
Citation: James, E.; Munro, P.R.T.

Diffuse Correlation Spectroscopy: A

Review of Recent Advances in

Parallelisation and Depth

Discrimination Techniques. Sensors

2023, 23, 9338.

https://doi.org/10.3390/s23239338

Academic Editors: Zahid Yaqoob and

Matthew Foreman

Received: 3 October 2023

Revised: 13 November 2023

Accepted: 16 November 2023

Published: 22 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Diffuse Correlation Spectroscopy: A Review of Recent Advances
in Parallelisation and Depth Discrimination Techniques
Edward James * and Peter R. T. Munro

Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
* Correspondence: e.james.14@ucl.ac.uk

Abstract: Diffuse correlation spectroscopy is a non-invasive optical modality used to measure cere-
bral blood flow in real time, and it has important potential applications in clinical monitoring and
neuroscience. As such, many research groups have recently been investigating methods to improve
the signal-to-noise ratio, imaging depth, and spatial resolution of diffuse correlation spectroscopy.
Such methods have included multispeckle, long wavelength, interferometric, depth discrimination,
time-of-flight resolution, and acousto-optic detection strategies. In this review, we exhaustively
appraise this plethora of recent advances, which can be used to assess limitations and guide innova-
tion for future implementations of diffuse correlation spectroscopy that will harness technological
improvements in the years to come.

Keywords: diffuse correlation spectroscopy; cerebral blood flow; laser speckle

1. Introduction

Diffuse correlation spectroscopy (DCS) is a non-invasive optical imaging modality that
can be used to measure cerebral blood flow (CBF) in real time [1]. It has important potential
applications in clinical monitoring [2] as well as in neuroscience and the development
of a noninvasive brain–computer interface [3,4]. However, one of the limitations of DCS
is that a trade-off exists between the signal-to-noise ratio (SNR) and imaging depth, and
thus brain specificity, of this technique [5]. This is because an increase in imaging depth
requires the use of larger source-detector separation (SDS) distances, which result in
more photon losses due to absorption and scattering and a subsequent decrease in SNR.
An increase in imaging depth also results in the accumulation of phase shifts due to
dynamic scattering events, which results in a loss of coherence and SNR. Additionally, as
DCS is a diffuse optical technique, it is limited by a lack of inherent depth discrimination
within the illuminated region of each source-detector pair, and the CBF signal is therefore
also prone to contamination by the extracerebral tissues which the light traverses [6].

DCS was first developed in 1997 [7], and, until the last handful of years, developments in
DCS have been fairly quiescent. However, the investigation of novel approaches to improve the
sensitivity of DCS to CBF has recently attracted interest from several research groups. Indeed, as
was depicted by Carp et al., the field has seen steady linear growth over the past 15 years, with
more than 350 publications [8]. Techniques including multispeckle detection strategies [3,9–11],
time-domain DCS (TD-DCS) [12], DCS in the short-wave infrared region [13–15], interferometric
approaches [5,16–19], and acousto-optic modulation [20] have all been proposed. Reducing the
cost and enhancing the performance of such systems will allow for more widespread clinical
use. There is currently an unmet need to develop such an instrument using a continuous,
noninvasive, and portable bedside approach [21], and in this paper, we review the research that
addresses this important challenge.

2. Motivation

The ability to be able to monitor CBF in a medical setting is of crucial importance [22].
CBF, representing the perfusion of blood through the brain’s tissue beds, needs to be main-
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tained at an average resting value of 40–50 mL per 100 g of brain tissue per minute [23].
This perfusion level is necessary in order to support the brain’s relatively high demand
of 20% of the body’s overall oxygen supply [24] as well as to remove the waste prod-
ucts of metabolism. The neurons of the brain require adenosine triphosphate in order to
function, the production of which depends almost exclusively on oxidative processes [25].
Inadequate CBF, even if only for a few minutes, can lead to irreversible brain damage, is-
chaemic stroke, and death [22]. Excessive CBF can cause damage to the blood–brain barrier,
which can cause seizures, headaches, encephalopathy, and stroke [26]. Durduran and Yodh
therefore state that [24],

‘CBF is an important biomarker of brain health and function. It is a critical physi-
ological parameter linking metabolic demand to oxygen supply, oxygen supply
to metabolic consumption, and metabolic consumption to byproduct clearance.’

CBF monitoring is critical in unconscious or anaesthetised patients as it provides
an indicator of the adequacy of the delivery of vital nutrients to the brain as well as a
commentary on the efficacy of cerebral autoregulation (CA). CA is the intrinsic homeostatic
mechanism by which CBF is kept within tightly controlled bounds in the face of variations
in mean arterial pressure (MAP) and intracranial pressure (ICP) [23], which itself can affect
arterial and venous pressure changes within the skull.

Cerebral perfusion pressure (CPP) is the net pressure gradient that drives CBF and
causes the tissues of the brain to be perfused with blood. CPP can be calculated as the
difference between MAP and ICP [26,27]:

CPP = MAP− ICP. (1)

MAP is also known as arterial blood pressure (ABP) or systemic arterial pressure (SAP).
MAP in the brain is similar to the MAP anywhere else in the human body and can be deter-
mined by intraarterial catheterisation. MAP can also be approximated noninvasively by

MAP = DP +
SP−DP

3
, (2)

where SP is systolic pressure and DP is diastolic pressure.
ICP is the pressure within the rigid human skull, the volume of which, according to

the Monro and Kellie doctrine, cannot change [28]. ICP is the sum of the partial pressures of
brain tissue, cerebrospinal fluid (CSF), and cerebral blood volume (CBV) contained within
the skull and thus may vary with any of these three partial pressures [23]. Changes in ICP
can occur in the healthy patient due to arterial pulsations within the brain, changes in head
and body positioning, or exercise, but may also occur due to the administration of drugs or
various disease states, such as traumatic brain injury, intracranial haemorrhage or tumour,
disorders of CSF circulation, and stroke [26,28].

Analogous to Ohm’s or Darcy’s Law, CBF varies with CPP according to [26]:

CBF =
CPP
CVR

, (3)

where CVR is total cerebrovascular resistance and is associated with the entirety of the
brain’s vascular tree. Thus, one component of CA involves pressure autoregulation, by
which varying degrees of vasoconstriction and vasodilation are used to affect changes in
CVR. The other component of CA is metabolic autoregulation, in which CBF is adjusted
according to the metabolic needs of the tissue. This metabolic effect is primarily attributed
to changes in brain tissue pH [23].

In order to assess CA in a continuous or semi-continuous manner in hospitalised
patients, invasive measurements of ICP may be taken in order to calculate an estimate of
CPP, which may be used as a surrogate for CA assessment [27]. For example, in the absence
of CA, an increase in MAP will cause an increase in CPP [26]; alternatively, a decreased
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CPP can be viewed as an indicator of low CBF and impaired CA. This also allows clinicians
to manage ICP directly but has two disadvantages:

• in certain populations of patients, clinicians would prefer to avoid the risks of invasive
ICP measurement using continuous cerebral monitoring devices [29], such as the risk
of bleeding, infection, and misplacement [30];

• a more accurate assessment of CA may be inferred from direct measurements of local
CBF [24], and evaluation of its correlation with MAP, together with evaluation of
clinical neurological signs. There should be no correlation between CBF and MAP
when CA is operating effectively.

Indeed, raised ICP and low CBF are associated with ischaemia and poor outcomes follow-
ing brain injury, and so many management protocols target these two parameters directly [28]
(N.B. a recent review of non-invasive ICP monitoring methods is available in [31]).

CBF measurements may also be used to distinguish between hypoxia and ischaemia,
to avoid hyperperfusion injury, to characterise different types of hypoxic states, as well
as to examine connections between vascular physiology and neurophysiology (i.e., neuro-
vascular coupling) in healthy patients for neuroscience applications [25]. Finally, CBF
monitoring also has applications in the development of a noninvasive brain–computer in-
terface [3,4], although these authors have demonstrated that sensitivity to local, subsecond
latency haemodynamic response of the cerebral cortex at a depth of 15 mm below the scalp
surface is not feasible with current detector technology and signal processing techniques.

Many imaging modalities exist that attempt to measure CBF, each of which has its
own distinct advantages and disadvantages (the interested reader is referred to [26,32] for
comprehensive reviews of non-optical and optical CBF measurement methods). Within the
more general context of tissue blood flow (BF) measurement, Yu et al. [21] state,

‘The ideal BF measurement should provide quantitative information about macro-
and microvasculature with millisecond temporal resolution. The measurements
should be carried out continuously, noninvasively, and without risk to subjects.
Furthermore, ideal measurements would not be limited to the tissue surface,
i.e., it is desirable to probe BF in deep tissues. Unfortunately, no such ideal
modality exists’.

The motivation to measure local microvascular BF is by no means limited to the brain.
Abnormal BF can be seen in a variety of medical conditions in the various tissues and
organs of the human body, and the utility of its measurement has been demonstrated in
conditions such as cancer and peripheral arterial disease (PAD), as well as in the monitoring
of muscle disease, and normal exercise physiology. A few of these applications are briefly
outlined below.

Worldwide, breast cancer is the most frequently diagnosed and primary cause of
cancer-related mortality amongst women [33]. Therefore, every incremental improvement
in breast cancer detection could have a significant impact on the detection of this disease.
Previous studies have shown that BF in tissues affected by breast cancer is larger than in
normal tissues [34,35]. BF measurements have been used to monitor the response of:

• Breast cancer to chemotherapy [35];
• Head-and-neck cancer to chemoradiation therapy [36];
• Prostate cancer to photodynamic therapy (PDT) [37].

It has also been demonstrated that BF measurement can be used in the prediction of
the response of murine tumours to PDT [38] as well as in the real-time in situ monitoring
of the response of prostate cancers to PDT [37].

Measurement of BF in skeletal muscles has important applications in exercise medicine
and the furtherance of our knowledge of exercise physiology, as well as in the aiding of our
understanding of diseases such as PAD, and how muscle function is affected by cardiovascular
disease more generally [39]. There has also been recent interest in BF imaging of the heart to
assess cardiac tissue for evidence of myocardial infarction (i.e., heart attack) [40], which would
be especially useful in the emergency setting.
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DCS is the archetypal optical modality to measure flow beyond a few millimetres of
the tissue surface, and it is suitable for continuous, noninvasive, portable, and real-time
CBF measurement. However, the depth penetration and spatial resolution of DCS are
fundamentally limited by the nature of diffuse optics, and, in this paper, we review the
various approaches that have been employed to overcome these limitations.

3. Laser Speckle

Laser speckle is a random interference pattern that is produced by the coherent
summation of a scattered laser beam of light, each component of which has travelled a
slightly different pathlength due to scattering. Movement of scattering red blood cells
(RBCs) in biological tissue causes modifications to the intensity of this speckle pattern, in
both the temporal and spatial domains [41]. Spatial ensemble methods use a high-pixel-
count and typically low-frame rate detector to capture speckle patterns and infer sample
dynamics through assessment of the spatial fluctuations of speckle [42].

Alternatively, temporal sampling methods record the intensity fluctuations of each
pixel over time, typically using high-frame rate and single or few-mode detection [42].
When an incident coherent light beam interacts with a scattering particle, each particle
develops an induced dipole moment. Each of these oscillating dipoles emits scattered light
fields in all directions. The scattered light electric field at the detector, E(t), is thus composed
of the addition of all of these oscillating dipole contributions. Due to the movement
of the scattering particles, the phases of these fields vary relative to each other, which
results in fluctuations in the field, and therefore intensity, over time. Temporal sampling
methods access sample dynamics by considering the autocorrelation of such a time series
of measurements, the rate and shape of the decay of which correspond to the speed and
the nature of scattering particles, respectively.

In practice, the scattered normalised intensity temporal autocorrelation function,
g2(τ), at the detector is measured. This is more straightforward to measure than the electric
field [24], which fluctuates at 0.23–0.46 PHz in the near-infrared (NIR) optical window
(650–1300 nm) and which light sensors are unable to detect. However, g2(τ) is directly
measurable as [21]

g2(τ) ≡
〈I(t)I(t + τ)〉
〈I(t)〉2 , (4)

where intensity I(t) = |E(t)|2, τ is the autocorrelation lag time, and 〈. . . 〉 denotes a
spatial ensemble-average (which is equivalent to a time-average for an ergodic sample [7]).
An example of g2(τ) is shown in Figure 1. The minimum lag time (or equivalently the
maximum frame rate of detection) is an important property in DCS measurements, as
it determines how accurately g2(τ) can be measured within the timescales of interest.
In order to characterise g2(τ) for in vivo experiments, a minimum lag time of 1 µs is
typically required [29], and it has also been demonstrated that earlier lag times are more
sensitive to deeper photon paths [43], which is a consideration when discriminating the
depth within the sample from which the measured signal has originated, as described in
Section 4.5. Assuming that the electric field is a zero-mean Gaussian random variable,
an assumption that breaks down when scattering sites are few or correlated, the Siegert
relation, can then be used to extract the electric field autocorrelation function, g1(τ), from
g2(τ) using [44,45]

g2(τ) = 1 + β|g1(τ)|2, (5)

where [7]
g1(τ) = α|g1d(τ)|+ (1− α), (6)

where g1(τ) is the field autocorrelation due to both dynamic and static scatterers, g1d(τ) is
the field autocorrelation due to dynamic scatterers only, and where α ∈ [0, 1] and β ∈ [0, 1]
are both unitless factors.
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Sample motion may be inferred by fitting measured data to a theoretical model
of g1(τ) that incorporates mean-square particle displacement, 〈∆r2(τ)〉 (which directly
characterises particle displacement). For the case of deterministic convective motion of
scatterers, 〈∆r2(τ)〉 = 〈V2〉τ2, where 〈V2〉 (cm2/s2) is the second moment of the speed
distribution of scattering particles. In the case of diffusive Brownian motion of scatterers
〈∆r2(τ)〉 = 6Dbτ, where Db (cm2/s) is the effective Brownian diffusion coefficient of
scattering particles [46]. Other types of particle motion contribute toward the measured
signal (e.g., rotation, shear flow, and turbulence) but the literature focuses on these two
effects. Diffusing light is primarily absorbed when crossing large arteries and veins, and
therefore DCS is most sensitive to the motion of scatterers in the microvasculature (capillaries,
arterioles, and venules) rather than macrovasculature [29]. Microvasculature is convoluted
and the distribution of the direction of velocities of RBCs can therefore be assumed to be
isotropic. Previous authors have found that the Brownian model fits observed data more
precisely than the convective flow model in many biological tissues [21], although a mixed
model can also be used [47], as shown by Equation (11).

α is an adaptation to biological tissue and refers to the fraction of scattering events due
to dynamic, rather than stationary, scatterers. This factor is therefore the ratio of dynamic
scatterers to the total number of scatterers in a sample. One must be careful when applying
the Siegert relation to samples that have a large proportion of static scatterers; however,
Durduran et al. concluded that ‘one can routinely employ the Siegert relation in most
tissue dynamics experiments, except perhaps those wherein the subject is exercising’ [29].
If we make the assumption that a sample is composed entirely of dynamic scatterers, then
Equation (6) can be simplified to

g1(τ) = |g1d(τ)|. (7)

Similarly, if a sample is composed entirely of static scatterers, then we have

g1(τ) = 1. (8)

β, the coherence factor, is a constant determined by the geometry and collection optics
of the experiment and is equal to 1 ideally. β is inversely proportional to the number of
detected speckles, and is also related to the coherence length, stability of the laser light
source, stray light, detector stability, sample coupling, and polarisation state [7]; it can be
determined as the value of g2(0).

Figure 1. Schematic overview of a diffuse correlation spectroscopy (DCS) system and measurement
pipeline. Source and detector fibres are mounted on the sample surface. Artefacts are present at very
short delay times in g2(τ), arising from downsampling due to hardware constraints. As such, g2(τ)

is thresholded at a minimum lag time prior to further data processing. Reproduced with permission
from [32] under the terms of a CC BY-NC 4.0 License. © James 2022.

4. Diffuse Correlation Spectroscopy

DCS typically employs a long coherence length (∼10 m) laser light source, which is
mounted on the sample surface and delivered through a multimode source fibre. A long
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coherence length is used to provide the necessary conditions for interference over the diffuse
optical pathway between the source and the detector. Surface mounted single-mode or
few-mode optical fibres are then used to collect photons from a single/few speckles, using
SDS distances of 2.5–3.5 cm. Fast photon-counting avalanche photodiodes (APDs) can be
used as detectors, as can photon multiplying tubes (PMTs) or single photon avalanche
detectors (SPADs). A correlator board receives the intensity output from the photodetector
and then computes g2(τ), typically using the multi-tau autocorrelation algorithm [21].
Briefly, and as described more fully in the remainder of this section, the shape and rate
of decay of g2(τ) provides information corresponding to the nature and the speed of the
motion of scatterers in the illuminated volume (depicted by the red banana-shaped region
in Figure 1). A typical DCS system requires only one wavelength of NIR light to operate
(commonly ∼785 nm), and can be made to be very compact due to the advent of solid state
laser technology. A schematic of the entire DCS measurement process is shown in Figure 1.

Boas and Yodh derived the correlation diffusion equation [7], the theoretical basis
of DCS, which describes the propagation of the temporal electric field autocorrelation
function in turbid biological tissue, and provides a framework for the study of tissue
dynamics and tomography [21]. (It should be noted that DCS is a differential formulation
of diffusing wave spectroscopy (DWS), which models the autocorrelation function as an
integral over photon pathlengths [48].) The diffusion equation for electric field correlation
(i.e., the correlation diffusion equation) can be derived for a clinically relevant semi-infinite
geometry (Figure 2) [1], in which the unnormalised solution for the autocorrelation function
for dynamic scatterers is given by [7].

G1d(τ) =
S0

4πD

[
exp−K(τ)r1

r1
− exp−K(τ)r2

r2

]
. (9)

The normalised temporal electric field autocorrelation function is then [35]

g1d(τ) =
G1d(τ)

G1d(τ = 0)
, (10)

where, in Equation (9),

• S0 is the optical source intensity;
• D is the optical diffusion coefficient, 1

3(µa+µ′s)
, where µa is the absorption coefficient

and µ′s is the reduced scattering coefficient;

• K(τ) =
√

3µaµ′s + µ′2s k2
0〈∆r2(τ)〉 is the decay constant, where k0 = 2πn/λ is the

wavenumber of the incident light field, and n is the refractive index of tissue;
• z0 = 1/µ′s is the depth into the medium at which the collimated source is approximated

as a positive isotropic source;
• ρ is the distance between the optical source and detector;
• Reff = −1.440n−2 + 0.710n−1 + 0.668 + 0.0636n is the effective reflection coefficient

and accounts for the reflective index mismatch between air (nout) and tissue (nin),
where n = nin/nout;

• zb = 2z0
3

(1+Reff)
(1−Reff)

, −zb is the position at which there should be a signal size of zero to
fulfil the extrapolated boundary condition [49];

• r1 =
√

z2
0 + ρ2 is the distance between the detector and an approximated positive

isotropic imaging source;
• r2 =

√
(2zb + z0)2 + ρ2 is the distance between the detector and an approximated

negative isotropic imaging source located at position z = −(z0 + 2zb).
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A value for 〈∆r2(τ)〉 can be extracted from measured data by fitting to either a Brow-
nian or a convective motion model of Equation (10) or a linear combination of the two,
assuming that RBCs are the only source of dynamic scattering events and that [47]

〈∆r2(τ)〉 = 6Dbτ + 〈∆V2(τ)〉τ2. (11)

The interested reader is referred to [50] for examples of fitting Db and 〈V2〉 to experi-
mental data and also for examples of mixed model fitting and the validation of measured
Db values in an intralipid phantom.

Figure 2 describes the method of images and the notation that is used in a semi-infinite
DCS geometry model when ensuring an extrapolated-zero boundary condition.

Figure 2. Semi-infinite geometry model and notation used in DCS measurements. The grey area
is the medium to be examined, the white area is the surrounding air, and the interface is at z = 0.
The collimated source is approximated as a positive isotropic imaging source located at z = z0.
The extrapolated zero-boundary condition requires a signal size of zero at z = −zb [49], which can be
achieved by modelling a negative isotropic imaging source located at z = −(z0 + 2zb). ρ represents
the source-detector separation (SDS) distance. Adapted from [21]. Reproduced with permission
from [50] under the terms of a CC BY 4.0 License. © James and Powell 2020.

Db can be used as a blood flow index (BFI) parameter, although it has units of cm2/s,
rather than the more commonly encountered blood perfusion unit of ml/100g/min. Db is
also a relative, rather than an absolute, measure. Relative change in BF, rBF = BFI/BFI0,
where BFI0 is the baseline measurement of BFI, acquired by DCS measurement has been
shown to agree with relative changes in absolute BF as measured by gold standard tech-
niques, such as arterial spin labelling magnetic resonance imaging (ASL-MRI) [25]. Ad-
ditionally, the use of hybrid DCS/near-infrared spectroscopy (NIRS) systems to measure
NIRS derived tissue oxygen saturation and DCS derived CBF can be utilised to provide
quantitative measurement of cerebral metabolic rate of oxygen extraction (CMRO2), and
its continuous noninvasive inference in this context relies on fewer assumptions than
when using NIRS alone [29]. Local CMRO2 is an important physiological parameter to
monitor as it is a function of oxygen saturation of arterial and venous ends of the local
cerebral circulation as well as CBF itself. Overall, this provides a more robust picture
of brain health [25]. Validation studies show that DCS measurements of BF are in close
agreement with results obtained by theoretical expectation, computational simulation, and
other biomedical imaging modalities [21].

4.1. Key Limitations

The conventional implementations of DCS that have been described in the literature
typically employ single-mode photon counting techniques, with an associated high cost
of detection components. Such methods are limited by low light throughput [25] in a
single-mode, placing a lower limit on the detection time [51]. Increasing penetration depth
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requires the use of larger SDS distances, which will decrease the available SNR further, by
increasing the number of absorption and scattering events, since the attenuation of NIR
light by these two mechanisms is in the order of 10 dB/cm [52], and this can be worsened
by the presence of hair or darkly pigmented skin.

Increasing acquisition time can ameliorate this situation but leads to a reduction in
temporal resolution. Taking the average of many single-mode detection fibres bundled
together is an expensive option that requires many photon counting detectors and can
increase the complexity of system integration. Improved collection optics, the use of few-
mode detection fibres, and increasing the amount of light delivered to the tissue can also
help to improve the SNR [25,53,54]. However, patient safety limits [55] must be adhered to,
which necessitates an optical source of sufficiently large diameter and low power rating. All
the above characteristics limit the applicability of conventional homodyne DCS in portable
continuous monitoring applications to which optical methods are otherwise well suited.

Light collection efficiency and SNR increase with the effective number of detected
modes, N. The SNR also increases with β, but this quantity scales as 1/N for each detected
mode due to loss of coherence. In typical non-ideal situations, the SNR may be optimised
by using a single-mode detector fibre; however, if the optimisation of temporal resolution
is of interest, then a few-mode detector fibre can be used [56]. The use of a single-mode
fibre in a conventional DCS experiment will lead to a maximum β value of 0.5, due to the
two orthogonal electric field components collected by the fibre. The recorded value of β
will likely be less than this due to variations in light coherence, laser stability, stray light,
detector stability, and fibre-tissue coupling [46]. This value of β can be doubled by placing
a polariser in front of the detector fibre.

DCS offers the ability to perform safe, noninvasive, and continuous bedside measure-
ments of superficial microvascular CBF, with a relatively high temporal resolution (up to
100 Hz) [21]. However, it suffers from poor spatial resolution (which worsens with depth)
and depth penetration (a general rule of thumb in diffuse optics is that a banana-shaped
region of depth equal to one-half to one-third of the optical SDS distance is sampled [25,29]).
The main limitation of DCS is that a trade-off exists between the SNR and imaging depth,
and thus brain specificity, of this technique [5]. Additionally, DCS is also susceptible to
superficial extra-cerebral signal contamination, and the measurement of absolute CBF with
this technique still remains challenging [26]. DCS also depends on the accurate measure-
ment of µa and µ′s to provide a precise assessment of CBF [57], and it is also limited by low
SNR due to single-mode detection (especially when using large SDS values, in the presence
of hair, and in patients with darkly pigmented skin) and susceptibility to motion artefacts.

Despite these disadvantages, DCS has important potential applications in clinical
monitoring [2,15], as well as in neuroscience and the development of a noninvasive brain-
computer interface [3,4], as introduced in Section 1. Previous authors have noted that
improvements to increase SNR, depth penetration, and both spatial and temporal resolution
will assist the development of DCS functional experiments as well as expand the range
of uses for DCS in clinical monitoring [25]. The utility of high-frame rate (∼20 Hz) DCS
measurements, compared to the frame rates of 0.3 to 1 Hz that have been traditionally used,
has also been discussed [1]. These benefits include improved monitoring of cerebrovascular
autoregulation dynamics, more robust identification of motion artefacts, and increased
throughput that could enable high spatial resolution with fewer detectors.

As introduced to the reader in Section 1, the investigation of novel approaches to improve
the sensitivity of DCS to CBF has therefore recently attracted interest from several research
groups. The remainder of Section 4 and the entirety of Section 5 are accordingly dedicated to
the review of the wide variety of these approaches that have recently been published.

4.2. Multispeckle Approaches

As described in Section 4.1, it has generally been accepted in the field of DCS that
as the number of modes per detection fibre increases, the resulting gain in SNR due to
increased photon intensity is negated by the subsequent loss of coherence and reduction
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in β. However, closer inspection of the DCS noise model (Equation (8) of [58]) reveals
one term in which the photon count has a higher weighting than β, which can be made
use of in low photon count environments. Carp therefore proposed that the use of few-
mode detection, rather than single-mode detection, could confer a slight SNR advantage at
low photon count rates and demonstrated a 20% reduction in the standard deviation of
relative BFI when switching from single-mode to few-mode detection, when making DCS
measurements on an intralipid phantom with an SDS distance of 3 cm [59].

However, this SNR benefit that results from integrating multiple mutually incoherent
speckle grains on the same photodetector does not persist beyond few-mode detection, and
DCS therefore clearly benefits from a parallelised detection strategy, in which the detection
of N speckle grains on multiple independent photodetectors will result in a

√
N improve-

ment in the SNR, under the assumption of shot noise limited detection [10]. Dietsche et al.
validated this approach by bundling together 28 stand-alone SPADs, which yielded a
1/
√

28 reduction in noise [53]. Johansson et al. demonstrated a more compact approach by
developing a 5× 5 SPAD array for DCS detection, which resulted in improved SNR [60].

Subsequently, a 32 × 32 SPAD array (with a component cost of GBP 34,000), was
used for DCS detection by two groups [3,10], which allowed Sie et al. to demonstrate a
32-fold increase in SNR with respect to traditional single speckle DCS, for g2(τ = 4 µs) [3].
More recently, the same group published an SNR gain of ∼470 over single speckle DCS,
using a 500× 500 SPAD array at 785 nm [11], albeit with a photon detection efficiency
(PDE) of ∼15% (conventional single SPADs have a PDE of ∼70% at this wavelength).
The authors were able to achieve a frame rate of 0.09 MHz when using all available pixels
but were able to increase this to 2.63 MHz when using 3.2% of all available pixels, and
as such, there is a tradeoff between pixel count and minimum lag time. Given this, it
is of note that DCS relies on the detection of optical fluctuations in the 1 MHz regime
(especially for deep tissue measurements [5,17]), and that acousto-optic modulated DCS
(AOM-DCS), which is described in Section 4.7, is typically employed using ultrasound
frequencies of 1–5 MHz [51] (conventional single SPADs have a frame rate of ∼10 MHz).
Furthermore, Wayne et al. did not describe what the noise floor of their instrument is,
nor how the noise floor does not become a limiting factor with regard to SNR gain when
averaging over 250,000 pixels. An understanding of this is vital in order to analyse the
application of even larger SPAD arrays to DCS, which will surely be explored in the
years to come [4]. Apart from the high component cost, another factor to consider when
using SPAD arrays is the extremely high data rate when independently autocorrelating
multiple photon arrival time streams in parallel. Della Rocca et al. were able to calculate
12,288 autocorrelation functions in real time from the output of half of a 192× 128 SPAD
array by using a FPGA-embedded autocorrelation algorithm, which yielded a 110-fold
increase in SNR with respect to traditional single speckle DCS [61]. Finally, a 32 × 32
InP/InGaAs SPAD array for long wavelength TD-DCS is currently being developed [62],
and this is described in Section 4.6. Intense research effort is currently underway to improve
the performance of SPAD array technology in terms of increased pixel count, shorter
exposure time, higher PDE (especially at longer wavelengths), and high-performance data
processing [61].

A third approach to multispeckle detection is to use conventional camera array detec-
tors; however, current camera technology is limited by noise performance (when compared
to SPADs) and by detection times, which are not short enough to fully characterise g2 at
very short lag times. By making use of the relationship [63,64]

K =
σ

µ
=

[
2β

T

∫ T

0

(
1− τ

T

)
[g1(τ)]

2 dτ

]1/2

, (12)

where K is speckle contrast, σ and µ are the standard deviation and mean of a spatial ensem-
ble of speckles, respectively, and T is camera exposure time, Murali et al. demonstrated that
by making measurements of K using spatial sampling for various values of T, it is possible
to recover g1(τ) using low-cost and low-frame rate cameras [9,65,66]. It is of note that Xu et
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al. found that spatial sampling methods outperform temporal sampling methods in terms
of SNR in the case of optical brain monitoring due to the interplay of the limited photon flux
and the number of independent observable (NIO) speckles involved [42]. This is because
the limited time measurement duration necessitated by in vivo monitoring constrains NIO
speckles for temporal sampling but not for spatial sampling.

With regard to compensating for camera noise performance, interferometric approaches
have been proposed, and these are discussed in Sections 4.4 and 5. More recently, Robinson et al.
demonstrated a multispeckle, long wavelength, interferometric DCS (LW-iDCS) system [15],
and this is more fully expounded in Section 4.4 also. Care must be taken when using multimode
fibres for detection, as these fibres are sensitive to motion caused by environmental vibrations,
for example [15,59].

4.3. Long-Wavelength Approaches

Compared to a more commonly used wavelength of 785 nm, using a design wave-
length of 1064 nm confers an SNR advantage in DCS systems. Light suffers from fewer
optical scattering events at this wavelength, where a local minimum in water absorption
combined with lower haemoglobin absorption also occurs, which results in an increase in
photon availability [67]. Maximum permissible exposure limits are also higher at 1064 nm,
meaning that roughly 2.5–4 times more optical power can be used [59]. The decrease in
scattering also results in a slower decay of the autocorrelation curve, which moves g1 into
longer and less noisy, and thus more easily detectable, timescales. By considering this
overall photon budget, Carp et al. demonstrated that at 1064 nm, 13, 10.5, and 7 times more
photons will be detected than at 765, 785, and 850 nm, respectively [13]. These authors
note that the reduction in scattering that occurs at 1064 nm results in a reduced sensitivity to
motion; however, this is more than compensated for by the advantageous photon budget at
this wavelength. It is of note that the low haemoglobin absorption that occurs at 1064 nm
makes this choice of wavelength impractical for NIRS experiments.

The main limitation that currently prevents the implementation of DCS at 1064 nm
is a lack of suitable detector technology. For example, silicon SPADs have a PDE of
64% and 54% at 765 and 850 nm, respectively, but which drops to 3% at 1064 nm [13].
Alternatively, InGaAs SPADs have a PDE of ∼32% at 1064 nm; however, these detectors
have unacceptably long afterpulsing in the region where g2 starts to decay (i.e., 1–10 µs) [14].
Potential solutions to this afterpulsing problem include custom detector designs, and cross-
correlation approaches using two detectors [13,17,68]. More recently, LW-iDCS has been
proposed (Section 4.4), which makes use of multispeckle interferometric detection by a fast
InGaAs linescan camera to mitigate the negative aspects of detector technologies when
working at 1064 nm [15]. A second detector technology that is suitable for 1064 nm is
superconducting nanowire single-photon detection (SNSPD). SNSPD technology possesses
several advantages over InGaAs SPADs, including shorter dead time (<50 ns), better timing
resolution (<80 ps), an extremely favourable dark count rate of 1 count per second (CPS),
a PDE of >80% at 1064 nm, and no afterpulsing issues. Ozana et al. achieved an SNR
gain of 16, for g2(τ = 4 µs), when making in vivo measurements on the forehead of
11 human subjects with an SDS distance of 25 mm, compared to DCS at 850 nm using
silicon SPAD detection [14]. However, SNSPD technology is expensive, bulky, and loud,
requires cryostats to achieve an operating temperature of 2–3.1 K, and has a turn-on time
of several hours, which limits its clinical application at present. Additionally, although
SNPSD units with 16 channels or more are beginning to be offered [69], the use of SNSPD
does not lend itself well to high channel count systems.

Long-wavelength, multichannel TD-DCS systems are currently being developed ([62],
for example), and these are described further in Section 4.6.

4.4. Interferometric Approaches

The theory of DCS that has been considered so far has been restricted to homodyne
detection (i.e., the self-interference of changing light fields) in which g2(τ) is related to
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the motion of the sample by the Siegert relation (Equation (5)). An interferometric DCS
(iDCS) system may be constructed by modifying a homodyne DCS setup with a pair of
fibre couplers to create a Mach–Zehnder interferometer. iDCS works by using the reference
arm of the interferometer to coherently amplify the speckle fluctuations of the sample arm,
and the expression for g2(τ) can then be found as [17]

g2(τ) = 1 + β

(
1− IR

IT

)2

[g1(τ)]
2 + 2β

IR
IT

(
1− IR

IT

)
g1(τ), (13)

which can be simplified to

g2(τ) = 1 + β1[g1(τ)]
2 + β2g1(τ), (14)

where IR is the reference intensity, and IR/IT is the fractional reference intensity, where
IT = Is + IR is the total intensity, and IS is the sample arm intensity. A caveat of this
technique is that any laser intensity instability will have a larger influence on g2(τ) for an
interferometric measurement [59].

Interferometric techniques are beneficial in that they can compensate for detector
nonidealities (e.g., afterpulsing, read noise, and dark noise) [17], they are robust to environ-
mental noise (such as ambient light that is present in the clinical environment) [59], and they
allow for effective measurement even in the presence of very low signal levels, allowing for
the measurement of CBF within short acquisition times in low-light conditions [19]. This
means that less expensive detectors with sub-optimal noise characteristics can be used for
interferometric detection.

Using silicon SPADs and a 785 nm laser, Robinson et al. used iDCS to demonstrate an im-
provement in the SNR of g1(τ) by approximately a factor of 2 at each time lag [17]. These authors
also showed an up to 80% reduction in the variability of measured BFI using this technique.
The same group later presented LW-iDCS, as introduced in Sections 4.2 and 4.3, which makes
use of multispeckle, interferometric detection at 1064 nm using a fast InGaAs linescan camera
operating at 300 khz [15]. This technique was used to demonstrate a 4.5-fold improvement in
SNR over homodyne SNSPD long wavelength DCS (LW-DCS) for high-speed pulsatile flow
measurement for a single-channel comparison. Furthermore, compared to homodyne SNSPD
LW-DCS, LW-iDCS is a cart-based system and also offers a∼7-fold cost reduction.

Another group presented interferometric DWS (iDWS): an approach which makes
use of multimode fibre detection and a high speed linescan CMOS camera capable of
operating at 333 kHz [16]. The use of camera-based detection is conducive to multispeckle
detection and the SNR advantage that this confers, and this system is capable of measuring
∼96 speckles simultaneously, meaning that clear BFI traces can be obtained using an
SDS distance of 35 mm on the adult human head with an integration time of 0.1 s [6].
Although LW-iDCS and iDWS are robust to the effects of ambient light, their sample
rates are considerably slower than a conventional DCS/DWS system (which is typically
in the order of ∼10 MHz) and they cannot resolve sample decorrelations shorter than
3 µs. Additionally, these approaches do not have the temporal resolution necessary to
sufficiently resolve ultrasound tagged photons (Section 4.7), which are typically modulated
by ultrasound pressure fields fluctuating in the range of 1–5 MHz [51].

The authors of the iDWS technique have also recently proposed multi-exposure iDWS
(MiDWS), which makes use of a low-frame rate 2D CMOS sensor and which measures
brain BFI using an SDS of 3 cm and an integration time of 0.096 s at a lower cost per pixel
than iDWS [5].

Finally, Zhao et al. recently published iDWS with an electronically variable time of
flight (TOF) filter [70,71], a technique that is able to measure 200 autocorrelation functions
in parallel with TOF discrimination. This paper represents a step change in interfero-
metric diffuse optics, being the first demonstration of a scalable approach to acquiring
TOF discriminated autocorrelation functions. The technique works by rapidly tuning the
wavelength of a narrowband laser during the exposure time of a linescan CMOS detector,
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thereby reducing the coherence length of the source and creating an adaptable and variable
TOF filter. Using an SDS distance of 1 cm on the forehead of human subjects and a deep TOF
filter, the authors were able to achieve a 2.7-fold reduction in scalp sensitivity compared
to CW-DCS. Similar to TD-DCS (Section 4.6), the short SDS distances that this technique
employs afford a subsequent improvement in spatial resolution.

BFI measurement using holographic approaches has also been documented by two
groups, and these approaches are enumerated here. As digital holography can be a lensless
technique, it may be free from aberrations by imaging devices [72]. Digital holography is
inherently interferometric, and the use of area sensors also allows for multispeckle detec-
tion as well as facilitating the implementation of tomographic and depth discrimination
techniques. Above in this section, and in Section 4.2, we have outlined that interferometric
and multispeckle detection are approaches that have recently been investigated to improve
the SNR and depth specificity of DCS. Both of these approaches can be combined into
one detection modality in a digital holography system. Additionally, shot noise limited
detection can be achieved in digital holography by combining an appropriate temporal
filtering strategy with the spatial filtering that is facilitated by off-axis interference of sample
and reference arms [73,74], which can lead to further SNR gains. Digital holography can
also be used to implement long wavelength approaches, as NIR-enhanced silicon cameras
and InGaAs cameras can be employed for detection. Speckle detection systems must use a
coherent light source, and therefore the requirement for coherence that digital holography
presents does not represent an additional hardware cost for speckle detection. Finally, when
compared to SPADs and SNSPD technology, cameras offer an extremely low relative cost
of detection.

Digital holography is therefore an attractive modality with which to detect speckle
patterns in biomedical optics; indeed, it has been highlighted as a promising detection
strategy for acousto-optic tomography (AOT) [75]. By shifting the frequency of the reference
arm near to the acoustic sideband, it is possible to selectively detect tagged photons
at the shot noise limit using off-axis holography [76,77]. Most recently, Hussain et al.
developed an analytical model for detection of an AOT signal using digital holography
with a frequency shifted reference arm, which they implemented to successfully resolve
flow in a dynamic flow phantom [78]. These authors showed that the AOT signal within the
ultrasound focus was dependent on both the flow through that volume and the integration
time of the camera and were able to achieve in vitro depth-resolved flow measurements by
analysing images captured using different integration times.

Fourier domain DCS (FD-DCS) [50] and interferometric speckle visibility spectroscopy
(ISVS) [19] are two techniques that make use of off-axis holographic camera-based detection
of multispeckle patterns to determine microvascular BF. Briefly, FD-DCS employs a Mach–
Zehnder interferometer where light from the sample arm interferes with frequency shifted
light from the reference arm. Detecting the result of interference between the sample
and the reference arms, for different reference light detuning frequencies, ω, removes
the need to detect very rapid intensity changes when frequency shifting is not used, as
is required in conventional DCS experiments. This allows for a slower detector to be
used, such as a relatively inexpensive camera. Thus, FD-DCS, which is inherently an
interferometric technique, also lends itself well to multispeckle detection. Additionally, the
interferometric measurement interrogates the electric field directly, rather than intensity,
and therefore the Siegert relation, and the assumptions therein, do not constrain FD-
DCS [19]. According to the Wiener–Khinchin theorem, the first-order power spectral
density (PSD) of the field fluctuations due to dynamic scatterers, s1d(ω), is the Fourier
transform of the field autocorrelation function, g1d(τ) [79–82]:

s1d(ω) =
∫ +∞

−∞
g1d(τ) exp−iωτ dτ, (15)

and thus an FD-DCS measurement and a conventional DCS measurement contain entirely
equivalent information [7]. FD-DCS was used to measure microvascular BF at a frame rate
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of 10.8 Hz in the human forearm using an SDS distance of 1.13 cm [50], and further signal
processing improvements yielded an SNR gain of 36 whilst detecting up to ∼1290 speckles
in parallel (the largest SNR gain in the DCS literature at the time, cf. Section 4.2) [83].

A fundamental limitation of FD-DCS to the application of in vivo measurement is
the requirement to obtain a series of very short exposure camera frames, at a series of
discrete frequency shifts, all at a fast enough sample rate so as to ensure the accurate
recovery of pulsatile information. These short camera exposure times come at the cost
of broadening of the signal in the Fourier domain, which is an undesirable artefact that
makes the data more difficult to interpret, especially in the presence of static scatterers.
Whilst the investigation of instrument response function (IRF) deconvolution and static
scatterer compensation techniques could be one way to solve this problem, another solution
could be to adopt the approach used by ISVS [19], for example. ISVS works by assessing the
amount of blurring (or equivalent visibility factor) within recorded holograms, rather than
using frequency shifting, to access sample dynamics. A longer integration time, or shorter
sample decorrelation time, will result in more blurring and vice versa, and Xu et al. derived
a quantitative model to relate these three factors, similarly to the approach developed by
Hussain et al. [78]. Similar also to FD-DCS, ISVS uses a lensless Fourier holography setup,
and therefore only one Fourier transform is required to reconstruct the holographic terms
of interest. Additionally, ISVS uses the interferometric nature of holography to compensate
for camera noise and access g1(τ) directly, thereby obviating the Siegert relationship and
the constraints therein. The ISVS system that Xu et al. presented uses a sampling rate
of 100 Hz and was able to resolve CBF sample dynamics in vivo using SDS distances of
0.75 and 1.50 cm, using photon count rates that were not high enough to yield a detectable
single-mode DCS signal. However, the off-axis setup that was used by these authors was
not ideal, as it did not allow for sampling of the reference beam intensity from measured
holograms. This lack of calibration leads to noisier flow measurements when compared to
like-for-like DCS flow measurements.

The interested reader is referred to [84] for an excellent and fuller treatment of the
recent work in the nascent area of interferometric DCS techniques.

4.5. Depth Discrimination Techniques

As DCS is a diffuse optical technique, it is limited by a lack of inherent depth discrimi-
nation within the illuminated region of each source–detector pair, and the CBF signal is
therefore also prone to contamination by the extracerebral tissues which the light traverses.
If robustness to extracerebral contamination is the main concern, then the measurement of
BFI (i.e., DCS), rather than haemoglobin concentration (i.e., NIRS), will, in theory, provide
a more effective signal. This is because optical fluctuations due to BFI achieve 3–5 times
better brain specificity than optical absorption, as brain BFI exceeds extracerebral BFI by
6–10 times, while the corresponding ratio for haemoglobin concentration is 2.5 times [6].
Thus an approach to mitigate extracerebral contamination when measuring optical brain
signals, and thereby improve depth discrimination, is to measure BFI rather haemoglboin
concentration. However, this rationale relies on the SNR of DCS and NIRS being compa-
rable [13]. NIRS, which does not rely on coherence, can measure many incoherent modes
using large detectors, and this technique can therefore more easily achieve a higher SNR
than DCS. Therefore, changes to improve the SNR of DCS will help to realise this theoretical
like-for-like advantage that DCS has over NIRS. DCS has a further advantage over NIRS in
that it affords more approaches to brain specificity, including ultrasound modulation and
multi-layer models with modulation of probe pressure [70].

One method to account for extracerebral tissue is to switch from the traditional semi-
infinite geometry model, which is commonly used in DCS, to a multi-layered (typically two
or three-layered) geometry model [85–87]. Although this is an effective technique, these
models rely on accurate prior knowledge of the optical properties and thickness of each
layer. Zhao et al. combined multi-layer modelling with absorption compensation and the
zero-lag derivative method (as earlier lags are more sensitive to deeper photon paths) [43].
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Alternatively, Selb et al. proposed to remove the contribution of extracerebral contamination
via a superficial regression technique, in which a fraction of the BFI of a short SDS pair
is subtracted from the BFI of a corresponding long SDS pair [2]. These authors removed
a fixed contribution of 70% of the short SDS BFI (i.e., CBF = BFIlong − 0.7 × BFIshort) and
noted that this technique could be optimised through further measurements and modelling
studies and also with optimisation of the DCS probe location based on observation of a
patient’s prior computed tomography (CT) or magnetic resonance imaging (MRI) scans.
A natural extension of this technique is the principle of diffuse correlation tomography
(DCT), in which a 3D volumetric image of BFI may be reconstructed based on intensity
measurements acquired using arrays of sources and detectors [58,88].

Probe pressure modulation is an alternative technique which makes use of a two-layer
model (i.e., extracerebral and cerebral layers), with measurements acquired at multiple
optical probe pressures and multiple SDS distances, and which does not require prior
anatomical information [89]. By exploiting the fact that variations in optical probe pressure
will induce variations in extracerebral BFI, whilst cerebral BFI remains constant, these
authors were able to isolate the contribution to BFI of the cerebral layer.

Other depth discrimination approaches have also been proposed, including TD-DCS
(Section 4.6) and acousto-optic techniques, which make use of the ultrasound tagging of
light (UTL), as described in Section 4.7.

4.6. Time-Domain Approaches

Aside from contamination by extracerebral tissue, one of the other major limitations of
DCS is the need to know the optical properties of tissue to accurately quantify BFI. TD-DCS
is a TOF resolved method that enables deep-tissue BFI measurement with depth discrimi-
nation at short SDS distances whilst simultaneously acquiring tissue optical properties [12].
In this technique, each detected photon is associated with two measurements: the TOF from
source to detector to obtain the temporal point spread function (TPSF) and the absolute ar-
rival time to obtain g2. Optical properties can be extracted from the characteristic properties
of the TPSF. Then, by using a train of long coherence length laser pulses, autocorrelation
functions can be evaluated at different time gates of the TPSF, and flow parameters can
then be fit to measured g2 functions arising from early and late arriving photons (i.e., short
and long photon paths, respectively), which thus provides depth discrimination. Due to
the decreased SDS distances that are used, TD-DCS affords both better depth sensitivity
and improved spatial resolution than continuous wave DCS (CW-DCS) [59] and as such
breaks the trade-off between spatial resolution and cerebral sensitivity.

Compared to CW-DCS, the measurement duty cycle of TD-DCS is decreased by a
factor of 50 due to the need for pulsed illumination [12]. Additionally, the intrinsically
lower coherence of a pulsed source results in lower SNR. TD-DCS performance is strongly
impacted by the system IRF, the selection of time gates that are used, and the temporal
shape of the pulsed laser source [90]. Satisfying the TD-DCS requirements of a picosecond
pulsed laser with a long coherence length, adequate illumination power, and a narrow IRF
remains challenging [91].

TD-DCS at 1064 nm has recently been described by both Ozana et al. [69] and
Poon et al. [92] which required the use of a pulse-shaped long-coherence laser at 1064
nm. Renna et al. are currently researching multispeckle TD-DCS at 1064 nm, which was
initially presented by way of 4 SNSPD units operating in parallel [93], but plans are in
place to progress toward a fast-gated 32× 32 InGaAs/InP SPAD array that makes use of
multichannel FPGA based autocorrelation for up to 192 channels [62,67,94].

An alternative technique, interferometric near-infrared spectroscopy (iNIRS), also
quantifies TOF resolved dynamics, and this is introduced in Section 5.

4.7. Other Approaches

Robinson et al. have presented an approach toward enabling quantitative depth
selective flow measurements in DCS by using acousto-optic modulation, namely AOM-
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DCS [20]. This is a hybrid technique that allows for improved spatial resolution of the
optical signal based on knowledge of the area that is insonified by ultrasound, owing to
the UTL effect. These authors presented a quantitative model for flow detection using
continuous wave ultrasound based on the principle that both g2(τ) and the amplitude of
the modulation of g2(τ) decay with time [95]. More complex spatiotemporal distributions
of ultrasound (e.g., focused, pulsed, encoded, or overlapping pressure fields using two
ultrasound transducers) are required to resolve flow with both better spatial and temporal
resolution. AOM-DCS is part of a broader group of methods, known as AOT, a full discus-
sion of which is outside the scope of this paper but is available in [40,51,96]. The interaction
of the ultrasound generated acoustic radiation force (ARF) and the DCS signal has also
been investigated [97].

With a view to developing a low-cost and wearable DCS system, Biswas et al. have
recently presented a portable DCS system which makes use of a small-form factor and
fibre-less embedded diode laser [98]. The same group has also developed a system to
obtain pathlength resolved DCS measurements (similar to TD-DCS and iNIRS) by using
a Mach–Zehnder interferometer with a reference arm that has an adjustable length [99].
By scanning the length of the reference arm, g2(τ) may be evaluated for various photon
pathlengths. Additionally, the average intensity as a function of pathlength can be used to
generate a TPSF, from which tissue optical properties may be obtained.

Deep learning techniques have recently been employed with a view to reducing the
computational demand of DCS experiments [100]. Fitting measured g2(τ) data to analytical
or Monte Carlo models to extract BFI can be computationally demanding and suffers from
inaccuracy in low SNR environments. These authors used a deep learning model that
resulted in a 23-fold increase in the speed of BF quantification, which further enables
the real-time and accurate quantification of BFI using DCS. DCS denoising algorithms,
including the use of support vector regression, have also been explored [101]. Within the
context of DCT image reconstruction, learning approaches have also been employed to
compensate for the decreased spatial resolution resulting from the ill-conditioned and
ill-posed nature of the inverse problem, resulting in an imaging depth of 5 mm at 2.5 Hz
using a 32 × 32 SPAD array [102].

5. Interferometric Near-Infrared Spectroscopy

Frequency-domain NIRS (FD-NIRS) and DCS instruments can be combined into
one instrument to concurrently measure both optical properties and sample dynamics;
however, this technique cannot provide TOF resolved DCS measurements. To overcome this
limitation, iNIRS combines time-domain NIRS (TD-NIRS) and DCS into a single modality
to simultaneously extract optical properties and TOF resolved sample dynamics (Figure 3).
This is achieved through the analysis of a spectral interference fringe pattern, which is
measured using a Mach–Zehnder interferometer with a frequency-swept narrow linewidth
laser [103]. Light with a shorter pathlength will produce a lower frequency fringe pattern,
and arrive at the detector earlier than light with a longer pathlength, which will produce a
higher frequency fringe pattern.

The TOF difference between light propagating through the sample arm and the ref-
erence arm of the interferometer can be obtained by Fourier transforming the frequency
resolved interference signal. This yields a complex mutual coherence function, Γrs(τs, td),
between the sample and reference fields, where τs is TOF and td is delay time. From a time
series in td, a 2D TOF resolved optical field autocorrelation function, GiNIRS

1 (τs, τd), can
be obtained:

GiNIRS
1 (τs, τd) = 〈Γ∗rs(τs, td)Γrs(τs, td + τd)〉td

, (16)

where τd is time lag. The measured GiNIRS
1 (τs, τd) is related to the intrinsic G1(τs, τd) by

convolution with the system IRF,

GiNIRS
1 (τs, τd) = G1(τs, τd)∗IRF(τs), (17)
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where ∗ denotes convolution. GiNIRS
1 (τs, 0) is equivalent to the TPSF that is measured from

TD-NIRS. GiNIRS
1 (τs, τd) provides TOF resolved dynamics, which, when integrated over τs

and normalised, yields g1(τd), as per a conventional DCS experiment.

Figure 3. Due to the fact that the laser frequency is swept, light travelling deeper into tissue,
which takes a longer time to travel through the sample arm of the interferometer, generates a larger
beat frequency upon interference with the reference arm. Therefore, interferometric near-infrared
spectroscopy (iNIRS) encodes time of flight (TOF), τs, as beat frequency. Autocorrelation of a time-
series of mutual coherence functions yields GiNIRS

1 (τs, τd), which can be used to obtain both temporal
point spread functions (TPSFs) and TOF resolved dynamics. Reproduced with permission from [104]
under the terms of a CC BY 4.0 License. © Kholiquov, Zhou, Zhang, Du Le, and Srinivasan 2020.

Therefore, GiNIRS
1 (τs, τd) is a rich data set which provides both sample optical proper-

ties and TOF resolved sample dynamics, and the authors of this technique argue that it is
the most informative diffuse optical method to date. Advantages of iNIRS, when compared
to TD-DCS, for example, are that iNIRS does not require pulsed lasers (which result in a
reduced coherence factor) or single photon counting detectors, and TD-DCS is also sensitive
to ambient light. iNIRS also accesses the field autocorrelation directly, therefore obviating
the Siegert relation and the constraints therein.

The main drawback of iNIRS, when compared to incoherent TD-NIRS for exam-
ple, is that iNIRS is a coherent modality which, like traditional DCS techniques, suffers
from moderate light throughput. In order to compensate for this lack of parallelisation,
continuous-wave parallel iNIRS (CW πNIRS) has recently been published [105]. This tech-
nique uses a fast 2D CMOS sensor operating at 1.1 MHz for 2048 pixels (which has a higher
active area than a SPAD array). The authors typically used this instrument at 0.6 MHz to
increase the number of available pixels to 8192 whilst maintaining a minimum lag time
of 1.67 µs. Using ∼8000 parallel channels allowed the authors to sense BF with an SDS
distance of 2–3 cm using integration times as short as 2–10 ms, which is 50–100 times faster
than single-channel DCS techniques. However, owing to the data rate involved with this
technique, measurements could only last for several seconds due to the limited internal
memory of the camera. Furthermore, although the frame rate of 1.1 MHz is sufficient to
capture sample dynamics due to speckle decorrelation, it is still too slow to resolve TOF
resolved dynamics when employing a swept laser source. Achieving TOF resolution using
πNIRS would require at least a two-order-of-magnitude increase in the speed of cameras
that are currently available. A further limitation of this technique is the current high cost of
the detector (∼USD 50,000).
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6. Summary and Outlook

In this paper, we have developed a description of the currently vacant niche for an in-
expensive, continuous, noninvasive, portable, bedside, and non-ionising imaging/sensing
modality with which to measure CBF, to which biomedical optics solutions are well suited.
Under this umbrella of techniques, diffuse optics is required to image deeper into the brain;
however, these techniques are marred by the low SNR that is associated with the SDS dis-
tances that are required to achieve deeper imaging. DCS is a promising CBF measurement
technique, and many research groups have recently been investigating methods to improve
the SNR, imaging depth, and spatial resolution of DCS. Such methods have included multi-
speckle, long-wavelength, interferometric, and depth discrimination techniques. TD-DCS
and iNIRS are perhaps the most comprehensive diffuse optical imaging modalities to date
and, with recent advancements in parallelisation strategies, may be the most applicable to
the measurement of CBF. In this regard, a standardised performance assessment of DCS
instruments is necessary in order to benchmark competing candidate technologies [106].

The ultimate goal of DCS is to acquire both high photon throughput and depth
discrimination concurrently, but this goal is yet to be accomplished. Promising routes to
achieve this objective are long wavelength, parallelised, interferometric, and TOF resolved
DCS technology, which is compatible with future developments in AOT and which makes
use of inexpensive detectors and a data rate that is feasible for real time processing. With
the advances that have been made in DCS since 2016, we expect exciting developments
which fulfil these criteria in the years to come.
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Abbreviations
The following abbreviations are used in this manuscript:

2D two-dimensional
3D three-dimensional
ABP arterial blood pressure
AOM-DCS acousto-optic modulated diffuse correlation spectroscopy
AOT acousto-optic tomography
APD avalanche photodiode
ARF acoustic radiation force
ASL-MRI arterial spin labelling magnetic resonance imaging
BF blood flow
BFI blood flow index
CA cerebral autoregulation
CBF cerebral blood flow
CBV cerebral blood volume
CMOS complementary metal-oxide-semiconductor
CMRO2 cerebral metabolic rate of oxygen extraction
CPP cerebral perfusion pressure
CSF cerebrospinal fluid
CT computed tomography
CVR cerebrovascular resistance
CW πNIRS continuous wave parallel interferometric near infrared spectroscopy
CW-DCS continuous wave diffuse correlation spectroscopy
DCS diffuse correlation spectroscopy
DCT diffuse correlation tomography
DP diastolic pressure
DWS diffusing wave spectroscopy
FD-DCS Fourier domain diffuse correlation spectroscopy
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FD-NIRS frequency-domain near-infrared spectroscopy
FPGA field-programmable gate array
ICP intracranial pressure
iDCS interferometric diffuse correlation spectroscopy
iDWS interferometric diffusing wave spectroscopy
InGaAs indium gallium arsenide
iNIRS interferometric near-infrared spectroscopy
InP indium phosphide
IRF instrument response function
iSVS interferometric speckle visibility spectroscopy
LW-DCS long wavelength diffuse correlation spectroscopy
LW-iDCS long wavelength interferometric diffuse correlation spectroscopy
MAP mean arterial pressure
MiDWS multi-exposure interferometric diffusing wave spectroscopy
MRI magnetic resonance imaging
NIO number of independent observables
NIR near-infrared
NIRS near-infrared spectroscopy
PDE photon detection efficiency
PMT photon multiplying tube
PSD power spectral density
RBC red blood cell
SAP systemic arterial pressure
SDS source-detector separation
SNR signal-to-noise ratio
SNSPD superconducting nanowire single-photon detection
SP systolic pressure
SPAD single photon avalanche detector
TD-DCS time-domain diffuse correlation spectroscopy
TD-NIRS time-domain near-infrared spectroscopy
TOF time of flight
TPSF temporal point spread function
UTL ultrasound tagging of light
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105. Samaei, S.; Nowacka, K.; Gerega, A.; Pastuszak, Ż.; Borycki, D. Continuous-wave parallel interferometric near-infrared
spectroscopy (CW πNIRS) with a fast two-dimensional camera. Biomed. Opt. Express 2022, 13, 5753–5774. [CrossRef]

106. Ayaz, H.; Baker, W.B.; Blaney, G.; Boas, D.A.; Bortfeld, H.; Brady, K.; Brake, J.; Brigadoi, S.; Buckley, E.M.; Carp, S.A.; et al. Optical
imaging and spectroscopy for the study of the human brain: Status report. Neurophotonics 2022, 9, S24001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1364/BOE.432363
http://dx.doi.org/10.1364/BOE.448135
http://www.ncbi.nlm.nih.gov/pubmed/35414986
http://dx.doi.org/10.1117/12.2650215
http://dx.doi.org/10.1117/12.2666270
http://dx.doi.org/10.1364/JOSAA.32.001888
http://www.ncbi.nlm.nih.gov/pubmed/26479942
http://dx.doi.org/10.1117/1.JBO.17.4.040901
http://dx.doi.org/10.1364/BOE.381757
http://dx.doi.org/10.1364/BOE.435136
http://dx.doi.org/10.1364/BRAIN.2021.BTh1B.6
http://dx.doi.org/10.1364/BOE.402508
http://dx.doi.org/10.1364/BOE.9.006170
http://dx.doi.org/10.1364/BRAIN.2021.BTh1B.3
http://dx.doi.org/10.1364/OE.24.000329
http://www.ncbi.nlm.nih.gov/pubmed/26832264
http://dx.doi.org/10.1038/s41467-019-14228-5
http://dx.doi.org/10.1364/BOE.472643
http://dx.doi.org/10.1117/1.NPh.9.S2.S24001

	Introduction
	Motivation
	Laser Speckle
	Diffuse Correlation Spectroscopy
	Key Limitations
	Multispeckle Approaches
	Long-Wavelength Approaches
	Interferometric Approaches
	Depth Discrimination Techniques
	Time-Domain Approaches
	Other Approaches

	Interferometric Near-Infrared Spectroscopy
	Summary and Outlook
	References

