLS). Both normal and abnormal data were inquired
by the FLS, whereas the FLS was trained with the grey wolf optimization algorithm by
maximizing the rules. Mahmood et al. [24] proposed an approach for obtaining the optimal
number of features so as to build an efficient IDS model. In their study, feature reduction
was applied. Generalization ability can be improved in general by generating a small set of
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features from the actual input variables using feature extraction. For their study, a hybrid
algorithm, named the principal component analysis neural network algorithm (PCANNA),
was used to reduce the number of computer resources.

Although several studies have been conducted for intrusion detection in the cloud
platform, the prominence of the FS with hyperparameter tuning for differentiating attacked
traffic from normal traffic is yet to be completely studied. Though the implementation
of the ML-based IDS was developed earlier, the unique dynamics of the cloud platforms,
represented by its various and dynamic workloads, demand specified methods. The
existing research shortages drive the demand for a comprehensive scheme that can select
important and essential features from the massive quantity of accessible data in order
to increase the proficiency and performance of the intrusion detection process. On the
other hand, fine-tuning the hyperparameters is frequently disregarded, which in turn
results in sub-optimum model effectiveness. Additionally, the important aids of ensemble
learning, in which many detection frameworks are incorporated to use their collected
predictive capability, are not progressively combined into the ID pipeline. To overcome this
research gap, it is vital to design a highly robust and effective intrusion detection technique
that is customized according to the particular challenges, modeled with cloud platforms.
This way, it becomes possible to finally improve their security posture and alleviate the
development of threats. So, it is essential to enhance the generalizability, robustness,
and accuracy of the intrusion detection methods, mainly in dynamic and developing
network infrastructures. However, the attacks endure to develop in such sophistication
and complication as well. Both FS and hyperparameter tuning include various search
spaces. FS normally contains a discrete search space, whereas various integrations of
the features are estimated. Alternatively, hyperparameter tuning often comprises semi-
continuous or continuous search spaces for parameter values. The contribution of MOSOA
for FS and STOA, in terms of hyperparameter tuning, allows every method to consider
its corresponding search space and the multiplication of its efficacy and performance.
MOSOA was developed for multi-objective optimizer tasks, which makes it a well-suitable
FS. However, the aim is to enhance numerous conflicting criteria, namely, interpretability,
accuracy, and dimensionality reduction. On the contrary, STOA can be highly proficient at
enhancing hyperparameters because of its unique optimization approaches.

3. The Proposed Model

In the current study, the authors designed the MOSOA-DLVD methodology for ac-
complishing security in the cloud platform. The aim of the MOSOA-DLVD algorithm is
to identify the presence of vulnerabilities or attacks in the cloud platform. The model
has three phases of function: the MOSOA-based FS, DBN classification, and STOA-based
hyperparameter selection.

3.1. Feature Selection Using MOSOA

The MOSOA technique is used to select the better feature sets. This technique is
imitated for the process of FS in which seagulls function as searching agents (features) [25].
SOA is a meta-heuristic optimizer algorithm inspired by the foraging behavior of seagulls.
This algorithm provides the benefits of a modest implementation and architecture. The
major benefit of the SOA is that its overall construction and composition are relatively
simple, while its global search and local search abilities are strong. Here, the migration
method is performed to attain the optimum features out of an accessible group of features
and to explore the search space. The main function of the FS method includes a reduction
in classification errors and the features that are considered as input.

Min Ft = δ∗ψ + (1− δ)∗
| f |
|F| (1)

In this system, the aims are combined into a single objective equation like a preset
weight that identifies all the objective importance. In Equation (1), δ corresponds to the
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parameter inducing the classifier’s output, F denotes the overall number of features in
the data, ψ specifies the error rate of the classifiers, and f represents the overall feature
extraction counts during the extraction feature. The FF needs to have a low value for the
proper FS. Figure 1 exemplifies the workflow of the MOSOA-DLVD method.

1 
 

 
Figure 1. The overall flow of the MOSOA-DLVD algorithm.

Exploration: The exploration of the search agent includes its movement from one place
to another as per the FF. The three most important conditions of the exploration method of
MOSOA are given below:

(i). Collision Avoidance: It is also possible for a collision to happen, so a parameter is
used to calculate the location of the searching agent while exploring the search range. The
equation is given below.

→
c s = A∗

→
p s(x) (2)

In Equation (2),
→
c s shows the location of the searching agent not included in a collision,

→
p s represents the existing location of the searching agent, x denotes the present iteration,
and parameter A shows the movement of the searching agent from the performance space.
The formula for the parameter is given below.

A = fι −
(

x∗
(

f ,
Itrmax

))
; x = 0, 1, . . . Itrmax (3)

In Equation (3), f controls the frequency of the A parameter.
The movement to the optimum neighbor location: The searching agent that avoids the

collision moves to a better neighborhood position, for which the formula is as follows.

→
ms = B∗

(→
p bs(x)−→p s(x)

)
(4)

In Equation (4),
→
p s corresponds to the searching agent,

→
p bs stands for the place of the

better search agent, and
→
ms represents the movement of

→
p s toward

→
p bs. The random value

B is accountable for maintaining the balance between the exploitation and exploration
phases. The formula for B is given below.

B = 2∗A2∗rnd (5)
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In Equation (5), rnd denotes a random value within [0, 1].
(ii). Position Update: Finally, the searching agent updates the location based on

the location of a better searching agent in the group. The location updating formula is
as follows. →

d s =
∣∣∣→c s +

→
ms

∣∣∣ (6)

In Equation (6),
→
d s denotes the distance between the better one in the group and the

searching agent.
The MOSOA technique calculates the fitness function of the searching agent, whereas

a better solution is upgraded to the archive. Once the archive is established to overflow,
the grid technique is used to avoid the crowded solution in the available solutions from
the archive. Next, a novel solution is upgraded to archive and later, the boundary of the
searching agent is adjusted and evaluated. Finally, the FF estimates the position of the
searching agent in the archive, whereas the better searching agent is upgraded with a novel
location.

Exploitation: This procedure is imitated during the attacking behavior of the searching
agent based on the experience and history of the exploitation. The searching agent spirally
moves from the air in a 3D axis and is defined as follows.

x′ = α∗cos(l) (7)

y′ = α∗sin(l) (8)

z′ = α∗l (9)

l = u∗elv (10)

where α represents the radius of each turn in a spiral movement, l denotes the arbitrary
value selected in the range of [0, 2π], and u and v are the constants that represent the spiral
motion. The last upgraded location of the search agent is shown below.

→
p s(x) =

(→
d s ∗ x′ ∗ y′ ∗ z′

)
+
→
p bs(x) (11)

In the MOSOA technique, the better Pareto optimum result is compared with that of
the current solution. Therefore, this method selects the leader for the group to achieve it.
The minimum crowded space from the archive is occupied with the roulette wheel selection
process, whereas the better solution in the optimum boundary is taken into account as
given below.

Ul =
h

Nl
(12)

In Equation (12), Nl shows the amount of Pareto optimum solutions for the segment
and h denotes the constant value higher than l.

3.2. Vulnerability Detection Utilizing the DBN Model

The DBN model has been applied in the detection and classification of the vulnerabili-
ties. DBNs can automatically learn the hierarchical representations of the input data. For the
purpose of intrusion detection, it is used for learning and extracting the important features
from raw network traffic data and reducing the requirement for manual feature engineering.
Primarily, this characteristic is valuable for a network intrusion model as it is complex
and develops over some time. DBNs have been well-appropriated for anomaly detection
activity, which is an important module of the intrusion detection process. It can model
the normal behavior of a network and indicate abnormalities from learned regularities as
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possible intrusions. It is supported to identify new or earlier hidden attack patterns. It is
capable of taking reliance and correlation among the diverse phases of multi-stage attacks.
Generally, this is significant as advanced attacks include several stages, and identifying
them as a whole could be more efficient than detecting different types of anomalies.

DBN is considered a fusion of unsupervised network models like RBM that act as a
hidden layer (HL) of each subnet and a visible layer (VL) of the second layer [26]. The
DBN model comprises multiple VLs, HLs, and an LR for classification in the final layer.
Initially, the feature vector is mapped, after which, each layer of the RBM is trained using
an unsupervised method for maintaining the feature data. Next, a fine adjustment is made.
In the RBM technique, the vi in the VL and HL are characterized as hi. wij represents the
weights between vi and hj, while the latter denotes the guided values. The VL and HL
nodes have biases and are denoted by the c and b vectors. The bi, ci, and wij values of the
RBM form the parameter θ in the DBN and appear in the model with a probability of the
energy function and the HL. Figure 2 represents the framework of the DBN.

E(θ, v, h) = −
m

∑
i=1

vici −
n

∑
j=1

hjbj

−
m

∑
i=1

n

∑
j=1

vihiwij (13)
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Subsequently, there is no interlayer linked from the DBN model, whereas the probabil-
ity distribution of the VL and HL is computed as given below.

P(vi = 1|h) = 1/1 + e−biΣhiwij (14)

P(hi = 1|v) = 1/1 + e−ciΣviwij (15)

The reconstructed data are returned and defined with the p(vh) computation after the
weight calculation is completed. The output σ takes place once the data are transferred
back to the HL. Now, the logistic function σ can be described as follows.

σ(x) =
(

1 + e−x)−1 (16)

Similarly, if vi = 1, the conditional probability of vi can be computed as follows:

P(vi = 1|v) = σ

(
ai + ∑

i=1
Wijhj

)
(17)

3.3. Hyperparameter Tuning Using the STOA

Eventually, the STOA is utilized for the optimum hyperparameter selection of the
DBN approach. The STOA is a new optimization technique derived from the natural
foraging behavior of seabirds [27]. The sooty tern is an omnivorous bird that preys on fish,
earthworms, and other insects. The technique has high precision and a strong global search
ability. The STOA can be a population-based technique separated into local and global
search phases. The global search phase mainly comprises collision avoidance, position
update, and convergence to the optimum solution.

(1) The mathematical equation is used for collision avoidance is as follows.

B = γ× P(k) (18)

γ = α− (k× (α−Maxiieraiion))k = 0, 1, 2, · · ·Maxiteration, (19)

where B refers to the safer location to make sure that no collision occurs between the black
terns; γ denotes the collision avoidance aspect; and P(k) shows the existing location of the
black tern. k represents the number of iterations; and the α value is 2.

(2) Convergence to the optimum solution is formulated as follows.{
M = β× (Pb(k)− P(k))
β = 0.5× r

(20)

In Equation (20), p(k) shows the existing optimum tern, M denotes the optimum
location of the sooty tern colony; β refers to the arbitrary regulator; and r is an arbitrary
integer in the range of [0, 1].

(3) To update the position, the following equation is used.

D = B + M (21)

In Equation (21), D denotes the existing and optimum locations of a sooty tern.
During the local exploration stage, the bird uses its wings to gain height and also

changes its angle and speed of attack during the migration process. The hovering behavior
at the time of attacking prey is described as follows.
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
x′ = R× cos(θ)
y′ = R× cos(θ)
z′ = R× θ

r = u× ekv

(22)

In Equation (11), θ represents the angle of attack in the range of [0, 2], R denotes the
spiral radius, and u and v show the spiral constant and are fixed as 1. The equation to
update the location of the sooty tern is as follows.

P(k) =
(

D×
(
x′ × y′ × z′

))
× Pb(k) (23)

FF is a key feature of the STOA system. The encoder performance is used to develop
the optimum candidate outcome. Presently, accuracy is the main condition deployed to
develop the FF.

Fitness = max
(

TP
TP + FP

)
(24)

where TP and FP stand for true and false positive values, respectively.

4. Results and Discussion

The MOSOA-DLVD methodology was experimentally validated using the NSL-KDD
database [28]. The dataset has a total of 125,973 samples under five classes, as shown
in Table 1.

Table 1. Description of the dataset.

Class No. of Samples

Dos 45,927

R2l 995

Probe 11,656

U2r 52

Normal 67,343

Total no. of Samples 125,973

In Figure 3, the confusion matrices generated using the MOSOA-DLVD system are
shown. The outcomes indicate that the MOSOA-DLVD algorithm accurately recognized all
five classes.

In Table 2 and Figure 4, the overall detection results of the MOSOA-DLVD method
at 80:20 of the TRS/TSS are given. The achieved outcomes show that the MOSOA-DLVD
system proficiently recognized all five class labels. At 80% of the TRS, the MOSOA-DLVD
algorithm achieved an average accuy of 99.23%, precn of 74.15%, recal of 73.44%, Fscore of
73.78%, and an MCC of 73.14%. Next, with 20% of the TSS, the MOSOA-DLVD system
obtained an average accuy of 99.28%, precn of 74.05%, recal of 73%, Fscore of 73.50%, and an
MCC of 72.90%.

The overall detection outcomes of the MOSOA-DLVD algorithm at 70:30 of TRS/TSS
are portrayed in Table 3 and Figure 5. The outcomes illustrate that the MOSOA-DLVD
method efficiently recognized all five classes. For 70% of the TRS, the MOSOA-DLVD
methodology attained an average accuy of 99.34%, precn of 74.37%, recal of 74.13%, Fscore of
74.24%, and an MCC of 73.76%. With 30% of the TSS, the MOSOA-DLVD system attained
an average accuy of 99.31%, precn of 73.21%, recal of 73.28%, Fscore of 73.24%, and an MCC
of 72.73%.

Figure 6 represents the training accuracy TR_accuy and VL_accuy values attained with
the MOSOA-DLVD algorithm. TL_accuy is determined by validating the MOSOA-DLVD
methodology using the TR database, whereas VL_accuy is measured as the effectiveness of
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the model upon a distinct TS dataset. The results show that the TR_accuy and VL_accuy
values increase with an increase in the number of epochs. Accordingly, the effectiveness of
the MOSOA-DLVD algorithm is enriched with the TS and TR datasets.
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In Figure 7, the TR_loss and VR_loss curves of the MOSOA-DLVD methodology are
illustrated. TR_loss corresponds to the errors between the original and the predicted values
in the TR data. VR_loss denotes the measurement of the MOSOA-DLVD system on specific
validation data. The obtained outcomes confirm that both TR_loss and VR_loss values
are reduced with an increasing number of epochs. This outcome describes the enriched
effectiveness of the MOSOA-DLVD approach as well as its ability to achieve accurate
classification. The minimal TR_loss and VR_loss values reveal the superior performance
of the MOSOA-DLVD algorithm on correlation and capturing patterns.
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Table 2. Detection outcomes of the MOSOA-DLVD algorithm on 80% of TRS/20% of TSS.

Labels Accuy Precn Recal FScore MCC

TSR (80%)

DoS 98.62 97.95 98.25 98.10 97.01

R2L 99.60 77.21 72.41 74.73 74.57

Probe 99.54 96.90 98.16 97.53 97.27

U2R 99.95 00.00 00.00 00.00 -0.02

Normal 98.43 98.67 98.39 98.53 96.84

Average 99.23 74.15 73.44 73.78 73.14

TSS (20%)

DoS 98.71 98.18 98.33 98.25 97.24

R2L 99.64 76.40 69.89 73.00 72.89

Probe 99.56 97.00 98.26 97.63 97.39

U2R 99.95 00.00 00.00 00.00 00.00

Normal 98.51 98.67 98.54 98.60 97.01

Average 99.28 74.05 73.00 73.50 72.90
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The comprehensive precision–recall examination outcomes produced using the MOSOA-
DLVD approach with the test dataset are shown in Figure 8. The MOSOA-DLVD algorithm
was found to achieve increased PR values. In addition, it is obvious that the MOSOA-DLVD
algorithm attains superior precision–recall values for all five classes.



Sensors 2023, 23, 9383 12 of 18

Table 3. Detection outcomes of the MOSOA-DLVD algorithm on 70% of TRS/30% of TSS.

Labels Accuy Precn Recal FScore MCC

TRS (70%)

DoS 98.79 98.38 98.28 98.33 97.38

R2L 99.68 80.92 77.68 79.27 79.12

Probe 98.91 93.02 95.43 94.21 93.62

U2R 99.96 00.00 00.00 00.00 00.00

Normal 99.34 99.51 99.26 99.38 98.67

Average 99.34 74.37 74.13 74.24 73.76

TSS (30%)

DoS 98.79 98.42 98.30 98.36 97.39

R2L 99.60 74.91 73.65 74.28 74.08

Probe 98.94 93.34 95.22 94.27 93.69

U2R 99.96 00.00 00.00 00.00 00.00

Normal 99.25 99.38 99.22 99.30 98.50

Average 99.31 73.21 73.28 73.24 72.73
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Figure 5. Average analysis outcomes of the MOSOA-DLVD method with 70% of TRS/30% of TSS.

In Figure 9, the ROC outcomes of the MOSOA-DLVD methodology are exhibited.
The outcomes show that the MOSOA-DLVD system produced enhanced ROC values.
Furthermore, it is apparent that the MOSOA-DLVD algorithm extends greater ROC values
with all five classes. The ROC curves produced using the MOSOA-DLVD system exhibit its
capability to differentiate the classes. This figure indicates the valued perceptions of the
trade-off between the FPR and TPR rates over individual categorization thresholds as well
as the changing number of epochs. This figure displays the predicted accuy efficiency of
the MOSOA-DLVD model for the categorization of diverse classes.
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A comparison analysis was conducted between the MOSOA-DLVD methodology
and other existing systems such as the leader-based K-means clustering (LKM) with the
OFLS [22], K-means with OFLS [23], MLP [23], and PCA with NN [24] methods, and the
results are portrayed in Table 4 and Figure 10 [22–24]. The achieved outcomes show that the
LKM-OFLS and PCA-NN models obtained poorer results than the rest of the models. Along
with that, the K-means-OFLS and MLP techniques accomplished a closer performance. But
the MOSOA-DLVD technique reported the maximum performance with accuy, precn, recal ,
and Fscore values being 99.34%, 74.37%, 74.13%, and 74.24%, respectively. This phenomenal
performance establishes the enhanced outcomes of the MOSOA-DLVD methodology.
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Table 4. Comparative analysis of the outcomes of the MOSOA-DLVD algorithm and other algo-
rithms [26–28].

Methods Accuy Precn Recal FScore

MOSOA-DLVD 99.34 74.37 74.13 74.24

LKM-OFLS [22] 89.34 64.64 54.68 58.26

K-Means-OFLS [23] 91.43 65.74 55.51 58.33

MLP algorithm [23] 91.46 66.61 56.76 54.99

PCA-NN [24] 90.08 64.56 56.06 57.54
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In summary, the MOSOA-DLVD method exhibited superior performance with a max-
imum accu_y of 99.34%. The high effectiveness of the MOSOA-DLVD system is due to
the incorporation of the MOSOA-assisted FS algorithm and STOA-based hyperparameter
tuning. The MOSOA algorithm selects the relevant and beneficial features at accessible
feature sets. With the elimination of unrelated features, the proposed model can be con-
sidered a crucial finding in terms of aspects contributing to the classification method.
This model can improve the accuracy of classification. Alternatively, the STOA optimizer
prefers the optimal values for the hyperparameters of the specified DBN system. If the
hyperparameters cannot be learned during the training period, then they should be set
before the training. It has an important effect on the model’s performance as well, and
the selection of the optimum values could result in higher accuracy. By integrating the
MOSOA-based FS algorithm and STOA-based hyperparameter tuning, the MOSOA-DLVD
system achieved the best solution by emphasizing major related features as well as selecting
the optimal sets for the method. These attained outcomes confirm the better performance
of the MOSOA-DLVD methodology over other systems.

5. Conclusions

In the current study, the MOSOA-DLVD technique was presented to accomplish se-
curity in the cloud platform. The primary aim of the MOSOA-DLVD methodology is to
identify the presence of vulnerabilities or attacks in the cloud platform. In the developed
MOSOA-DLVD method, three phases of processes are executed such as the DBN classifica-
tion, STOA-based hyperparameter selection, and the MOSOA-based FS. To enhance the
detection results of the DBN algorithm, the STOA was used for hyperparameter tuning.
The performance of the MOSOA-DLVD method was examined using the benchmark NSL-
KDD dataset. A wide range of simulations was conducted, and the outcomes established
the improved intrusion detection outcomes of the MOSOA-DLVD system over existing
methodologies with a higher accuracy of 99.34%. In the future, the MOSOA-DLVD method
can be extended to the big data environment. Furthermore, the class imbalance data han-
dling issue needs to be resolved in order to achieve improved classification results. Future
works can explore further techniques for intrusion detection that can operate on encrypted
or privacy-preserving data. This might ensure the confidentiality of sensitive information,
while detecting intrusions in an effective manner and remains important, especially in
multi-tenant cloud environments.
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