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Abstract: Pedestrian detection based on deep learning methods have reached great success in the
past few years with several possible real-world applications including autonomous driving, robotic
navigation, and video surveillance. In this work, a new neural network two-stage pedestrian detector
with a new custom classification head, adding the triplet loss function to the standard bounding box
regression and classification losses, is presented. This aims to improve the domain generalization
capabilities of existing pedestrian detectors, by explicitly maximizing inter-class distance and mini-
mizing intra-class distance. Triplet loss is applied to the features generated by the region proposal
network, aimed at clustering together pedestrian samples in the features space. We used Faster R-CNN
and Cascade R-CNN with the HRNet backbone pre-trained on ImageNet, changing the standard
classification head for Faster R-CNN, and changing one of the three heads for Cascade R-CNN. The
best results were obtained using a progressive training pipeline, starting from a dataset that is further
away from the target domain, and progressively fine-tuning on datasets closer to the target domain.
We obtained state-of-the-art results, MR−2 of 9.9, 11.0, and 36.2 for the reasonable, small, and heavy
subsets on the CityPersons benchmark with outstanding performance on the heavy subset, the most
difficult one.
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1. Introduction

In the last decade, deep learning has enabled significant progress in a variety of
applications including object detection [1,2], face recognition [3], iris recognition [4], genetic
algorithms applied to CNNs [5,6], rock lithological classification [7], trademark image
retrieval [8], and semantic segmentation [9], among others. Pedestrian detection is one of the
key tasks in computer vision, for which several models have been developed in the past few
years [10–19]. The performance has shown a steady improvement over time, especially with
the boom of deep-learning-based methods, with certain benchmarks approaching human
performance [20], e.g., the Caltech benchmark [21]. Many real-world applications require
high performance on pedestrian detection, e.g., autonomous driving, robotic navigation,
video surveillance, action recognition, and tracking [22–24]. In autonomous driving, a
robust pedestrian detection method is a key element to develop. Pedestrians tended to
suffer more injuries when a crash occurred between vehicles and pedestrians. According
to the National Highway Traffic Safety Administration, traffic accidents in the United
States generated 7388 pedestrian fatalities, and 60,577 pedestrians were injured in the year
2021 [25]. In Europe, 3608 pedestrian fatalities were reported in 2020, this being 19% of the
total road fatalities [26].

The nature of the possible applications involving pedestrian detection makes it nec-
essary to have performance characterized by high accuracy and real-time operation [27].
Some of the main challenges for pedestrian detection methods are that the individuals in
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the images present different scales, several occlusions, and various aspect ratios, among
others [28].

The pedestrian detection problem could be viewed as a sub-problem of the broader ob-
ject detection problem, and, therefore, many methods can be adapted to detect pedestrians
instead of generic objects [29]. In the deep learning approaches, two main methods have
been used for object detection: one-stage approaches, such as SSD [30] and YOLO [31], and
two-stage approaches, with methods such as Faster R-CNN [2] and Cascade R-CNN [32].
A two-stage object detector includes an intermediate task of generating region propos-
als, and then, an object classification for each region proposed [32]. In general, one-stage
methods are faster than two-stage methods; however, two-stage methods achieve more
robust performance [32]. The pedestrian detection task, however, has its own challenges,
not shared with the general object detection task. For example, the hard negative instances
from background regions usually lead to confusion when detecting pedestrians [33].

The ability of the current state-of-the-art (SOTA) methods to perform with high perfor-
mance on cross-dataset testing is a problem that has not yet been solved. Hasan et al. [20]
showed that the current pedestrian detection methods are unsuccessful when the domain
is changed, diminishing performance results when evaluated in cross-dataset scenarios.

In this context, domain change or domain shift is defined as the problem that arises
when a distribution shift occurs between a set of training (source) data and a set of test
(target) data. This problem is caused by most of the statistical learning methods relying
on the assumption that both the source and target data are independent and identically
distributed, while ignoring out-of-distribution scenarios that are commonly encountered in
practice. This leads to a performance drop when an algorithm trained only with source data
is tested on an out-of-distribution target domain. This problem has limited the deployment
of large-scale models [34]. Domain generalization is a machine learning problem in which
the model learns from labeled training data across related tasks and then is expected to
generalize to a future prediction task without access to labeled data [35]. This concept was
introduced to address the challenges of domain shift and a lack of target data. The objective
is to train a model using data from one or more related but distinct source domains so that it
can generalize to perform well and effectively in any out-of-distribution target domain [34].

Our proposed method intends to improve some of the limitations mentioned, relying
explicitly on approaches for domain adaptation, such as the triplet loss function. This family
of loss functions has been used successfully in other computer vision tasks, e.g., face
recognition [3]. Here, we use triplet loss as an additional loss for the classification head,
after the region of interest (ROI) extraction, in a two-stage pedestrian detector approach.
We use this triplet loss function alongside the traditional classification and bounding box
regression losses.

The main contribution of this study is a novel approach to pedestrian detection: the de-
velopment of a new classification head for two-stage object detectors that incorporates the
triplet loss function, to complement the classification and bounding box regression losses,
with the objective of enhancing domain generalization capabilities in pedestrian detection
tasks. The addition of triplet loss resulted in a new combined loss, that enhanced the fea-
ture compactness of pedestrian samples, thereby improving object detection performance
relative to SOTA. This head is used at the final stage, being applied to the embeddings
generated by the ROI extractor. According to our literature review, the proposed approach
has not been used for the pedestrian detection task. One of the main goals of the proposed
method is increasing performance on cross-dataset scenarios by maximizing the inter-class
distance explicitly, and minimizing the intra-class distance, when a margin term is used
to determine the decision boundary between positive and negative pairs. In this way,
pedestrians coming from different domains (datasets) are clustered together in the feature
space. Another important contribution is achieving improved results, relative to those
of the SOTA, for the CityPersons benchmark, for the hardest partition available, using
cross-training with a different dataset, i.e., not trained explicitly on any partition of the
target dataset, and applied to a complex real-world dataset. Our proposed head could be
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used as a new direction for improving cross-dataset performance in other pedestrian detec-
tors with compatible architectures, or other object detection tasks, considering real-world
applications such as autonomous driving and video surveillance.

2. Related Work

The early approaches to pedestrian detection, and in general for object detection, used
sliding windows over all the scales and locations [36–38]. One of the first methods using
this approach was proposed by Papageorgiou and Poggio [37], who used a combination
of multiscale Haar wavelets and Support Vector Machines (SVM). The work of Viola and
Jones [38] uses the concept of integral images, aimed at speeding up the Haar features
computation, and then applies a cascade structure for efficient detection based on AdaBoost
classifiers. Dalal and Triggs [39] used features based on the Histogram of Oriented Gradi-
ents (HOG), and SVM for human detection, outperforming existing intensity-based features.
Dollár et al. [40] proposed Aggregate Channel Features (ACF) for pedestrian detection,
improving the speed without sacrificing performance, approximating features on a finely
sampled pyramid. Felzenszwalb et al. [41] developed a method for object detection, based
on mixtures of multiscale deformable models, using discriminative training of classifiers
that make use of latent information.

Currently, the SOTA methods rely on deep learning, mostly on Convolutional Neu-
ral Networks (CNNs). These methods improved the performance of the object detection
problem considerably [1,2,30,42]. Many of the generic object detection techniques were used
as a base for modern pedestrian detection methods. One of the first CNN-based methods
was proposed by Angelova et al. [43]. Cascade classifiers and deep neural network features
were used, resulting in a fast and accurate method, that runs in real-time on the Caltech
Pedestrian detection benchmark.

Cai et al. [44] developed a boosting algorithm called CompACT, by using a cascade
design, optimizing a risk that accounts for both accuracy and complexity, and enabling the
use of features with different complexities in a single detector. This includes a cascade com-
bining CNNs with an object proposal mechanism, thus obtaining good results on Caltech
and KITTI benchmarks. Hosang et al. [45] performed several experiments with different
CNN architectures available at that time, avoiding custom designs adapted for pedestrian
detection. The authors show competitive results on Caltech and KITTI benchmark datasets.
Zhang et al. [33] proposed a method based on the Region Proposal Network (RPN) followed
by cascaded boosted forests to classify the region proposals. Thus, features of arbitrary reso-
lutions from any layers are combined, and hard negative mining is performed, overcoming
the limitations of the original Faster R-CNN method. Brazil et al. [10] proposed a multi-task
infusion framework for joint semantic segmentation and pedestrian detection, obtaining
SOTA results on the Caltech dataset, and competitive performance on the KITTI dataset.

Zhou and Yuan [11] developed a method for both pedestrian detection, and occlusion
estimation, using a CNN with two branches. The first branch was for full body estimation,
and the second was for visible body part estimation. Both branches produce outputs that
complement each other, improving detection performance. The method was assessed
on the Caltech and CityPersons datasets, obtaining excellent results in detecting both
non-occluded and occluded pedestrians.

Liu et al. [12] proposed a Single Stage Detector (SSD) method, named Asymptotic
Localization Fitting (ALF), which stacks a series of predictors to evolve the default anchor
boxes of SSD, step by step, closer to labeled boxes, and then uses a pedestrian detection
architecture called ALFNet. This method improved accuracy while maintaining the ef-
ficiency of single-stage detectors, achieving SOTA performance on the CityPersons and
Caltech datasets.

Liu et al. [13] proposed the CSP method, in which the pedestrian detection task is
considered to be a high-level semantic feature detection, predicting the pedestrian center
and scale using CNNs. This simple method reached competitive results in both detection
and computing times on several pedestrian detection benchmarks.
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Yin et al. [46] proposed a method called DA-Net, utilizing a two-stage detector Feature
Pyramid Network (FPN) and incorporating a Dense Connected Block (DCB), which com-
prises a Channel-Wise Attention Module (CWAM) and a Global Attention Module (GAM).
By adding several DCBs to the network, the prediction layers captured richer semantic
information from targets, leading to more precise target localization. The method was
assessed on CityPersons and one of the evaluations was performed on the Heavy subset,
obtaining good results.

Lin et al. [47] proposed a pedestrian detector called PedJointNet, that simultaneously
regresses two bounding boxes to the head–shoulder and full body regions based on a
feasible object detection backbone. The detector achieved excellent performance in detecting
both non-occluded and occluded pedestrians. The method was assessed on the CUHK-
SYSU, TownCentre, and CityPersons datasets.

Cai et al. [48] proposed an anchor-free and proposal-free pedestrian detector, called
Pedestrian-as-Points Network (PP-Net), which finds a better trade-off between accuracy
and efficiency. The authors modeled pedestrians as single points, i.e., the center point of
the instance, and then predicted the pedestrian scale at each detected center point. To
avoid the high-level information loss on the top-down pathway, a Deep Guidance Module
(DGM) was built at the top of the backbone. They obtained SOTA results on Caltech and
CityPersons benchmarks.

Zhang et al. [49] assessed the performance of a Faster R-CNN pedestrian detector
using a new dataset, CityPersons, that consists of person annotations on the Cityscapes
dataset. The diversity of this dataset allowed training of a single model that generalizes
well over various benchmarks.

Li et al. [50] developed a pedestrian detector based on YOLOv7, aimed to improve
the detection of obscured pedestrians. For this purpose, the default backbone for YOLOv7
was replaced with a lightweight MobileNetV3 backbone. Then, a high-resolution feature
pyramid structure was used to improve missed detection of hidden pedestrians, and an
attention mechanism was used to lower the redundant bounding boxes. The method was
applied to the CrowdHuman dataset, obtaining promising results.

Liu et al. [51] developed a pedestrian detector in a foggy traffic environment, named
YOLO-GW, using the dark channel de-fogging algorithm, in conjunction with a YOLOv7
detector. Also, an ECA module and a detection head were added, aimed to improve object
classification and regression. Results showed an improvement in the frame rate by 63.08%,
and detection using mAP metric increased by 9.06%.

Braun et al. [52] assessed the generalization capacity of four deep learning object
detectors applied to pedestrian detection: Faster R-CNN, R-FCN, SSD, and YOLOv3, using
a new dataset, EuroCity Persons. They studied the effect on the detector performance for
many variables related to training set size, dataset diversity and detail, and annotation
quality. It was observed that pre-training with very large sets outperforms using only target
training sets.

Chao et al. [53] also evaluated the generalization of human detectors. For this purpose,
they created a large dataset, CrowdHuman, and assessed the cross-dataset generalization,
obtaining new SOTA results on the Caltech, CityPersons, and Brainwash datasets. They
demonstrated that the proposed new dataset could serve for pre-training human detectors.

Hasan et al. [20] performed extensive assessment using many SOTA pedestrian
detection methods. They tested their domain generalization capacities on certain popular
general object detection methods, not specifically designed for pedestrian detection. The
authors found that these general methods performed better compared to specific pedestrian
detectors when cross-dataset experiments were performed. In general, the methods reached
good detection performance when trained and tested on the same dataset, but results
worsened when assessed on a different dataset.

The triplet loss function has been used in different machine learning and computer vision
tasks, beginning with the work of Schroff et al. [3], that used this function in the context of
face recognition, proposing a method named FaceNet, that obtained a new record for accuracy
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on the LFW and YouTube Faces datasets. Other studies in face recognition using triplet loss
were developed by Parkhi et al. [54], Trigueros et al. [55], Boutros et al. [56], Yeung et al. [57],
and Feng et al. [58].

Triplet loss has also been used successfully in the context of person re-identification in
recent years. This problem is related to pedestrian detection, but presents some important
differences, and is defined as the task of identifying and matching the same individuals
either across various cameras or across time within a single camera [59]. Along this line,
many methods for person re-identification using triplet loss and reaching SOTA results
have been proposed in the past few years, as in [60–65]. Interesting work was proposed
by Wang et al. [66], in which the triplet loss function is used to adjust the feature distance
of each pedestrian to distinguish different pedestrians in crowded scenarios. However, in
our method, we use the triplet loss function to help cluster together the features of all the
pedestrians, instead of identifying single individuals.

The triplet loss function has been successfully used for domain generalization in
various tasks. The research of Lee [67], applied the triplet loss function for cross-corpus
speech emotion recognition to generalize across domains. Yu et al. [68] introduced an
adapted triplet loss as a novel approach to mitigate bias in triplet selection, and address
distribution shift in selected triplets, evaluating different image classification datasets.
Wang et al. [69] introduced a novel domain generalization framework, EISNet, which learns
to generalize across diverse domains concurrently by utilizing both extrinsic relationship
supervision and intrinsic self-supervision, particularly for images from multiple source
domains. In the work of Dou et al. [70], they used a model-agnostic learning paradigm
to expose the optimization to domain shift, introducing two complementary losses that
regularize the semantic structure of the feature space explicitly. Deng et al. [71] studied
metric learning within domain adaptation, introducing a similarity-guided constraint in the
form of a triplet loss, where each triplet is taken from both the source and target domains.

Finally, we can mention other machine learning tasks, not restricted to computer vision,
where triplet loss has been used. Here we can cite some tasks such as object tracking [72–74],
speaker recognition [75,76], intention detection for spoken language understanding in
dialogue systems [77], remote sensing image retrieval [78], 3D gesture recognition [79],
automatic music cover detection [80], and low-light image enhancement [81].

Currently, there are many benchmarks for assessing pedestrian detection; for example,
Daimler [82], INRIA [39], ETH [83], TUDBrussels [84], and WiderPedestrian [85]. Many
of these datasets were captured from surveillance scenarios, and were not suitable for
autonomous driving applications. Instead, there are other datasets specifically aimed at
autonomous driving, such as Caltech [21], KITTI [86], CityPersons [49], and EuroCity
Persons [52].

From our literature review, it can be concluded that many methods reached good
pedestrian detection performance when trained and tested on the same datasets. However,
results worsened significantly when cross-dataset experiments were performed using a
testing dataset different from that used for training. The ability to perform well on unseen
scenarios is crucial for methods to be deployed in real-life applications. For example, the
pedestrian detector in an autonomous vehicle is effectively a cross-dataset scenario, in
which most of the data seen is new for the detector. We concluded that cross-dataset testing
is a problem that has not yet been solved in the current SOTA. Another important issue
present in our literature review is the limited ability to detect pedestrians with a high degree
of occlusion. This can be confirmed by analyzing the results for the heavy partition on
the CityPersons dataset, whose current SOTA results are still far from the results obtained
for the reasonable partition, an easier scenario on which methods are able to obtain useful
results for real-life applications.

3. Materials and Methods

Most two-stage pedestrian detectors that are present in the literature have two losses in
the second stage: one loss for bounding box regression, and another for classification. Two-
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stage methods are preferred because they have achieved better performance, sacrificing
speed when compared to the one-stage approaches. The two-stage methods proved to
be successful if the train and test datasets come from the same domain, i.e., belong to the
same dataset, but when these methods are evaluated on new, unseen datasets, performance
drops significantly, as shown by Hasan et al. in [20]. To overcome this issue, we designed a
new head in the second stage, to try concentrating pedestrian examples in the feature space
explicitly, independent of from which dataset they came, and separating the background
examples from them. Our proposed method uses the concept of triplets that has been used
successfully in other computer vision tasks [3,58]. We used the triplet loss function, which
involves three samples in the calculation: an anchor sample, a sample of the same class as
the anchor, and a sample with a different label. In this way, the network learns to minimize
the distance between samples of the same label, while maximizing the distance of samples
of different labels.

3.1. Two-Stage Object Detectors

In this work, we targeted our effort at improving the two-stage detector architecture.
We performed experiments using Faster R-CNN [2], and Cascade R-CNN [32], which both
belong to the R-CNN methods family. Cascade R-CNN outperforms Faster R-CNN in many
object detection benchmarks, but we also included the latter method because it is still used,
as is reported in the literature, to serve as a baseline for comparison. Both methods approach
the detection as a multi-task learning problem, combining classification and bounding
box regression.

Faster R-CNN [2] is based on Fast R-CNN [1], but the main difference includes a
region proposal stage that is performed using a novel Region Proposal Network (RPN) that
shares convolutional features with the detection network, thus enabling nearly cost-free
region proposals. This RPN is a fully convolutional network that predicts bounding boxes
and objectness scores at each position, at the same time. This improvement was developed
to reduce the execution time of the region proposal stage which acted as a bottleneck in
terms of speed.

Cascade R-CNN [32] tackles the problem of noisy detections when a detector is trained
with a low IoU threshold, such as 0.5 in most cases. This is not trivial to solve, since
performance tends to degrade when the IoU thresholds are increased. To overcome this
problem, a sequence of detection heads is trained with increasing IoU thresholds, stage by
stage, to be more selective sequentially against close false positives. In this manner, false
positive anchors are filtered out, generating better-quality proposals.

The generic architectures of both Faster R-CNN and Cascade R-CNN are shown in
Figure 1. In Faster R-CNN, the first stage is a region proposal sub-network H0, which operates
on the entire image, generating preliminary detection hypotheses, known as object proposals,
and denoted as B0. In the second stage, hypotheses are processed by a region-of-interest
detection sub-network, H1, denoted as the detection head, assigning a final classification score,
C1, and a refined bounding box, B1. This is analogous to Cascade R-CNN.

I conv

H0 pool

C0 B0 H1

C1 B1

I conv

pool

B0

H1

C1 B1

pool

H2

C2 B2

pool

H3

C3 B3

Figure 1. Generic architectures for Faster R-CNN (Left), and Cascade R-CNN (Right). I is the input
image; conv is the convolutional backbone; pool is the region-wise feature extraction; H represents
the network heads where C is a classification head, and B is a bounding box regression. B0 represents
proposals for both architectures.
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3.2. Triplet Loss

The triplet loss function trains the neural network to embed features of the same
class, while maximizing the distance among embeddings of different classes. An anchor
is chosen, along with one negative and one positive sample, to compute the loss. As a
result, the triplet loss maximizes the inter-class distance explicitly while it minimizes the
intra-class distance, where a margin term is used to determine the decision boundary
between positive and negative pairs. Generally, this family of functions is applied to the
sample projection (Embeddings), performed by a neural network. The behavior of this type
of function is shown in Figure 2. This function has been used successfully in many machine
learning and computer vision applications, for example, in face recognition [3,54,56], person
re-identification [59,62,63], object tracking [72–74], and speaker recognition [75,76], etc.

A

P

N

A

P

N

Learning

Figure 2. Triplet loss. The network learns to minimize the distance between samples of the same
label while maximizing the distance between samples of different labels.

Formally, this function is defined by triplets of embeddings, defining the following concepts:

• An anchor sample a, for example, a pedestrian.
• A positive sample p, with the same class as the anchor.
• A negative sample n of a different class, for example, background.

For some distance d on the embedding space (typically Euclidean distance), the loss
for a triplet (a, p, n) is defined as:

L = max(d(a, p)− d(a, n) + margin, 0) (1)

Our goal is to minimize this loss function, pushing d(a, p) to 0 and d(a, n) to be greater
than d(a, p) + margin. As soon as n becomes an “easy negative”, the loss becomes zero.

Based on the definition given in Equation (1), there are three categories of triplets:

• Easy triplets: triplets which have a loss of 0, because d(a, p) + margin < d(a, n);
• Hard triplets: triplets where the negative is closer to the anchor than the positive,

i.e., d(a, n) < d(a, p);
• Semi-hard triplets: triplets in which the negative sample is not closer to the anchor than

the positive sample, but still have positive loss: d(a, p) < d(a, n) < d(a, p) + margin.

According to the previous definition, we can categorize the negative samples into hard
negatives, semi-hard negatives, and easy negatives. This is related to the location of the
negative sample in relation to the anchor and positive samples within the embedded space.
It can be observed in Figure 3.

The strategy for triplet selection is a crucial step for achieving good detection perfor-
mance, as stated in the literature [65,72]. It is necessary to select which triplets the network
will process, because if all possible triplets were generated, many of them would be “easy”
triplets, and would not contribute to the training. This would result in slower convergence,
as all the triplets require computation through the network. Therefore, it is crucial to se-
lect active triplets, i.e., hard and semi-hard triplets, that can contribute to improving the
model during training [3]. In our case, we followed the strategy used in [3], using online
negative exemplar mining, that ensures increasing difficulty of triplets as the network
training progresses. For this purpose, we generated the triplets online, selecting the hard
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positive/negative exemplars from within a mini-batch. It is also important to avoid the
problem of unstable training. For this purpose, a meaningful representation of the anchor-
positive distances needs to be guaranteed. It is necessary to ensure that a minimal number
of exemplars of each class is present in each mini-batch. We adapted the procedure used
in [3] to our particular case. We ensured that for each image, during training, there is at least
one pedestrian that generates a few positive samples, after the ROI pooling stage, that are
used for generating the triplets.

Semi hard negatives Easy negatives

Hard negatives mar
gin

A

P

Figure 3. Categorization of negative samples according to the relative distances with positives (P)
and anchor (A).

3.3. Modified Classification Head with Embeddings

The proposed method focuses on the classification head that occurs immediately after
the pooling feature extraction stage, with the features calculated from the regions generated
by the RPN. As stated previously, current two-stage object detectors are designed for
multi-task learning, performing classification and bounding box regression simultaneously.
We modified the current final classification head, adding a third loss function, so that
the distances among the embeddings are optimized according to the triplet loss function
defined previously.

The behavior of a regular two-stage object detector can be summarized as follows:
First, an image is taken, which generates multiple regions of interest (ROIs) that are fed
into a fully convolutional network. Then, each region is pooled into a fixed-size feature
map and projected onto a feature vector by a fully connected network. These vectors enter
a network with two sibling output layers, on which the first delivers a discrete probability
distribution p = (p0, . . . , pK) for each ROI over the K + 1 categories, and the other provides
regression offsets tk =

(
tk
x, tk

y, tk
w, tk

h

)
for bounding boxes for each of the K classes. Each

ROI is labeled with a ground truth u and an annotated bounding box v. For training, a
multi-task loss function was used, given by the following equation:

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(tu, v) (2)

with the classification function Lcls(p, u) = − log(pu) defined as the log loss for true class
u, while the regression function Lloc is usually the Smooth L1 function, this function being
a robust L1 loss that is less sensitive to outliers than the L2 loss. The weight for balancing
both functions is represented by λ. It can be observed from the above equation, that there
is no notion of a ground-truth bounding box for background ROIs, so Lloc is neglected [1].

In our work, the samples are the ROIs projected onto the embedded space, generated
by the ROI extractor. They can therefore be compared since the vectors have the same
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length. The proposed architecture, but in a Faster R-CNN framework, can be observed in
Figure 4. We applied the triplet loss function using these features to emulate somewhat the
behavior of an embedded space in, for example, a face recognition task, where faces of the
same subject must be closer, concentrated in space, and farther away from other subject
faces. In this case, we want the features for the pedestrians to lie closer than the features for
the background.

Classification 
loss (C1)

Bounding box 
regression (B1)

Embeddings 
triplet loss

For Each ROI (H1)

Classification 
Head

Input Image

CNN 
backbone 
(conv)

co
nv

Objectness 
Classification (C0)

Bounding Box 
Regressor (B0)

For Each Spatial 
Location (H0)RPN

Features 
Extractor

Feature 
Maps

Feature Maps: 
Projected Region 

Proposals

ROI 
Pooling

Figure 4. Faster R-CNN architecture with the proposed modified head. Our contributions are shown
in green, with the addition of the triplet loss function in the classification head. In purple are the
blocks corresponding to Figure 1.

The loss function for the new classification head is defined as follows:

L(p, u, tu, v, f ) = Lcls(p, u) + λ1[u ≥ 1]Lloc(tu, v) + λ2Lemb( f , u). (3)

In the above equation, Lcls represents the classification loss function, and Lloc rep-
resents the regression loss function. Finally, Lemb represents the function applied to the
embeddings; in this case, the Triplet Loss, which operates on the extracted features f after
the region of interest extraction. On the other hand, λ1 represents the weight assigned to
the regression function, and λ2 represents the weight assigned to the function applied to
the embeddings.

For Faster R-CNN, the head was modified by adding triplet loss directly as a third
loss function, complementing the classification and bounding box regression losses. For
Cascade R-CNN, as observed at the right in Figure 1, we can use this new modified head to
replace any of the existing three heads, H1, H2, or H3. Several experiments were performed
to find the optimal location of this new head in the Cascade R-CNN approach. In all the
experiments performed, the margin used was 1.0, as a default value, and it performed well.
We used this value because it was used in several deep learning frameworks [87,88].

3.4. Experiments

For training, we used the same progressive pipeline protocol described in [20], which
allowed us to have an advantage in enhancing pedestrian detection performance over
datasets obtained from multiple sources. This pipeline trains detectors using a dataset that
is diverse, but different from that of the target domain. Subsequently, the pipeline fine
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tunes the detectors on a dataset that closely resembles the target domain. As expected, we
used only the training subset of each dataset for training and the evaluation subset for the
performance assessment.

We used CityPersons for training Faster R-CNN and Cascade R-CNN with triplet
loss, in the same domain experiments as follows: We used the training partition available
in the CityPersons dataset for training. For the cross-dataset experiments, we used the
validation partition of CityPersons for evaluation; we did not use the training partition.
We used the validation partition instead of the testing partition, because the latter is
intended as a challenge dataset, with no available annotations, compared to the validation
partition, which does have annotations available. This is the standard procedure used in
the literature [13,14,20,89]. About the data augmentation, we used only vertical flipping. In
future work, we can apply other data augmentation operations, aimed at improving the
generalization capabilities of our method.

We performed experiments on different detectors comparing their performance. As
detectors, we used Faster R-CNN [2] and Cascade R-CNN [32]. The backbone used was
HRNet [90], because in the SOTA this backbone has shown performance advantages over
other backbones, such as ResNet50 or ResNeXt [20].

For assessing the detector performance, we used the standard protocol available whose
use has been reported extensively in the literature [49,52,91]. The MR−2 metric, also called
MR, is defined as the log average miss rate over the False Positive Per Image (FPPI),
computed by averaging the miss rate, at nine FPPI rates evenly spaced in log-space, in the
interval [10−2, 100]. This metric was chosen because it allowed us to compare the results
obtained by our method with the current SOTA. It must also be mentioned that this metric
was used in the articles that introduced the most used datasets in the field, Caltech [91]
and CityPersons [49]. It was presented as an evaluation metric for pedestrian detection
by Dollar et al. [91], in which the Caltech dataset was introduced. This metric serves as a
suitable indicator for algorithms applied in real-world applications. As this metric quantifies
the error, a lower value represents a better performance for the assessed algorithm. This
metric has been used extensively in recent years for the pedestrian detection problem, as
stated in [12–14,20,89,92]. The methods were assessed at different pedestrian sizes and
occlusion levels, as defined on Table 1.

Table 1. Different experimental settings for evaluation

Setting Height Visibility

Reasonable [50, ∞] [0.65, ∞]
Reasonable small [50, 75] [0.65, ∞]

Heavy [50, ∞] [0.2, 0.65]
All [20, ∞] [0.2, ∞]

3.5. Datasets

The datasets used in our work are the following:

• CityPersons [49]: This dataset is a subset of the Cityscapes dataset [93], but with only
person annotations. The images were captured in different cities of Germany, and in
adjacent countries. There are 2975 images for training, 500 for validation, and 1575 for
testing. There is a 6.47 average number of pedestrians per image. Annotations are
provided for a person’s visible region and full body. To be able to compare our results
to those of the SOTA, we used only the train and validation subsets in this work.

• EuroCity Persons [52]: This is a large-scale dataset recorded in 31 European cities, with
a variety of different scenarios. According to the time of recording, EuroCity Persons
provides two subsets: daytime and nighttime. There are 21,975 images for training,
with an average of 9.2 pedestrians per image. To be able to compare our results to those
of SOTA we used only the daytime training subset.
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• WiderPedestrian [85]: This dataset addresses the problem of pedestrian detection in
unconstrained environments. The images were acquired in autonomous driving and
surveillance applications. The dataset contains 90,000 images for training, with an
average of 3.2 pedestrians per image. We also used only the training subset in this
case to be able to compare it to other SOTA results.

Examples of the datasets employed in this work are shown in Figure 5.

CityPersons EuroCity Persons WiderPedestrian

Figure 5. Examples of images from the datasets used in this work.

We focused our work on obtaining the best pedestrian detection results on the valida-
tion partition of the CityPersons dataset, and compared them to those of the SOTA.

All the experiments were conducted using the MMDetection [94] open source object
detection toolbox, which is based on PyTorch, as a part of the OpenMMLab project. The GPU
used for the experiment was an NVIDIA GeForce 2080TI with 11GB of RAM. Similarly, as in
other SOTA work, we used only vertical flipping for data augmentation [20]. The optimizer
used was SGD, with learning rate = 0.002, momentum = 0.9, and weight decay = 0.0001.

4. Results and Discussion

In this section, we performed several experiments applying our newly developed
Classification Head with Triplet Loss to Faster R-CNN and Cascade R-CNN detectors.
Then, we performed an ablation study to assess the impact of our head compared to the
regular detectors. Finally, we performed a comparison study with the SOTA, and reviewed
some qualitative results, comparing our method with a SOTA method.

4.1. Faster R-CNN with Triplet Loss Head Results

The first set of experiments was performed using our new proposed head, with the
triplet loss function, replacing the standard classification head of a Faster R-CNN object
detector with an ImageNet pre-trained HRNet backbone. The results obtained are shown
in Table 2.

Table 2. MR−2 results for Faster R-CNN with triplet loss, trained and evaluated on CityPersons.

Triplet Loss Weight Reasonable Small Heavy All

0.025 13.7 18.3 40.2 37.6
0.050 14.8 17.6 39.7 38.1
0.010 14.0 18.6 40.9 37.7
0.150 14.2 18.2 40.4 37.8
0.200 14.6 18.7 41.5 39.1
0.250 15.7 19.1 42.1 39.5
0.500 16.5 20.2 47.2 41.5
0.750 17.6 20.3 48.8 43.0
1.000 17.9 21.3 48.5 42.7

We can see in Table 2 that a small contribution from the triplet loss function to the
classification head obtains the best results. Conversely, increasing the weight for triplet loss
leads to a significant decrease in performance.
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Cross-dataset generalization experiments were then performed. We trained a Faster
R-CNN detector using WiderPedestrian, and evaluated it on CityPersons, as can be seen in
Table 3. From the results shown in Table 2, we can observe that using weights in the interval
[0, 0.25] resulted in the lowest error. Therefore, we performed cross-dataset generalization
experiments, focusing only on low values, in the range [0, 0.25], for the triplet loss weight.

Table 3. MR−2 generalization results for Faster R-CNN with triplet loss, trained on WiderPedestrian
and evaluated on CityPersons.

Triplet Loss Weight Reasonable Small Heavy All

0.10 15.7 19.6 54.8 44.3
0.20 15.6 20.4 53.5 42.7
0.25 16.1 20.0 53.2 43.2

The results shown in Table 3, are worse than those shown in Table 2 because the
source dataset in Table 3 is different from the target dataset. This effect is amplified on the
heavy subset, the most difficult one on the benchmark. However, in Table 2, the source
and target datasets are the same. If we observe the results in Table 3, the performance
using triplet loss is the best, in general terms for all the subsets, when the weight is 0.2.
Nevertheless, in the following experiments, the results improved significantly when the
model was fine-tuned using the triplet loss on datasets that are closer to the target domain,
in this case, EuroCity Persons.

4.2. Cascade R-CNN with Triplet Loss Head Results

The next step was to perform the experiments using the Cascade R-CNN framework.
There are multiple classification heads in this detector, and, therefore, we had to choose the
place to apply the triplet loss function. For this purpose, we performed several experiments,
modifying the head where triplet loss is applied, and the weight for the triplet loss function
within the selected head. A summary of the experiments performed is shown in Table 4,
where, in general terms, applying triplet loss in the first classification head seems to perform
better, since it performs well on the reasonable, small, and heavy subsets at the same time.
The detection performance increased compared to the results obtained using Faster R-CNN
as shown in Table 2. In this case, the best result for the reasonable subset was obtained
using a small weight of 0.05 for the triplet loss function in the first classification head.

Proceeding in a similar fashion to Faster R-CNN, we performed cross-dataset experi-
ments for Cascade R-CNN. In this case, we trained our models on WiderPedestrian, and
then evaluated them on CityPersons. Since the results seemed to be better rounded for
all the datasets in which we applied our head in the first head, we chose this head for the
following experiments. We also focused on small values for the weight, because, as stated
previously, it seems that only a small weight has the most positive impact on the detector.
Results for this set of experiments can be observed on Table 5.

Table 4. Results for Cascade R-CNN adding triplet loss to each classification head (H1, H2, and H3 in
Figure 1), trained and evaluated with CityPersons.

Head Triplet Loss Weight Reasonable Small Heavy All

H1 0.025 13.4 17.3 38.9 36.5
H1 0.050 12.7 16.1 39.7 35.9
H1 0.100 12.8 15.5 38.8 35.8
H1 0.150 13.4 16.8 41.7 36.9
H1 0.200 13.4 16.0 40.1 36.7
H1 0.250 13.8 17.1 40.5 36.4
H1 0.500 13.9 15.5 41.8 37.1
H1 0.750 14.8 17.5 44.4 38.6
H1 1.000 14.9 19.0 44.4 38.9
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Table 4. Cont.

Head Triplet Loss Weight Reasonable Small Heavy All

H2 0.025 13.7 16.4 40.1 37.2
H2 0.050 13.7 16.1 40.7 36.4
H2 0.100 13.5 16.8 38.5 36.0
H2 0.150 13.0 16.0 39.8 35.9
H2 0.200 15.9 20.1 48.1 40.4
H2 0.250 15.3 19.6 46.5 39.3
H2 0.500 13.0 16.1 40.2 36.1
H2 0.750 16.7 22.1 50.1 41.2
H2 1.000 18.6 24.7 54.6 43.9

H3 0.025 13.5 16.6 41.5 36.7
H3 0.050 12.7 15.2 40.5 35.7
H3 0.100 13.3 14.7 40.5 36.4
H3 0.150 13.6 15.5 38.4 35.7
H3 0.200 13.5 17.4 39.6 36.5
H3 0.250 13.1 16.1 40.0 35.7
H3 0.500 13.9 16.7 38.8 36.6
H3 0.750 13.0 14.8 40.3 36.0
H3 1.000 13.2 17.2 41.3 36.3

Table 5. MR−2 generalization results for Cascade R-CNN using triplet loss in the first classification
head (H1 in Figure 1) trained on WiderPedestrian and evaluated on CityPersons.

Triplet Loss Weight Reasonable Small Heavy All

0.025 13.5 18.1 53.0 41.3
0.050 14.4 19.1 52.9 40.9
0.100 14.1 20.3 52.5 40.7
0.150 13.8 18.1 50.9 39.7
0.200 14.0 18.7 50.7 40.7
0.250 14.8 19.5 52.8 41.8

The same effect that occurred with Faster R-CNN can be seen here, where the results
shown in Table 5 are worse than those shown in Table 4. This is also because the source
dataset on Table 5 is different from the target dataset. Again, this effect is most noticeable
in the heavy subset. The best global result for Cascade R-CNN was obtained by applying
triplet loss with a weight of 0.15 to the first classification head, H1. This weight worked
well in all the subsets on CityPersons.

4.3. Ablation Study

In this section, we compare the best results for cases of Faster R-CNN and Cascade
R-CNN with Triplet Loss, with our new head, and without it.

In Table 6, results for Faster R-CNN and Cascade R-CNN detectors, trained and evaluated
on CityPersons, when using our modified head vs. the regular detector are shown.

Table 6. MR−2 results for Faster R-CNN and Cascade R-CNN, comparing the best triplet loss result
against the method without it, trained and evaluated on CityPersons.

Method Reasonable Small Heavy All

Faster R-CNN (w/o Triplet Loss) 13.8 16.2 47.6 39.7
Faster R-CNN (Triplet Loss w = 0.025) 13.7 18.3 40.2 37.6

Cascade R-CNN (w/o Triplet Loss) 13.4 16.7 40.5 36.6
Cascade R-CNN (Triplet Loss H1 w = 0.050) 12.7 16.1 39.7 35.9

We can observe in Table 6, that for both Faster R-CNN and Cascade R-CNN, a small
contribution from the triplet loss function to the classification head improves the perfor-
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mance on almost all the subsets in CityPersons. For the Faster R-CNN method, results in
the reasonable subset improved moderately, but the improvement was significant on the
heavy subset. For Cascade R-CNN, results on the reasonable subset improved significantly,
and moderately on heavy and small subsets.

Then, in Table 7, results are shown for Faster R-CNN and Cascade R-CNN detectors,
trained on WiderPedestrian and evaluated on CityPersons, when using our modified head
vs. the regular detector.

Table 7. MR−2 results for Faster R-CNN and Cascade R-CNN, comparing the best triplet loss result
against the method without it, trained on WiderPedestrian and evaluated on CityPersons.

Method Reasonable Small Heavy All

Faster R-CNN (w/o Triplet Loss) 15.9 20.9 54.9 44.6
Faster R-CNN (Triplet Loss w = 0.20) 15.6 20.4 53.5 42.7

Cascade R-CNN (w/o Triplet Loss) 16.0 21.6 57.4 -
Cascade R-CNN (Triplet Loss H1 w = 0.150) 13.8 18.1 50.9 39.7

We can see in Table 7 that using triplet loss again improved the results compared to the
results obtained without it. This behavior can be seen for both Faster R-CNN and Cascade
R-CNN. The improvement in the performance is especially evident for the Cascade R-CNN,
where the error for the reasonable subset decreased by 2.2%, 3.5% for the small subset, and
an impressive 6.5% for the heavy subset. This shows the impact of the triplet loss head
on a cross-dataset scenario for the most difficult samples in the dataset, that belong in the
heavy subset.

4.4. Comparison Study

SOTA results, for the CityPersons benchmark, can be observed in Table 8. All these
results were obtained using the target dataset for training and testing, and therefore, no
generalization capabilities were tested.

Table 8. MR−2 values for different state-of-the-art methods evaluated on the CityPersons benchmark.

Method Reasonable Small Heavy

Repulsion Loss [14] 13.2 - -
ALFNet [12] 12.0 19.0 48.1

CSP (ResNet50) [13] 11.0 16.0 39.4
CSP (HRNet) [20] 9.4 11.4 36.7

Faster R-CNN (VGG16) [49] 15.4 25.6 -
PRNet (ResNet50) [89] 10.8 - -
BGCNet (HRNet) [92] 8.8 - -

Faster R-CNN (ResNeXt101) [20] 16.4 - -
Cascade R-CNN (HRNet) [20] 11.2 14.0 37.1

DA-Net [46] - - 51.6
PedJointNet [47] 13.5 - 52.2

PP-Net [48] 12.1 - 53.0

It can be seen that when comparing the best Faster R-CNN results on Table 8 (15.4%
on the reasonable subset), with the best result on Table 2 (13.7% on the reasonable subset),
we observe a significant reduction in MR−2 of about 1.7% for the reasonable subset. Also,
the results on the small subset improved by 7.3%, from 25.6% when using Faster R-CNN
with a VGG16 backbone and without triplet loss, to 18.3% using triplet loss and an HRNet
backbone. This is a combined effect of the triplet loss function, and the HRNet backbone,
because in [49], an older VGG16 [95] backbone was used.

A comparison including the best results of our method, using Faster R-CNN and
Cascade R-CNN detectors, can be seen in Table 9, compared to those of the SOTA for domain
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generalization using WiderPedestrian, taken from Hasan et al. [20]. It can be observed in
the third row of Table 9, that the Faster R-CNN method with triplet loss outperforms the
Cascade R-CNN algorithm without triplet loss shown in the first row, the latter being a
modern method that on most object detection tasks outperforms Faster R-CNN [20,32]. The
fourth row of Table 9 shows the results of our method using Cascade R-CNN. It can be
observed that our results outperform those of the regular Cascade R-CNN shown on the
first row, obtaining an improvement for the reasonable subset by 2.2%, and 6.5% on the
heavy subset.

Table 9. Results summary for cross-dataset evaluation. All detectors use HRNet as backbone.

Method Training Set Test Set Reasonable Small Heavy All

Cascade R-CNN WiderPedestrian CityPersons 16.0 21.6 57.4 -
CSP WiderPedestrian CityPersons 17.0 22.4 58.2 -

Ours: Faster R-CNN w. triplet loss (w = 0.1) WiderPedestrian CityPersons 15.6 20.4 53.5 42.7
Ours: Cascade R-CNN w. triplet loss (H1 w = 0.15) WiderPedestrian CityPersons 13.8 18.1 50.9 39.7

Finally, we performed a set of experiments to assess the generalization capabilities
of our method, applying Hasan’s progressive training pipeline [20], and always using the
CityPersons benchmark as a target set to be able to compare our results to those of the SOTA.
The best results obtained for this set of experiments are shown in Table 10. We followed the
same sequence of cascade training as in the SOTA to be able to compare our results to those
already published. We performed the first training on the WiderPedestrian dataset, and
then, with the best result obtained (last row of Table 9), we fine-tuned using the EuroCity
Persons daytime subset. We obtained the best result with a weight of 0.1 for the first
classification head (H1) in the Cascade R-CNN detector. In summary, we trained a detector
on WiderPedestrian, using a weight of 0.15 on H1, and then, fine-tuned it on EuroCity
Persons, using a weight of 0.1 on the H1 head. As shown in Table 10, our results outperform
the current SOTA on two of the three subsets of CityPersons, i.e., the small and heavy
subsets, and obtained a comparable performance on the reasonable subset. The difference
in performance is about 1.5% better for the heavy subset, which has been shown to be the
most difficult subset in CityPersons in the literature [13,20,47,48]. We hypothesize that the
results in the target subset will improve with our method when using additional datasets
in the training pipeline, since the base performance is greater.

Table 10. Results summary for cross-dataset evaluation and progressive training pipeline. All detectors
use HRNet as backbone.

Method Training Set Test Set Reasonable Small Heavy All

Cascade R-CNN CH→ ECP CityPersons 10.3 12.6 40.7 -
Cascade R-CNN WP→ ECP CityPersons 9.7 11.8 37.7 -

Ours: Cascade R-CNN w. Triplet Loss WP→ ECP CityPersons 9.9 11.0 36.2 30.8

4.5. Qualitative Results Comparison and Discussion

In the following examples, qualitative results of our model on the CityPersons dataset
can be observed and compared to those of CSP [13], where the images on the left, (a),
show the results of our method, while the images on the right, (b), show the results of CSP.
False negatives are shown in white, false positives in red, and true positives in green. In
Figures 6a, 7a, and 8a, some false negatives are shown when observing the results obtained
by our method, but under careful observation, it can be seen that most of the missed detec-
tions occur in areas where occlusion is generated by another pedestrian. In cases of other
occlusion types, e.g., generated by cars or other objects, the method performed well, even
with pedestrians of low visibility and short stature. Specifically, in Figures 6 and 7, a signifi-
cant difference in performance can be observed between both methods, with our method
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able to detect more of the most difficult pedestrians when compared to CSP, especially those
who are short and occluded. In Figure 8a, our method shows better results when applied
to occluded pedestrians. In general terms, our method shows some errors that are mainly
caused by occlusions made by other pedestrians, and it shows that it handles occlusions
better than CSP in Figure 8b. Performing a qualitative analysis of the whole testing set,
this seems to be the main cause of our method missing occluded pedestrians. It must be
noted that riders (cyclists and motorists) are intentionally not detected, since they belong
to another class in the Cityscapes dataset. In Figure 7a, a false positive can also be noted
in red, but when observed carefully, it seems to be a highly occluded pedestrian that is not
annotated in that location. Figure 9a shows instances of many false positives, and also one
false negative, that seems to be caused by another pedestrian, as in Figures 6a, 7a, and 8a.
Observing carefully, it can be seen that all the red bounding boxes are effectively pedestrians,
some of which are highly occluded, but they are counted as false positives according to the
evaluation procedure in the literature. Comparing our results to those of CSP, Figure 9b
shows only one of these misses labeled false positives, resulting in worse performance (also
not detecting a short pedestrian in the middle of the scene). Finally, in Figure 10a, a single
detection can be observed, in red, that is also a highly occluded pedestrian. This pedestrian
is not detected by CSP, as can be seen in Figure 10b.

From the qualitative results obtained, it can be observed that the proposed method
works well on difficult images, handling occlusions and scales better than CSP [13], and
even detecting some difficult pedestrians, i.e., those that in the evaluation are marked
as false positives (red bounding boxes), but are effectively pedestrians, some of whom
are highly occluded. Our method is able to manage pedestrians in different scales, with
different illumination and occlusion degrees, and even avoid detecting bicycle riders, who
are visually highly similar to pedestrians, creating an additional degree of difficulty. These
results could be explained by the triplet loss design that tries to explicitly cluster all types
of pedestrians together, independent of their degrees of occlusion or size. Therefore, the
network learns that different degrees of occlusion and scale must be close in the feature
space. Several examples of good detections of highly occluded pedestrians are shown in
Figures 6–10. One limitation that can be observed occurs when occlusions are generated by
other pedestrians, instead of by fixed objects in the scene, for example, cars or trees. Future
research could be focused on how to handle this type of occlusion.

Figure 6. (a) Results on the CityPersons dataset using our method. (b) Results on the CityPersons
dataset using CSP [13]. False negatives are shown in white and true positives in green. In (a), occluded
false negatives can be observed: At the right of the image, a missed detection (in white) is generated by
another pedestrian. At the left, a short pedestrian is missed because of a high degree of occlusion caused
by an object. Also, the method performs well on short pedestrians, as is shown in the left portion of
the image. We can also observe that our method obtains better results compared to CSP, shown in (b),
especially on the pedestrians present in the left portion of the image, where CSP is unable to detect any
pedestrians, compared to using our method, with which we can detect 2 out of 3 short pedestrians.
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Figure 7. (a) Results on the CityPersons dataset using our method. (b) Results on the CityPersons
dataset using CSP [13]. False negatives are shown in white, false positives in red, and true positives in
green. In (a), at the left of the image, two missed detections (in white) and a false positive (in red) can
be observed, but the false positive is effectively a pedestrian. On the right, two missed detections are
observed. This example shows good performance on pedestrians of both average and short height.
We can also observe that our method, obtains better performance on the left portion of the image,
compared to CSP, shown in (b), since CSP does not detect pedestrians, who are of short stature. Also,
in the right portion of the image, several false negatives (in white) are shown, compared to using our
method, which detects most of the pedestrians.

Figure 8. (a) Results on the CityPersons dataset using our method. (b) Results on the CityPersons
dataset using CSP [13]. False negatives are shown in white and true positives in green. In our method,
two false negatives (in white) that were generated by another pedestrian are shown in the left part
of the image. There is also another false negative (in white) in the middle, also caused by another
pedestrian. It should be noted that the cyclists are ignored intentionally in the annotations, because
they do not belong to the pedestrian class. The CSP method, shown in (b), generates two additional
false negatives (in white) in the middle and at the right of the image.

The results obtained also showed that our method can generalize well from datasets
with different scenarios. The dataset on which our method is evaluated, CityPersons,
has images captured in different cities in Germany and its neighboring countries, during
three seasons and under various weather conditions. On the other hand, training data
comes from WiderPedestrian and EuroCity Persons, with WiderPedestrian being composed
of surveillance and car-driving images, with very different camera angles, object scale, and
illumination, and even some images captured at night. EuroCity Persons was captured in
31 cities of 12 European countries, spanning a large geographical area, during four seasons,
which implies a variety of clothing styles, i.e., light/short for summer and thick/long for
winter, and weather conditions being dry or wet. Having all these different conditions in the
training set, and the triplet loss capability to cluster together samples of the same class, in
this case, pedestrians, allows our detector to generalize well, because it can project samples
closer together in the feature space, even if they are captured under different conditions,
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for example, in winter and summer, with rain, snow, different degrees of occlusion, etc.
Even if there are fewer samples from one scenario to another, they are forced to lie together
in the feature space.

Figure 9. (a) Results on the CityPersons dataset using our method. (b) Results on the CityPersons
dataset using CSP [13]. False negatives are shown in white, false positives in red, and true positives in
green. In (a) a false negative caused by another pedestrian is observed (in white), in the middle. Also,
in the middle, and at the right, red boxes are observed that are reported as false positives (in red), but
if we observe carefully, they are pedestrians that are not annotated in the CityPersons dataset. The
results of the CSP method are shown in (b). We can see a short pedestrian missed in the middle, and
the two short pedestrians that our method detects but that are not annotated, are missed by CSP.

Figure 10. (a) Results on the CityPersons dataset using our method. (b) Results on the CityPersons
dataset using CSP [13]. In (a) our method shows a false positive on the right side (in red), but if
we observe carefully, there is a pedestrian that is not annotated in the CityPersons dataset. This
pedestrian is not detected by CSP as shown in (b).

The computational cost, in terms of the execution time of adding the triplet loss
function to the existing classification and regression losses, is small according to our
measurements. During training, the computational time increases by about 1%, with an
average iteration time of 0.6853 s with the triplet loss, compared to 0.6799 s without it,
while employing an NVIDIA GeForce 1080TI GPU. This could be explained by the fact
that all computations performed for the new loss, require a distance computation within
a mini-batch that uses up most of the time. During inference, the computational time is
the same for the cases with and without triplet loss, because this loss is only used during
training time. Therefore, the triplet loss does not have a negative impact while using the
model for pedestrian detection, once the network is trained.

5. Conclusions

Pedestrian detection is one of the key tasks in computer vision for which several mod-
els have been developed in the past few years and that have shown a steady improvement
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over time, especially with deep-learning-based methods. Many real-world applications re-
quire high performance in pedestrian detection, such as the following: autonomous driving,
robotic navigation, video surveillance, action recognition, and tracking. In this work, we
developed a new pedestrian detection method using a new classification head for two-stage
detectors. This method is aimed at improving the domain generalization capabilities of
existing object detectors applied to pedestrians. We added a third loss function, based
on the triplet loss function, to the classification and bounding box regression losses, and
applied it to the embeddings generated to the regions of interest by the RPN network. This
method improves the feature compactness of pedestrian samples, and therefore, features
are clustered together in the feature space. We obtained SOTA results on the CityPersons
benchmark, but it was done without training the method explicitly within the target dataset.
We used progressive pipeline training, first using WiderPedestrian, and then fine-tuning
on EuroCity Persons, achieving a major improvement on the heavy partition, which, with
the current SOTA results, is the most difficult partition for the CityPersons benchmark.
We obtained an MR−2 of 9.9 for the reasonable, 11.0 for the small, and 36.2 for the heavy
subsets, which surpasses the current SOTA results for the small and heavy subsets, and
is highly competitive for the reasonable subset. These results showed that our method
is able to generalize well in different cities and weather conditions, because of how the
CityPersons dataset is composed. Also, our proposed head could be used as a new direction
for improving cross-dataset performance in other pedestrian detectors with compatible
architectures, or other object detection tasks, considering real-world applications such as
autonomous driving and video surveillance. For future work, we think that our method
would benefit from training with additional datasets in the progressive training pipeline,
since the base performance of our method is significantly higher. Also, because all the
images in CityPersons are captured under daylight conditions, in future work our method
could be trained and tested using datasets that have nighttime images, for example, the
nighttime partition of EuroCity Persons.
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