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Abstract: A vehicle’s position can be estimated with array receiving signal data without the help
of satellite navigation. However, traditional array self-position determination methods are faced
with the risk of failure under multipath environments. To deal with this problem, an array signal
subspace fitting method is proposed for suppressing the multipath effect. Firstly, all signal incidence
angles are estimated with enhanced spatial smoothing and root multiple signal classification (Root-
MUSIC). Then, non-line-of-sight (NLOS) components are distinguished from multipath signals using
a K-means clustering algorithm. Finally, the signal subspace fitting (SSF) function with a P matrix
is established to reduce the NLOS components in multipath signals. Meanwhile, based on the
initial clustering estimation, the search area can be significantly reduced, which can lead to less
computational complexity. Compared with the C-matrix, oblique projection, initial signal fitting (ISF),
multiple signal classification (MUSIC) and signal subspace fitting (SSF), the simulated experiments
indicate that the proposed method has better NLOS component suppression performance, less
computational complexity and more accurate positioning precision. A numerical analysis shows
that the complexity of the proposed method has been reduced by at least 7.64 dB. A cumulative
distribution function (CDF) analysis demonstrates that the estimation accuracy of the proposed
method is increased by 3.10 dB compared with the clustering algorithm and 11.77 dB compared with
MUSIC, ISF and SSF under multipath environments.

Keywords: self-position determination; multipath environment; array signal processing; noncooperative
signal

1. Introduction

A vehicle tends to rely on satellite navigation to determine its location [1]. As the
number of satellites in orbit increases, the precision of satellite navigation has greatly
improved. However, satellite navigation is susceptible to harsh environments, such as
tunnels and urban canyons [2–4]. Cooperative vehicle infrastructure systems (CVIS) are
widely applied to make up for the shortcomings of satellite positioning [5]. This technology
connects all kinds of transportation elements including vehicle clusters, roadside units
and wireless network links [6]. Traditional CVIS depends on high-speed cooperative com-
munication, which is constrained by battery capacity and storage resources [7]. The array
antenna is widely used in receiving and analyzing noncooperative signals [8]. Self-position
determination based on array sensing multiple source data can avoid the communication
overhead due to the lack of communication data interaction [9]. The vehicle’s self-position
can be estimated using the array signal data fusion method. Self-position awareness based
on direct position determination has been discussed in [10], and can achieve accurate esti-
mation for vehicle positioning when signal frequencies are distinguishable. Signal fitting
methods are proposed in [11] and achieve better results than multiple signal classification
(MUSIC). Nevertheless, these methods only consider the ideal position scenario and often
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exhibit poor performance under multipath environments [12]. Position determination in
the presence of multipath signals has attracted much attention [13–19]. In the multipath en-
vironment, the array sensors usually receive signals propagating along the line-of-sight
(LOS) paths and non-line-of-sight (NLOS) paths [20]. The classical super-resolution lo-
calization methods are unable to handle the coherent signals resulting from multipath
effect unless spatial smoothing technology is applied [21]. However, the application of
spatial smoothing technology will introduce changes in signal power, which may cause
difficulty in distinguishing between LOS signals and NLOS signals from the perspective of
signal strength. A hierarchical clustering architecture is proposed in [22], which allows us
to discriminate among possible different interfering scenarios characterized by the same
number of jammers via an unsupervised learning clustering fed using a suitable feature set.
The clustering algorithm without using a feature set proposed in [23] can associate discrete
data to eliminate the fake localization interference [24] and quickly determine the emitter
positions in the absence of prior power information, which has potential to solve the fake
localization problem under multipath environments.

To avoid a decline in localization accuracy, it is essential that the NLOS information
included in multipath signal data is suppressed. The authors of reference [25] introduce
a method to eliminate the signal components with power suppression and then derive
a C-matrix only containing the necessary signal information to avoid the impact of the
interference signals on the estimated results. The oblique projection method presented
in [26] can obtain the signal data with specific components. This method completely
removes the uninterested components from the raw data via a geometrical insight of the
signal space [27]. The above methods all subtract uninterested components from raw data
after estimating the original signal form, which may cause incorrect results due to the
existence of intermediate estimation errors [28]. Direct localization methods often establish
global grid points before searching for target positions [29]. Although accurate position
estimation can be obtained with numerous grid points, the computational complexity
of dense grid searches increases as more grid points are considered. The adaptive grid-
refinement strategy was originally proposed in [30]. The idea behind the grid refinement
approach is to start with a coarse grid of locations and then the grid is refined around the
estimated locations. This procedure can achieve low computational complexity and fine
grid resolution. The grid refinement is improved in [31,32] and more complex refinement
approaches are proposed to solve the grid point distribution issue in various global search
scenarios. Nevertheless, the grid refinement process needs to iteratively update the grid
points, which is time-consuming.

This paper mainly discusses self-position determination under multipath environ-
ments and proposes array signal subspace fitting (SSF) for suppressing NLOS components.
All measured angles are obtained by means of enhanced spatial smoothing and root mul-
tiple signal classification (Root-MUSIC). Then, the vehicle position is initially estimated
with the K-means clustering algorithm, and the NLOS components can then be distin-
guished for each emitter. Next, the cost function of SSF for suppressing multipath effects
is directly established using orthogonal projection. Finally, a local grid search around the
initial estimation is applied to obtain the precise results instead of using global grid search.
Therefore, the proposed method has lower complexity compared with traditional methods.
In addition, simulated experiments are carried out to verify that the proposed method has
accurate position estimation.

The main contributions of this paper comprise four aspects.
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(1) The K-means clustering algorithm is applied to identify NLOS components from the
multipath signals with a distance comparison function. The intersection of bearing
lines, which is nearest to the adjacent points, is selected as the initial position estima-
tion. The angles formed by the emitters and initial position are considered as reference
angles. The distance comparison function is established using the Euclidean distance
between the reference angle and DOA estimation results for each emitter.

(2) The SSF cost function for suppressing NLOS components is established to obtain a
precise estimation result. The NLOS components of the signal subspace are suppressed
with orthogonal projection. The suppressed signal subspace fitting is obtained using
the least squares (LS) equation and the orthogonal projection is incorporated into the
P matrix in the SSF cost function.

(3) The local grid search of self-position determination is proposed to reduce the compu-
tational complexity of the cost function. On the basis of the initial position estimation,
the vehicle position is roughly determined. The accurate position determination can
be obtained using the cost function calculation on the local grid points distributed
around the initial estimation.

(4) The simulation results show that the proposed method has low computational com-
plexity and high position estimation precision. The numerical analysis shows that
the computational complexity of the proposed method is at least 7.64 dB lower than
MUSIC, ISF and SSF. A cumulative distribution function (CDF) analysis demonstrates
that 85 percent of the estimated deviation values for the proposed method are 3.10 dB
smaller than the clustering algorithm and 11.77 dB less than MUSIC, ISF and SSF
under multipath environments.

Notation: {·}T and {·}H denote the transpose and conjugate transpose, respectively.
tr(·), ‖·‖2 and ‖·‖F are the trace, two-norm and Frobenius norm, respectively. IN×N denotes
an N×N identity matrix and J denotes an anti-identity matrix. E(·) denotes the expectation
operator. j denotes the imaginary unit. (̂·) denotes the estimation of (·). (·)−1 is the
operator of the inverse matrix. R(a : b, c : d) represents the matrix composed of elements
from rows a to b and columns c to d from R. R(a : b) represents the matrix composed of
elements from rows a to b from R. sort(·) is an operator that arranges elements of (·) from
smallest to largest.

2. Signal Model

As is shown in Figure 1, many emitters are distributed around the road, which are,
respectively, denoted as {p1,1, p2,1, · · · , pL,1}. These emitters radiate signals whose fre-
quencies are distinguishable. The uniform linear array (ULA) with M elements is mounted
on the vehicle and receives signals radiating from emitters. The array is able to sense the
heading angle ϕ via an electronic compass. The signal incidence angle of the l-th emitters
is denoted as θl,gl

relative to the vehicle heading. In practice, there are multiple reflection
paths from each emitter to the vehicle. The reflector is denoted as pl,gl

related with the l-th
emitter. The position of the vehicle is represented as q = [qx, qy]T and the position of the
reflector is given as pl,gl

= [px
l,gl

, py
l,gl

]T, where gl = 2, · · · , Gl .
The array output data are expressed in the following form:

Xl(t) =
Gl

∑
gl=1
{βl,gl

al,gl
(θl,gl

)sl(t) + nl,gl
(t)} = AlSl(t) + Nl(t) (1)

where βl,gl
is the attenuation coefficient of the glth propagation path of the signal from

l-th emitter. a(θl,gl
), sl(t) and nl,gl

(t) are, respectively, the steering vector, the signal
source data and the noise source data. Al is defined as the array manifold and satisfies
Al = [a(θl,1), a(θl,2), · · · , a(θl,Gl

)]. The signal matrix is written as Sl(t) with Sl(t) =
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[βl,1sl(t), βl,2sl(t), · · · , βl,Gl
sl(t)]T. The noise matrix is Nl(t) = [nl,1(t), nl,2(t), · · · , nl,Gl

(t)]T.
The steering vector al,gl

(θl,gl
) is defined as

a(θl,gl
) =


e

j 2π
λl

d sin θl,gl

e
j 2π

λl
2d sin θl,gl

...

e
j 2π

λl
(M−1)d sin θl,gl

 (2)

in which d denotes the distance between adjacent elements and λl represents the wave-
length of signal radiating from the l-th emitter.

Figure 1. Location scenario.

The array covariance matrix of Xl(t) can be expressed as

Rl = E{Xl(t)XH
l (t)} =

Tl

∑
t=1

Xl(t)XH
l (t)

Tl = AlR
s
l AH

l + σ2
l IM×M (3)

where Rs
l = E{Sl(t)SH

l (t)} and E{Nl(t)NH
l (t)} = σ2

l IM×M. Tl is the sampling snapshots
at one time interval.

The eigenvalue decomposition of Rl can be written as

Rl = Us
l Σs

l (U
s
l )

H + Un
l Σn

l (U
n
l )

H (4)

where Σs
l is the biggest eigenvalue and Σn

l is the others. Us
l is the signal subspace which

consists of the eigenvector corresponding to Σs
l . Un

l is the noise subspace which consists of
eigenvectors corresponding to Σn

l .
The signal subspace can be spanned by the array manifold [11]. So, we can obtain the

following equation:
Us

l = AlTl (5)

where Tl is a complex coefficient vector.
Self-position determination based on MUSIC, which is proposed in [10], may exhibit

the position shift and relative height reduction of spectral peaks due to the influence of
multipath signals on noise subspace. So, this paper will establish a cost function that can
weaken the multipath effect in Section 3.
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3. The Proposed Method
3.1. DOA Estimation of Multipath Signals

The multipath signal can cause rank deficiency of Rl , so the enhanced spatial smooth-
ing [33] is adopted to recover the rank of Rl . Compared with the conventional improved
spatial smoothing methods [34,35], the enhanced spatial smoothing can take full advantage
of the entire data covariance matrix, therefore significantly improving the decorrelation
performance and having stronger noise robustness. The ULA is partitioned into N overlap-
ping subarrays, each composed of K elements. The enhanced spatial smoothing algorithm
can be described as

RESS
l =

1
2N

N

∑
i=1

N

∑
j=1
{(Rij

l Rji
l + Rij

l Rji
l ) + (Rii

l Rjj
l + Rii

l Rjj
l )} (6)

where N = M− K + 1, Rij
l = Rl((i− 1)K + 1 : iK, (j− 1)K + 1 : jK) and Rij

l = JRij
l J.

With the rank recovery covariance matrix, the Root-MUSIC algorithm is applied to
estimate the direction of arrival (DOA) values. Similar to Equation (4), RESS

l can be the
eigenvalue decomposed into a noise subspace Un1

l . Since the noise subspace is orthogonal
to the array manifold [36], we can get the 2(K−1)-degree polynomial

pT
l (z
−1)Un1

l (Un1
l )Hpl(z) = 0 (7)

where pl(z) = [1, z, · · · , zK−1]H and z = e
j 2πd

λl
sin(θl,gl

)
. The roots of Equation (7) are sym-

metric around the unit circle and the K maximum roots inside the unit circle are selected to
estimate the DOA results.

θ̂l,gl
= arcsin

[
λl

2πd
arg(ẑl,gl

)

]
(8)

3.2. Discrimination of NLOS Components with Clustering Algorithm

The K-means clustering algorithm is a typical unsupervised learning method which is
commonly used in object classification [37]. In order to obtain all the possible positioning
results, the intersection points of the signal path from different emitters are estimated. The
K-means clustering algorithm can identify the center position of different dense point areas
by comparing the distance between each point and its surrounding points. In this section, all
intersection points between every two bearing lines are calculated. The intersection points
from bearing lines of LOS angles θ1,1, θ2,1, · · · , θL,1 tend to densely cluster in an area because
the LOS angles are determined by the radiation source positions and the array position. The
NLOS angles θl,2, θl,3, · · · , θl,gl

are usually determined through random reflector positions
and the array position. In the process of clustering, the reflector positions pl,2, pl,3, · · · , pl,Gl
are assumed to be the corresponding emitter position pl,1 so the final intersection positions
will be random and cannot point to the unique array position. Therefore, the array position
can be determined via finding the center position of the dense point area. To be more
explicit, the intersection of the guth bearing lines and the gvth bearing lines is defined as
rgu ,gv

u,v = [xgu ,gv
u,v , ygu ,gv

u,v ] in which u 6= v.

xgu ,gv
u,v =

py
u,gu − py

v,gv − px
u,gu tan(θ̂u,gu + ϕ) + px

v,gv tan(θ̂v,gv + ϕ)

tan(θ̂v,gv + ϕ)− tan(θ̂u,gu + ϕ)
(9)

ygu ,gv
u,v =

py
u,gu tan(θ̂v,gv + ϕ)− py

v,gv tan(θ̂u,gu + ϕ) + (px
v,gv − px

u,gu) tan(θ̂u,gu + ϕ) tan(θ̂v,gv + ϕ)

tan(θ̂v,gv + ϕ)− tan(θ̂u,gu + ϕ)
(10)
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Based on Equations (9) and (10), the intersection point set can be obtained, which is
denoted as W = {r1,1

1,2, r1,2
1,2, · · · , rgu ,gv

u,v , · · · , rGu ,Gv
L−1,L}. The hth element of W is denoted as Wh.

The distance between rgu ,gv
u,v and Wh is defined as

dgu ,gv
u,v,h =

∥∥∥rgu ,gv
u,v −Wh

∥∥∥
2
, where Wh 6= rgu ,gv

u,v (11)

All dgu ,gv
u,v,h derived from rgu ,gv

u,v form a distance set Dgu ,gv
u,v , the elements of which are

sorted in ascending order. A cost function is defined as

Bgu ,gv
u,v =

Tb

∑
b=1

(Dgu ,gv
u,v )b (12)

where 2 ≤ Tb ≤ L and (Dgu ,gv
u,v )b denotes the bth element of Dgu ,gv

u,v . The vehicle position is
initially estimated as

q̂1 = min
rgu ,gv

u,v

Bgu ,gv
u,v (13)

It is obvious that the bearing line, which is formed by θ̂LOS
l and closest to q̂1, is

the LOS path for each emitter. θ̂LOS
l can be distinguished with the following distance

comparison function.
θ̂LOS

l = min
gl=1,2,··· ,Gl

‖θ̂l,gl
− θ̂

q1
l ‖2 (14)

where

θ̂
q1
l = arctan(

py
l,1 − q̂y

1

px
l,1 − q̂x

1
) (15)

So θ̂LOS
l , which is defined as the LOS angle, can be distinguished from

{
θ̂l,1, θ̂l,2, . . . , θ̂l,Gl

}
and the other angles form the NLOS angle set

{
θ̂NLOS

l,1 , θ̂NLOS
l,2 , · · · , θ̂NLOS

l,Gl−1

}
.

3.3. NLOS Data Suppression with Orthogonal Projection

The array manifold of LOS components is written as ALOS
l and the array manifold of

others is written as ANLOS
l for the l-th emitter. They are defined as

ALOS
l = a(θ̂LOS

l ) (16)

ANLOS
l = [a(θ̂NLOS

l,1 ), a(θ̂NLOS
l,2 ), · · · , a(θ̂NLOS

l,Gl−1)] (17)

Equation (5) can be derived as

Us
l = ALOS

l TLOS
l + ANLOS

l TNLOS
l (18)

where TLOS
l (t) and TNLOS

l (t) are, respectively, the LOS component and NLOS component
of Tl .

To remove the NLOS components, we define the orthogonal projection matrix

P⊥l = IM×M −ANLOS
l ((ANLOS

l )HANLOS
l )−1(ANLOS

l )H (19)

which satisfies P⊥l ANLOS
l = 0. Therefore, Equation (18) can be derived as

P⊥l Us
l = P⊥l ALOS

l TLOS
l (20)

Then, we can obtain the compact data model.

P⊥Us = P⊥AT (21)
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where

P⊥ =


P⊥1

P⊥2
. . .

P⊥L

 (22)

Us =
[
(Us

1)
T, (Us

2)
T, · · · , (Us

L)
T
]T

(23)

A =


ALOS

1
ALOS

2
. . .

ALOS
L

 (24)

T =
[
TLOS

1 , TLOS
2 , · · · , TLOS

L
]T (25)

Compared with the data model displayed in Equation (20), the compact data model
can greatly describe the correlation of different emitter signals. Therefore, more stable
positioning results can be obtained based on Equation (21) due to the application of data
correlation. In order to estimate the vehicle position, the SSF cost function with NLOS
component suppression is derived in Section 3.4.

3.4. Self-Position Determination with Array Signal Subspace Fitting
3.4.1. Grid Search Model

The self-position determination needs uniform grid points in the scenario shown in
Figure 1. The distribution of grid points can be assumed to be Xm rows and Ym columns.
The number of grid points is defined as Q = Xm ×Ym and the coordinates of grid points
are indexed by Pi = [xi, yi]

T ∈ R2, i = 1, 2, · · · , Q. According to the position relationship
between the grid point and the emitter, the characteristic steering vector in the i-th grid
point can be obtained in the following form:

φLOS
l,i =


ej 2π

λ d sin(θl,i−ϕ)

ej 2π
λ 2d sin(θl,i−ϕ)

...
ej 2π

λ (M−1)d sin(θl,i−ϕ)



=


ej 2π

λ d(sin(θl,i) cos(ϕ)−cos(θl,i) sin(ϕ))

ej 2π
λ 2d(sin(θl,i) cos(ϕ)−cos(θl,i) sin(ϕ))

...
ej 2π

λ (M−1)d(sin(θl,i) cos(ϕ)−cos(θl,i) sin(ϕ))


(26)

where sin(θl,i) satisfies the following relationship:

sin(θl,i) =
py

l,gl
− yi√(

px
l,gl
− xi

)2
+
(

py
l,gl
− yi

)2
(27)

cos(θl,i) =
px

l,gl
− xi√(

px
l,gl
− xi

)2
+
(

py
l,gl
− yi

)2
(28)
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All the construction matrices are combined into the characteristic array manifold
matrix at the i-th grid point. The formula is as follows:

Φi =


φLOS

1,i
φLOS

2,i
. . .

φLOS
L,i

 (29)

3.4.2. Signal Subspace Fitting

On the basis of Equation (21), the following LS equation can be obtained:

q̂2, T̂ = min
i=1,2,··· ,Q

∥∥∥P⊥Us − P⊥ΦiT̂
∥∥∥2

F
(30)

Φi is assumed as fixed and T̂ can be estimated as

T̂ = (ΦH
i (P

⊥)HP⊥Φi)
−1ΦH

i (P
⊥)HP⊥Us (31)

Define P = (P⊥)HP⊥. By substituting Equation (31) into Equation (30), the proposed
SSF estimator can be derived.

q̂2 = min
i=1,2,··· ,Q

∥∥∥P⊥Us − P⊥Φi(Φ
H
i (P

⊥)HP⊥Φi)
−1

ΦH
i (P

⊥)HP⊥Us
∥∥∥2

F

= min
i=1,2,··· ,Q

tr
(
(Us)HP(I3M×3M −Φi(Φ

H
i PΦi)

−1
ΦH

i P)Us
) (32)

By using the P matrix, the NLOS components in the original signal subspace are
suppressed and the SSF estimator can avoid the impact of NLOS components on the
estimation results. The vehicle position is the unique variable in Equation (32), so the real
position can be accurately determined via calculating the above formula in all grid points.
The specific algorithm flow can be seen in Algorithm 1.

Algorithm 1 Self-Position Determination Based on Array Signal Subspace Fitting under
Multipath Environments

Input: The array receiving data Xl(t),t = 1, 2, · · · , Tl ; The heading angle ϕ; The emitter position
{p1,1, p2,1, · · · , pL,1}; The subarray length K; The array element number M; The vehicle heading angle ϕ.

Output: The self-position determination result q̂2.
1: Calculate the array covariance matrix Rl from Equation (3);
2: Obtain the signal subspace Us

l using Equation (4);
3: Decorrelate the coherent signal and obtain RESS

l via Equation (6);
4: Obtain the noise subspace Un1

l via eigenvalue decomposition similar to Equation (4);
5: Estimate the DOA {θ̂1,1, θ̂1,2, · · · , θ̂l,gl

, · · · , θ̂L,GL} with Equations (7) and (8);
6: Estimate rgu ,gv

u,v with Equations (9) and (10) for any two bearing lines formed by emitter and corresponding
DOA estimation results;

7: Calculate dgu ,gv
u,v,h according to Equation (11) and place dgu ,gv

u,v,h in the set Dgu ,gv
u,v for each element in rgu ,gv

u,v ;
8: Sort elements of Dgu ,gv

u,v in ascending order and obtain Bgu ,gv
u,v from Equation (12) for each element in rgu ,gv

u,v ;
9: Estimate the initial position q̂1 based on Equation (13);

10: for l = 1, 2, · · · , L do
11: The NLOS angles are selected from all estimated DOA results in the l-th emitter after considering the angle

closest to q̂1 as LOS angles using Equation (14);
12: Construct the orthogonal projection matrix P⊥l with Equation (19);
13: end for
14: Construct P⊥, Us and A with Equations (22)–(24);
15: Divide the search area into Q grid points and construct characteristic array manifold matrices from

Equation (26)–(29);
16: Calculate Equation (32) and select the grid point with minimum value as q̂2.
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4. Performance Analysis
4.1. Complexity Analysis

The proposed method consists of seven parts, which are covariance matrix calculation,
eigenvalue decomposition, enhanced spatial smoothing, the Root-MUSIC algorithm, the
clustering algorithm, orthogonal projection and the SSF estimator. The complexity of
the covariance matrix calculation and eigenvalue decomposition are, separately, LM(Tl)2

and LM3. The enhanced spatial smoothing’s complexity is 4LN2K3 and the Root-MUSIC
algorithm’s complexity is (2K − 2)3 + 2K2 + 2K − 2. The computational complexity of
the clustering algorithm is 1

8 (∑
L
u=1 ∑L

v=1 GuGv)2 + 5
4 ∑L

u=1 ∑L
v=1 GuGv. The orthogonal

projection has a complexity of ∑L
l=1{G3

l + 3MG2
l } and the SSF estimator is 27M3 + L3 +

18M2L + 6ML2 + 27M2 + LQ. So, the computational complexity of the proposed method is
O(27M3 + LM3 + 4LN2K3 + L3 + 18M2L + 6ML2 + 27M2 + LM(Tl)2 + LQ + (2K− 2)3 +
2K2 + 2K− 2 + ∑L

l=1{G3
l + 3MG2

l }+
1
8 (∑

L
u=1 ∑L

v=1 GuGv)2 + 5
4 ∑L

u=1 ∑L
v=1 GuGv).

The complexities for MUSIC [10], ISF [11], SSF [11] and the proposed method are listed
in Table 1. The search grid point number of the compared algorithms is denoted as Q′.

Table 1. Computational complexity of four methods.

Method Computational Complexity

MUSIC O(LM3 + LM2TL + LQ′M(M − 1))
ISF O(Q′L3 + 6MQ′L2 + 9LQ′M2 + 9Q′TL M2 + 3MQ′(TL)2)
SSF O(LM3 + Q′L3 + 6MQ′L2 + 9LQ′M2 + LM(Tl)2 + 9Q′M2 + 3MQ′)

proposed O(27M3 + LM3 + 4LN2K3 + L3 + 18M2L + 6ML2 + 27M2 +
LM(Tl)2 + LQ + (2K − 2)3 + 2K2 + 2K − 2 + ∑L

l=1{G3
l +

3MG2
l } +

1
8 (∑

L
u=1 ∑L

v=1 GuGv)2 + 5
4 ∑L

u=1 ∑L
v=1 GuGv)

The comparison of computational complexity is shown in Figure 2, where M = 10,
K = 7, N = 2, Q′ = 250,000 and Q = 10,201. The numbers of signal propagation paths are
G1 = 2, G2 = 2 and G3 = 1, respectively. The complexity bar chart is increasing with the
change of sampling snapshot Tl . It can be seen that the complexity of the proposed method
is at least 7.64 dB lower than the others due to the fewer grid points used for accurate
estimation after the clustering estimation.
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Figure 2. Computational complexity comparison of four methods.
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4.2. Simulation Results

Several simulated experiments are carried out to verify the effectiveness of the pro-
posed method. Three emitters are distributed in this positioning scenario and two of
them each carry one NLOS signal. A vehicle equipped with ULA is considered as a self-
positioning target. The emitters are separately located in [−50, 0]Tm, [−100, 250]Tm and
[−50, 500]Tm. The emitters transmit narrowband signals whose frequencies are, respec-
tively, 1000 MHz, 1004 MHz and 1007 MHz. The search area of the compared method is
S1 =

{
[x y]T|0 ≤ x ≤ 500, 0 ≤ y ≤ 500

}
and the cost function search range of the proposed

method is S2 =
{
[x y]T| − 50 + c ≤ x ≤ 50 + c,−50 + c ≤ y ≤ 50 + c

}
, where c is the ini-

tial position estimation result with the clustering algorithm. The grid interval is set as 1 m
when searching the minimum value of the cost function (Equation (32)). The amplitude
attenuation follows this simplified formula:

P′l,gl
= P0

l,gl
− 10log10‖pl,gl

− q‖2 (33)

where P0
l,gl

denotes the signal radiation power and P′l,gl
denotes the received signal power.

Therefore, the attenuation coefficient βl,gl
can be defined as

βl,gl
= P′l,gl

ejαl,gl (34)

where αl,gl
is the random phase value in the array received signal for the glth path of the

l-th emitter.
The root mean square error (RMSE) is used to evaluate the precision of the root-MUSIC

with enhanced spatial smoothing. The RMSE of the angle estimation is given by

RMSE(θ) =

√√√√ 1
N

N

∑
n=1

L

∑
l=1

Gl

∑
gl=1

∥∥∥(θ̂l,gl
− θl,gl

)
∥∥∥2

2
(35)

where N is the Monte Carlo experiment times.
The RMSE values of the root-MUSIC algorithm with enhanced spatial smoothing

under different signal-to-noise ratio (SNR) conditions are shown in Table 2, where M = 10,
K = 7, Tl = 300, N = 50, q = [251, 251]T and P0

l,gl
= 100. The reflector positions are

randomly distributed and SNR varis from 0 dB to 25 dB. It can be seen from Table 2
that the root-MUSIC algorithm with enhanced spatial smoothing has high-precision angle
estimation results under multipath environments.

Table 2. RMSE of root-MUSIC algorithm with enhanced spatial smoothing under different SNR conditions.

SNR RMSE (◦)

0 dB 0.3945
5 dB 0.2514
10 dB 0.1513
15 dB 0.1132
20 dB 0.0464
25 dB 0.0250

Figure 3 shows the spectrums of MUSIC, ISF, SSF and the proposed method in a
simulated experiment at SNR of 10 dB, where M = 10, K = 7, Tl = 300, Tb = 2 and
P0

l,gl
= 100. For the convenience of comparison, the vehicle position is located in the middle

of the search area. It can be clearly observed that the spectral peaks of MUSIC, ISF and
SSF deviate significantly from the real position under multipath environments. Due to
the NLOS component suppression measures, the spectral peak of the proposed method is
sharpest and the position of its maximum value is accurately located near the real position.
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(a) MUSIC (b) ISF

(c) SSF (d) proposed

Figure 3. Spectrums of four different methods.

The proposed method is applied to 100 independent Monte Carlo experiments and is
compared with MUSIC, ISF, SSF and the clustering algorithm. The vehicle position is fixed
at [200, 300]T. The error ellipses, the confidence region of which is 95%, are employed to
describe the accuracy of different algorithms. The simulation results exhibited in Figure 4
indicate that the proposed method has the smallest estimation error range, which is less
than 3 m. The estimation error range of the clustering algorithm is less than 5 m and
the estimation error range of MUSIC, ISF and SSF is less than 26 m. Moreover, the error
ellipse center of the proposed method only has an estimation error of 0.11 m, which is less
than the clustering algorithm, MUSIC, ISF and SSF. Hence, with the proposed method it is
more possible to obtain accurate position estimation than with MUSIC, ISF, SSF and the
clustering algorithm.
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Figure 4. Error ellipse of different methods.
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The definition of RMSE for position estimation is expressed as Equation (36).

RMSE(q) =

√√√√ 1
N

N

∑
n=1
‖q̂n − q‖2

2 (36)

where q̂n is the estimated position in the nth experiment.
Figure 5 displays RMSE curves of different multipath suppression methods, where

M = 15, K = 7, Tl = 500, Tb = 2, N = 100 and P0
l,gl

= 100. The proposed method is
compared with C-matrix [25] and oblique projection [26] with respect to the NLOS com-
ponent’s suppression performance. The simulation results show that the performance of
the C-matrix is terrible and its error deviation is even larger than the clustering algorithm.
Both the proposed method and oblique projection can greatly reduce the multipath in-
fluence. The proposed method can achieve smaller error deviation in comparison with
oblique projection.

0 5 10 15 20 25

SNR(dB)

10-1

100

101

R
M

S
E

(m
)

C-matrix

Oblique projection

Clustering

proposed

Figure 5. RMSE comparison of different multipath suppression methods.

Figure 6 shows the CDF curves versus estimation error, where M = 10, K = 7, Tl = 300,
Tb = 2, N = 100 and P0

l,gl
= 100. All experiment error values are placed in a set Q whose

elements are sorted in ascending order, i.e., Q = sort(‖q̂1 − q‖2, ‖q̂2 − q‖2, · · · , ‖q̂N − q‖2).
The CDF function is defined as

CDFQi =
i
N

(37)

where i is the index of a error value Qi in the set Q.
The vehicle position is randomly set in each simulation process. From Figure 6, it can

be seen that the CDF curve of the proposed method is closest to the longitudinal axis and
approximately 85 percent of estimation error values are less than 1.16 m, which is 3.10 dB
smaller than the clustering algorithm. Meanwhile, the error deviation of MUSIC, ISF and
SSF is much larger and nearly 85 percent of estimation error values are below 17.43 m,
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which is 11.77 dB larger than the proposed method. Thus, the proposed method performs
with less error deviation than MUSIC, ISF, SSF and the clustering algorithm.
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Figure 6. CDF comparison of different methods.

5. Conclusions

This paper proposes a self-position determination method based on array signal
subspace fitting to suppress NLOS information with a P matrix. The array receiving data
are decorrelated via enhanced spatial smoothing and the incident angles are estimated
via root-MUSIC. The initial position is estimated using the K-means clustering algorithm
and the NLOS components are distinguished with the distance comparison function. The
SSF function for suppressing NLOS signal information is directly established, which can
obtain the accurate position estimation results. Due to the smaller grid search area, the
computational complexity of the proposed method is lower than MUSIC, ISF and SSF via
numerical analysis. Further, compared with C-matrix and oblique projection, the proposed
method has been proven to perform better in terms of NLOS component suppression
performance. Comparisons of spectrums, error ellipses and CDF are carried out to verify
the accurate estimation performance of the proposed method.
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Abbreviations
The following abbreviations are used in this manuscript:

CVIS Cooperative Vehicle Infrastructure Systems
SSF Signal Subspace Fitting
ISF Initial Signal Fitting
NLOS Non-Line-Of-Sight
LOS Line-Of-Sight
ULA Uniform Linear Array
DOA Direction Of Arrival
MUSIC Multiple Signal Classification
LS Least Squares
SNR Signal-To-Noise Ratio
CDF Cumulative Distribution Function
RMSE Root Mean Square Error

References
1. Jia, M.; Khalife, J.; Kassas, Z.M. Performance Analysis of Opportunistic ARAIM for Navigation with GNSS Signals Fused with

Terrestrial Signals of Opportunity. IEEE Trans. Intell. Transp. Syst. 2023, 24, 10587–10602. [CrossRef]
2. Zhu, J.; Zhou, H.; Wang, Z.; Yang, S. Improved Multi-Sensor Fusion Positioning System Based on GNSS/LiDAR/Vision/IMU

with Semi-Tight Coupling and Graph Optimization in GNSS Challenging Environments. IEEE Access 2023, 11, 95711–95723.
[CrossRef]

3. Tang, C.; Wang, Y.; Zhang, L.; Zhang, Y. GNSS/Inertial Navigation/Wireless Station Fusion UAV 3-D Positioning Algorithm with
Urban Canyon Environment. IEEE Sens. J. 2022, 22, 18771–18779. [CrossRef]

4. Sun, Y.; Cao, L.; Li, S.; Deng, Z. G5GIM: Integrity Monitoring for GNSS/5G Integrated Navigation of Urban Vehicles. IEEE Trans.
Instrum. Meas. 2023, 72, 1–13. [CrossRef]

5. Zhang, P.; Tian, D.; Zhou, J.; Duan, X.; Sheng, Z.; Zhao, D.; Cao, D. Joint Optimization of Platoon Control and Resource Scheduling
in Cooperative Vehicle-Infrastructure System. IEEE Trans. Intell. Veh. 2023, 8, 3629–3646. [CrossRef]

6. Wang, J.; Shao, Y.; Ge, Y.; Yu, R. A Survey of Vehicle to Everything (V2X) Testing. Sensors 2019, 19, 334. [CrossRef]
7. Han, X.; Tian, D.; Sheng, Z.; Duan, X.; Zhou, J.; Hao, W.; Long, K.; Xhen, M.; Leung, C.M. Reliability-Aware Joint Optimization for

Cooperative Vehicular Communication and Computing. IEEE Trans. Intell. Transp. Syst. 2020, 22, 5437–5446. [CrossRef]
8. Gan, L.; Jiang, W.; Chen, Q.; Li, X.; Zhou, Z.; Gong, S. Method to Estimate Antenna Mode Radar Cross Section of Large-Scale

Array Antennas. IEEE Trans. Antennas Propag. 2021, 69, 7029–7034. [CrossRef]
9. Yao, J.; Zhao, C.; Bai, J.; Ren, Y.; Wang, Y.; Miao, J. Satellite Interference Source Direction of Arrival (DOA) Estimation Based on

Frequency Domain Covariance Matrix Reconstruction. Sensors 2023, 23, 7575. [CrossRef] [PubMed]
10. Li, J.; Li, P.; Li, P.; Tang, L.; Zhang, X.; Wu, Q. Self-Position Awareness Based on Cascade Direct Localization over Multiple Source

Data. IEEE Trans. Intell. Transp. Syst. 2022, 1–9. [CrossRef]
11. Cao, Z.; Li, P.; Li, J.; Zhang, X.; Wu, Q. Direct Self-Position Awareness Based on Array-Sensing Multiple Source Data Fitting.

In Proceedings of the 2023 4th Information Communication Technologies Conference (ICTC), Nanjing, China, 17–19 May 2023;
pp. 213–217.

12. Hao, K.; Wan, Q. Sparse Bayesian Inference-Based Direct Off-Grid Position Determination in Multipath Environments. IEEE
Wirel. Commun. Lett. 2021, 10, 1148–1152. [CrossRef]

13. Zhang, L.; Chen, M.; Wang, X.; Wang, Z. TOA Estimation of Chirp Signal in Dense Multipath Environment for Low-Cost Acoustic
Ranging. IEEE Trans. Instrum. Meas. 2019, 68, 13011–13028. [CrossRef]

14. Liu, Y.; Tan, Z.-W.; Khong, A.W.H.; Liu, H. An Iterative Implementation-Based Approach for Joint Source Localization and
Association Under Multipath Propagation Environments. IEEE Trans. Signal Process. 2023, 71, 121–135. [CrossRef]

15. Van Marter, J.P.; Dabak, A.G.; Al-Dhahir, N.; Torlak, M. Support Vector Regression for Bluetooth Ranging in Multipath Environ-
ments. IEEE Internet Things J. 2023, 10, 11533–11546. [CrossRef]

16. Aubry, A.; De Maio, A.; Foglia, G.; Orlando, D. Diffuse Multipath Exploitation for Adaptive Radar Detection. IEEE Trans. Signal
Process. 2015, 63, 1268–1281. [CrossRef]

17. Hayvaci, H.T.; De Maio, A.; Erricolo, D. Diversity in Receiving Strategies Based on Time-Delay Analysis in the Presence of
Multipath. In Proceedings of the 2011 IEEE RadarCon (RADAR), Kansas City, MO, USA, 23–27 May 2011; pp. 1040–1045.

18. Hayvaci, H.T.; De Maio, A.; Erricolo, D. Performance Analysis of Diverse GLRT Detectors in the Presence of Multipath.
In Proceedings of the 2012 IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; pp. 902–906.

19. Rong, Y.; Aubry, A.; De Maio, A.; Tang, M. Diffuse Multipath Exploitation for Adaptive Detection of Range Distributed Targets.
IEEE Trans. Signal Process. 2020, 68, 1197–1212. [CrossRef]

20. Dun, H.; Tiberius, C.C.J.M.; Janssen, G.J.M. Positioning in a Multipath Channel Using OFDM Signals with Carrier Phase Tracking.
IEEE Access 2020, 8, 13011–13028. [CrossRef]

http://doi.org/10.1109/TITS.2023.3277393
http://dx.doi.org/10.1109/ACCESS.2023.3311359
http://dx.doi.org/10.1109/JSEN.2022.3199487
http://dx.doi.org/10.1109/TIM.2023.3298418
http://dx.doi.org/10.1109/TIV.2023.3265866
http://dx.doi.org/10.3390/s19020334
http://dx.doi.org/10.1109/TITS.2020.3038558
http://dx.doi.org/10.1109/TAP.2021.3075536
http://dx.doi.org/10.3390/s23177575
http://www.ncbi.nlm.nih.gov/pubmed/37688029
http://dx.doi.org/10.1109/TITS.2022.3170465
http://dx.doi.org/10.1109/LWC.2021.3057502
http://dx.doi.org/10.1109/TIM.2018.2844942
http://dx.doi.org/10.1109/TSP.2023.3241776
http://dx.doi.org/10.1109/JIOT.2023.3244743
http://dx.doi.org/10.1109/TSP.2014.2388439
http://dx.doi.org/10.1109/TSP.2020.2967144
http://dx.doi.org/10.1109/ACCESS.2020.2966070


Sensors 2023, 23, 9356 15 of 15

21. Yang, Z.; Stoica, P.; Tang, J. Source Resolvability of Spatial-Smoothing-Based Subspace Methods: A Hadamard Product Perspective.
IEEE Trans. Signal Process. 2019, 67, 2543–2553. [CrossRef]

22. Carotenuto, V.; De Maio, A. A Clustering Approach for Jamming Environment Classification. IEEE Trans. Aerosp. Electron. Syst.
2021, 57, 1903–1918. [CrossRef]

23. Li, J.; He, Y.; Zhang, X.; Wu, Q. Simultaneous Localization of Multiple Unknown Emitters Based on UAV Monitoring Big Data.
IEEE Trans. Ind. Inform. 2021, 17, 6303–6313. [CrossRef]

24. Guo, X.; Chen, Z.; Hu, X.; Li, X. Multi-Source Localization Using Time of Arrival Self-Clustering Method in Wireless Sensor
Networks. IEEE Access 2019, 7, 82110–82121. [CrossRef]

25. Zhang, Y.; Ye, Z. Efficient Method of DOA Estimation for Uncorrelated and Coherent Signals. IEEE Antennas Wirel. Propag. Lett.
2008, 7, 799–802. [CrossRef]

26. Xu, X.; Ye, Z.; Zhang, Y.; Chang, C. A Deflation Approach to Direction of Arrival Estimation for Symmetric Uniform Linear Array.
IEEE Antennas Wirel. Propag. Lett. 2006, 5, 486–489. [CrossRef]

27. Zhang, X.; He, Z.; Liao, B.; Yang, Y.; Zhang, J.; Zhang, X. Flexible Array Response Control via Oblique Projection. IEEE Trans.
Signal Process. 2019, 67, 3126–3139. [CrossRef]

28. Tao, H.; Xin, J.; Wang, J.; Zheng, N.; Sano, A. Two-Dimensional Direction Estimation for a Mixture of Noncoherent and Coherent
Signals. IEEE Trans. Signal Process. 2015, 63, 318–333. [CrossRef]

29. Tirer, T.; Weiss, A.J. High Resolution Direct Position Determination of Radio Frequency Sources. IEEE Signal Process. Lett. 2016,
23, 192–196. [CrossRef]

30. Malioutov, D.; Cetin, M.; Willsky, A.S. A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays.
IEEE Trans. Signal Process. 2005, 53, 3010–3022. [CrossRef]

31. Hyder, M.M.; Mahata, K. Direction-of-Arrival Estimation Using a Mixed `2,0 Norm Approximation. IEEE Trans. Signal Process.
2010, 58, 4646–4655. [CrossRef]

32. Garcia, N.; Wymeersch, H.; Larsson, E.G.; Haimovich, A.M.; Coulon, M. Direct Localization for Massive MIMO. IEEE Trans.
Signal Process. 2017, 65, 2475–2487. [CrossRef]

33. Pan, J.; Sun, M.; Wang, Y.; Zhang, X. An Enhanced Spatial Smoothing Technique with ESPRIT Algorithm for Direction of Arrival
Estimation in Coherent Scenarios. IEEE Trans. Signal Process. 2020, 68, 3635–3643. [CrossRef]

34. Du, W.; Kirlin, R.L. Improved Spatial Smoothing Techniques for DOA Estimation of Coherent Signals. IEEE Trans. Signal Process.
1991, 39, 1208–1210. [CrossRef]

35. Dong, M.; Zhang, S.; Wu, X.; Zhang, H. A High Resolution Spatial Smoothing Algorithm. In Proceedings of the 2007 International
Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, China,
16–17 August 2007; pp. 1031–1034.

36. Zhu, Y.; Zhang, W.; Yi, H.; Xu, H. Enhanced Root-MUSIC Algorithm Based on Matrix Reconstruction for Frequency Estimation.
Sensors 2023, 23, 1829. [CrossRef] [PubMed]

37. Uykan, Z. Fusion of Centroid-Based Clustering with Graph Clustering: An Expectation-Maximization-Based Hybrid Clustering.
IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 4068–4082. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSP.2019.2908142
http://dx.doi.org/10.1109/TAES.2021.3050655
http://dx.doi.org/10.1109/TII.2020.3048987
http://dx.doi.org/10.1109/ACCESS.2019.2923771
http://dx.doi.org/10.1109/LAWP.2008.2001420
http://dx.doi.org/10.1109/LAWP.2006.886304
http://dx.doi.org/10.1109/TSP.2019.2912147
http://dx.doi.org/10.1109/TSP.2014.2369004
http://dx.doi.org/10.1109/LSP.2015.2503921
http://dx.doi.org/10.1109/TSP.2005.850882
http://dx.doi.org/10.1109/TSP.2010.2050477
http://dx.doi.org/10.1109/TSP.2017.2666779
http://dx.doi.org/10.1109/TSP.2020.2994514
http://dx.doi.org/10.1109/78.80975
http://dx.doi.org/10.3390/s23041829
http://www.ncbi.nlm.nih.gov/pubmed/36850427
http://dx.doi.org/10.1109/TNNLS.2021.3121224
http://www.ncbi.nlm.nih.gov/pubmed/34748502

	Introduction
	Signal Model
	The Proposed Method
	DOA Estimation of Multipath Signals
	Discrimination of NLOS Components with Clustering Algorithm
	NLOS Data Suppression with Orthogonal Projection
	Self-Position Determination with Array Signal Subspace Fitting
	Grid Search Model
	Signal Subspace Fitting


	Performance Analysis
	Complexity Analysis
	Simulation Results

	Conclusions
	References

