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Abstract: As ageing structures and infrastructures become a global concern, structural health moni-
toring (SHM) is seen as a crucial tool for their cost-effective maintenance. Promising results obtained
for modern and conventional constructions suggested the application of SHM to historical masonry
buildings as well. However, this presents peculiar shortcomings and open challenges. One of the
most relevant aspects that deserve more research is the optimisation of the sensor placement to tackle
well-known issues in ambient vibration testing for such buildings. The present paper focuses on the
application of optimal sensor placement (OSP) strategies for dynamic identification in historical ma-
sonry buildings. While OSP techniques have been extensively studied in various structural contexts,
their application in historical masonry buildings remains relatively limited. This paper discusses the
challenges and opportunities of OSP in this specific context, analysing and discussing real-world
examples, as well as a numerical benchmark application to illustrate its complexities. This article
aims to shed light on the progress and issues associated with OSP in masonry historical buildings,
providing a detailed problem formulation, identifying ongoing challenges and presenting promising
solutions for future improvements.

Keywords: optimal sensor placement; dynamic identification; structural health monitoring; heritage
buildings; historical masonry

1. Introduction

In recent decades, there has been a growing focus on and investment in tools and
strategies for monitoring structural behaviour. This increased interest, especially in devel-
oped countries, stems from a significant number of critical facilities, infrastructures and
buildings being close to or beyond the end of their design life. As their replacement is im-
practical and unaffordable, stakeholders increasingly turn to structural health monitoring
(SHM) solutions to inform maintenance and restoration activities, optimising time and
resource allocation. SHM arose as a field of research whose aim is to develop and validate
methodologies and tools that provide information about the structure and its behaviour
over time. SHM methods mainly focus on the prompt automated detection of damage,
fostering interventions in the earliest stage possible and in the most effective way. This
aims to avoid moderate and severe damage or even sudden failures and ensure proper
operation and conservation of buildings [1–3].

The promising results obtained in the fields of mechanical, aerospace and civil en-
gineering regarding modern structures suggested the application of SHM strategies to
historical constructions as well [4]. Indeed, heritage buildings not only have a relevant
economic value but also a significant social one due to their meaning for cultural roots,
belief systems and individual identities [5]. Their conservation is, therefore, fundamental,
but is commonly more challenging than for other types of civil structures due to their
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complexity in terms of geometry, materials and evolution over time. In particular, several
uncertainties arise due to the lack of knowledge of the construction techniques employed,
past interventions or hazardous events that they may have suffered [6].

Currently, purchasing and maintaining the required software and hardware com-
ponents, including instrumentation, licenses, storage platforms and processing systems,
require a significant investment. For these reasons, the development of a cost-effective SHM
system is paramount. With this purpose, optimal sensor placement (OSP) emerges as a
methodology that studies the optimisation of the sensor network, namely, the minimisation
of the number of sensors used and the determination of their optimal locations, without
compromising the effectiveness of the system. More specifically, the OSP is composed
of eight main steps, as described in the framework developed by Ostachowicz et al. [7]:
(1) definition of the demands, (2) choice of sensor type, (3) definition of the operational
parameters, (4) determination of the objective function, (5) choice of the OSP technique,
(6) definition of the inputs, (7) OSP resolution and (8) deployment.

Steps 1 to 6 consist of the definition of all the main aspects to set the specific problem
instance and the OSP algorithm instance, whereas in the last two steps, namely, 7 and 8,
the OSP is carried out and the network is deployed over the investigated system. More in
detail, the definition of the scope of the monitoring (step 1) and the operational parameters
(step 3), as well as the selection of the type of sensors (step 2), are essential to identify
the expected use of the monitoring system, including the monitoring goals [8] and the
final setup of the qualitative and quantitative problem-specific requirements. These can be
related to the monitored system and its conditions, the budget available, the characteristics
of the expected scenarios in case of damage detection, and the monitoring system and
its components [7–9]. It is worth noting that points 2 and 3 are strongly interconnected,
as the sensor type should be selected based not only on the demands but also on the
operational parameters and, at the same time, the used sensors influence the definition
of the operational parameters, which depend on the sensing network and its installation.
In the field of OSP, most of the attention has been focused on vibration monitoring and
dynamic identification [7]. Indeed, vibration monitoring through accelerometers or, more
rarely, velocimeters, is a well-known global technique that is commonly adopted for
structural identification and SHM, even in the field of historical buildings, since this
technique provides general information about the system behaviour without causing any
damage to it [1].

Several examples in the literature demonstrated the application of OSP techniques for
the location of accelerometers in real structures, as in [10,11] or [12]. However, the use of
these methodologies in historical buildings remains relatively limited. Even though there
exist some review studies that analysed different OSP approaches, types of monitoring,
metrics and optimisation algorithms [7,13,14], they mostly focused on civil structures
and infrastructure. A careful analysis of the shortcomings that arise when established
methods for conventional systems are applied to historical ones is missing. To this end,
the present work aimed at bridging this gap, analysing the existing applications of OSP to
historical buildings, or more specifically, OSP methods used to optimise the placement of
transducers that are deployed in contact with the structure for dynamic identification, such
as accelerometers, velocimeters or displacement transducers for output-only acquisitions.
The methods discussed in the manuscript were originally developed to optimally place
wired sensors; however, the same methods can be used for wireless sensors as long as
additional requirements unique to this type of sensor are taken into consideration.

The aim was to identify successful adaptations to the built heritage of these techniques
born in the context of mechanical, aerospace and modern civil engineering assets and to
highlight the limitations met, pointing out progress made and open challenges, as well
as identifying promising future trends for the development of successful enhanced and
tailor-made strategies.

Several types of historical structures made of different materials and construction
techniques exist. Some of them have been the subject of OSP. To ensure a clear analysis and
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synthesis of the results, the present work specifically focused on the application of OSP to
historical buildings made of masonry, thus excluding applications to built heritage made
of other materials, like timber [15,16] or concrete [17], and infrastructures such as metallic
bridges [18], masonry bridges [19] and aqueducts [20]. Moreover, the scope of the OSP
applications here investigated was limited to the determination of the optimal accelerometer
placement for dynamic identification and, in a few cases, damage identification, with this
being the objective of all the analysed studies.

The remainder of the paper is organised as follows. Section 2 details the definition
and formulation of the OSP problem. Its application to masonry historical buildings is
discussed in Section 3 based on the available literature, and a simple numerical case study
is presented in Section 4 to better clarify the challenges. The main open issues are presented
and analysed in Section 5 to propose promising strategies for future improvements. Finally,
in Section 6, the main conclusions are drawn and future scopes are outlined.

2. Optimal Sensor Placement

The OSP can be formulated as a numerical optimisation problem in which one or more
properly defined objective (or cost) functions fobj are maximised or minimised depending
on the adopted metrics. In particular, considering that minimising fobj is equivalent to
maximising − fobj [21], without loss of generality, the numerical optimisation problem is

min
w∈Ω

fobj,i(w), (i = 1, 2, . . . , M) (1)

subjected to:
hj(w) = 0, (j = 1, 2, . . . , J)

gk(w) ≤ 0, (k = 1, 2, . . . , K)

where fobj,i(w) : D1 × . . .× Dn → R+ is the ith objective function in the problem;
D1 × . . .×Dn is the search space given by the variable domain Ω ⊆ Rn, namely, the region
of feasible solutions in the search space; and hj(w) and gk(w) are constraint functions,
namely, binary evaluations regarding specific requirements that the solution must satisfy
to be feasible. All the functions depend on the design vector w = (w1, w2, . . . , wn)

T ∈ Ω
whose components wi are called design or decision variables. Such variables can be contin-
uous, discrete or a mixture of both. A feasible solution s is [22]

s = arg
D1×...×Dn

(
min
w∈Ω

fobj,i(w)

)
, (i = 1, 2, . . . , M) (2)

If M = 1, the problem is called a single-objective problem, whereas if M > 1, it is
called a multi-objective problem. The best solution to the optimisation problem is the
argument of the optimum for the objective function.

In OSP, there exist further limitations to the optimisation framework presented above.
In particular, the only design variable is the set of locations and orientations, namely,
the instrumented degrees of freedom (DOFs), which assume only discrete values and
whose selection is mutually exclusive. This can be seen as a specialised Knapsack problem,
namely, a constrained combinatorial problem in which a given number of sensors nsens
are placed in a few locations and orientations among a larger set of candidates (ncand),
thus 1 ≤ nsens ≤ ncand for a set of given objectives. A solution to this problem is a
vector of spatial nodal coordinates d = {x1, y1, z1, δ1, . . . , xnsens , ynsens , znsens , δnsens }, where
δi = {ui, vi, wi} is the orientation of the ith sensor and {xi, yi, zi} corresponds to its
location in the reference system of the geometrical space. A simpler definition is achieved
by resorting to a discretisation of the investigated system and the enumeration of the
candidate DOFs: d = {d1, δ1, . . . , dnsens , δnsens } ∈ D.
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The dimension of D, namely, the domain of the solutions, for a given number of
sensors nsens and candidate locations ncand is

|D| = ncand!
nsens!(ncand − nsens)!

(3)

In the literature, different criteria are commonly used to formulate the objective
function and/or assess the suitability of the placement a posteriori [23]. To this end, the
noteworthy work of Kammer [24] has been paramount, as it centred the focus on the
formulation of objective functions, which ensures not only their observability but also their
absolute identifiability, which is an essential requirement for correct dynamic identification.
This has led to a proliferation of methods based on the Fisher information matrix (FIM),
modal assurance criterion (MAC), singular-value decomposition ratio (SVDr), modal kinetic
or strain energy (MKE and SE) or information-theory-related metrics [25–28]. These metrics
are mainly based on the mode shape matrix partitioned at the candidate sensor locations
and a pre-defined set of target modes. In any case, it is worth noting that the objective
function is not known analytically and, consequently, the OSP is a black box optimisation
problem. Moreover, the objective function is likely non-convex, presenting many local
optima. Therefore, the objective function value at a specific point can be calculated only
by running a simulation, and the traditional approach to OSP requires the existence of a
preliminary numerical model, which is commonly a simplified finite element model (FEM),
of the investigated system.

Addressing black box optimisation strongly limits the viable optimisation strategies [29].
These are mostly sub-optimal and, depending on their formulation, can be subdivided
into deterministic or stochastic [7]. Deterministic methodologies treat the design variables
as deterministic inputs. A wide range of methods have been developed to specifically
address the optimisation of given metrics, leveraging ad hoc, non-generalisable strategies.
These methods are the so-called heuristics, namely, a class of sequential sensor placement
(SSP) algorithms, which iteratively add to or reject candidates from a predefined location
set until finding the optimal solution [30]. Besides these methods, well-established tech-
niques to tackle black-box optimisation, namely, the so-called metaheuristic algorithms,
have been successfully applied to OSP. These are also sub-optimal methods but are not
constrained by a specific formulation of the objective function, and thus, they allow for
optimising more complex objective functions and consider some problem instances that are
difficult to include in a heuristic process, such as multi-objective optimisation problems [7].
Multi-objective optimisation offers a powerful approach to simultaneously determining
the optimal placement of sensors under multiple potentially conflicting goals, such as max-
imising coverage, minimising redundancy and controlling costs. Methods that are feasible
for multi-objective optimisation produce a set of alternative solutions known as a Pareto
front. Their comprehensive exploration of the solution domain, coupled with sensitivity
analysis capabilities, provides a pivotal understanding of how different parameters and
objectives influence optimal sensor configurations.

On the other hand, stochastic methodologies have been developed to treat the nu-
merical parameters as random, considering the limited representability of the preliminary
model adopted due to simplifications and limited knowledge of the physical and me-
chanical properties of the investigated structure. These methodologies may employ the
aforementioned sub-optimal techniques within a probabilistic framework that repeats the
optimisation upon sampling the values of the random variables from predefined distri-
butions, ensuring an uncertainty analysis in the optimisation problem [7]. Instead, novel
stochastic approaches are based on a formulation of OSP in the general framework of
experimental design using a Bayesian approach [31], in which the goal is the maximisation
of the value of the data collected through monitoring and the optimisation of time and cost
requirements [32]. Finally, the necessity of dealing with several sources of uncertainties
that affect not only the model but also the experimental stage of monitoring has recently
led to novel approaches that circumvent the issues in the preliminary model by relying on
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a data-driven optimisation. Such approaches identify the best placement for the sensors
among a large number of instrumented DOFs, resorting to preliminary monitoring, thus
considering real fieldwork signals [33,34].

3. OSP Applications to Historical Masonry Buildings

In the present section, a comprehensive analysis of the OSP applications to historical
masonry buildings identified in the literature is provided, highlighting and comparing the
main features of the optimisation process. The investigated case studies (Figure 1) comprise
six religious buildings and two civil constructions, namely, the Santa Maria church in Via in
Camerino, Italy [35]; the Collegiata of Santa Maria in Visso, Italy [36]; the bell tower of Santa
Maria and San Giovenale Cathedral in Fossano, Italy [37]; the cloister of the monastery of
San Jerónimo de Buenavista in Seville, Spain [38]; the cloister of the monastery of Santa
Maria in Salzedas, Portugal [39]; the Cathedral of Saint John the Divine in New York [40];
the Slottsfjell tower in Tønsberg, Norway [19]; and a prototype of Venice palace inspired
by Ca’ Loredan in Venice, Italy [41]. Notably, except for the monastery of Santa Maria in
Salzedas, all the case studies employed a model-based OSP approach. Four cases optimised
the placement for the complete building [19,35,36,41], whereas four focused on single
portions, such as the bell tower [37], the cloisters [38,39] or a bay [40].
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The objective of the optimisation process varies for different case studies, considering
the type of building, level of damage (e.g., the Collegiata of Visso and Santa Maria in
Camerino were significantly damaged by the Central Italy 2016 seismic sequence), previous
interventions and maintenance activities (e.g., the extensive strengthening at the Salzedas
monastery), the type of sensors (triaxial or uniaxial accelerometers), among other parame-
ters. However, in general, the optimisation applied to the case studies aimed to efficiently
design the sensor layout to ensure a correct modal identification with a reduced number
of sensors and, consequently, improved cost effectiveness. The final sensors were natural
candidates for long-term monitoring, thus allowing for the detection of a damage outbreak.
To this end, it is worth noting that the OSP at the Fossano bell tower explicitly included
damage identification by optimising the sensor placement in undamaged and expected
damaged scenarios.

Regarding the selection of the candidates, the number and locations vary depending
on the chosen approach. In the only data-driven application (i.e., the Salzedas monastery),
the candidates corresponded to the monitored DOFs, which were a total of forty acquired
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DOFs evenly distributed over thirty-two points. In the case of the San Jerónimo monastery
in Spain, an FEM was calibrated based on a preliminary acquisition and it was used for
the OSP by considering the same candidate points as the dynamic campaign, namely,
thirty-two points in three directions, summing up to ninety-six candidate DOFs.

For the other cases, the number of candidates is usually higher (Figure 2), as they
are selected from the FEM itself. A common strategy to limit the candidates is based on
the accessibility of the areas. For example, considering the application in the Camerino
church, a random sampling approach was used to select candidate DOFs exclusively from
the external surface. The initial set comprised over 250,000 DOFs, which were later refined
to 25,000 through random sampling. This reduction served to reduce the computational
burden while ensuring a representative subset for analysis. This approach was also applied
to the Cathedral of Saint John, obtaining a total of 781 candidate positions from the complete
set of accessible nodes of the FEM. The other applications followed a similar trend, selecting
the candidates among the accessible DOFs of the FEM but limiting the number by manually
excluding the areas with lower interest, or the vertical direction when vertical components
of the mode shapes were deemed uninfluential or not targeted.
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Another important input for the optimisation is the number of target modes. It is
interesting to note that most applications set this to five (Figure 3). In most cases, all
of them represented global modes of the investigated building (i.e., the church of Santa
Maria in Camerino and the Slottsfjell tower) or investigated building portions (i.e., the San
Jerónimo monastery). The global modes of the church of Santa Maria in Camerino were
two longitudinal, one transversal and two torsional. For the Slottsfjell tower, the first and
the second modes were first bending, the third mode was torsional, and the fourth and fifth
modes were second bending. At the Salzedas monastery, the presence of two local vertical
modes of the slab of the investigated gallery of the cloister was addressed by carrying out
one optimisation by considering the five identified modes, and another one considering
just the three global modes, namely, two transversal, single and double bending modes,
and a longitudinal mode. The optimisation conducted for the Venetian palace included
one local mode of the internal courtyard within the five targeted. Here, the global modes
were one longitudinal, one transversal, one torsional and a higher more complex global
mode. In the Cathedral of Saint John, only the global modes (nine out of the first twenty)
were considered. For the Fossano bell tower, 10 modes were used for the optimisation.
In this case, the modes were local but involved the complete investigated macroelement.
Similarly, at the Collegiata of Visso, the three targets were all local modes of the bell tower,
two transverse in each direction and one torsional.
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The algorithms used for most of the case studies were heuristics. The Fassano bell
tower was the only exception by employing a metaheuristic algorithm. Most of the ap-
plications relied on the effective independence (EfI) method as the unique optimisation
algorithm (i.e., Saint John Cathedral, Santa Maria church in Camerino, the Collegiata of
Visso and the Venetian palace) or in comparison with alternative ones. This was the case
of the Slottsfjell tower, where EfI was compared with the iterative Guyan reduction (IGR),
the normalised modal displacement (NMD), the normalised kinetic (NKE) method and
the off-of-diagonal MAC (offMAC). In the San Jerónimo monastery, the EfI was used and
compared with the EfI weighted method (EfIwm), the kinetic energy and the strain energy
matrix rank optimisation (KEMRO and SEMRO). Finally, for two cases, EfI was not consid-
ered. In the Salzedas monastery, five heuristic methods were used: eigenvector component
product (ECP), mode shape summation plot (MSSP), average driving point residue (ADPR),
weighted average driving point residue (WADPR) and QR decomposition (QRD).

For the Fassano bell tower, a metaheuristic approach was used, namely, a multi-
objective genetic algorithm (MOGA) with cost functions based on MAC variations, i.e.,
both the auto-MAC, which compares the modes of a structure between themselves, and
the cross-MAC, which compares the modes of two different structures or two different
structural configurations of the same structure. In particular, the optimisation was carried
out by considering two potentially conflicting goals upon damage onset: on the one hand,
ensuring the identifiability of the modes for a given condition of the tower, and on the other
hand, obtaining fairly distinct mode shapes in different conditions. The two combined
objective functions guaranteed that the sensor pattern remains optimal throughout the
lifetime of the structure, which is an important issue, especially for complex masonry
buildings in high-hazard zones. In this study, the multi-objective method was compared
with another metaheuristic technique, a single objective genetic algorithm (SOGA), as well
as other heuristic methods: the entropy information (EI), ECP and ADPR methods.

When more than one optimisation algorithm is used, at least one validation metric is
defined to compare the results from the different methods. For the Salzedas monastery, the
comparison was conducted in terms of SVDr, the determinant of the FIM (detFIM) and the
maximum offMAC value of the auto-MAC matrix. Moreover, the dynamic identification
was carried out again, considering only the sensors recommended by the outperforming
method, and the results were compared with the identification conducted with all the
measurement points, validating the results through experimental data.

In the case of the San Jerónimo monastery, the comparison was carried out in terms of
frequency error between the results obtained from the dynamic identification considering
the complete set of candidates and the sensors obtained in the results. This is, indeed, the
only model-based work that validates the results of the optimisation process based on
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experimental data. In the cases of the two towers where more than one method was used,
the metric for the analysis of the final configuration was the offMAC value.

In most of the applications, as is common in the traditional OSP formulation, the
number of sensors to be placed was predetermined, as shown in light orange in Figure 4.
This was the case for the Slottsfjell tower, where seven uniaxial sensors were selected. Since
for some algorithms, the minimum number of sensors to place is equal to the number
of target modes, this is the pre-set value. This criterion was adopted in the Santa Maria
church and the monastery in Salzedas. For the Venetian palace, the minimum number
equal to the target modes (i.e., five) was first used, defining a set of so-called vital sensors.
Then, configurations with an increasing number of sensors, up to ten, were considered.
Developing a robust strategy to optimise the number of sensors is currently an open
challenge. Some authors achieved this by selecting a range for the number of sensors
and analysing the results by means of some performance metrics. This was the case for
the Collegiata of Visso, where the sensors varied between three and six. The trace and
the determinant of the FIM, the SVDr and the maximum offMAC value were used as
performance metrics, and based on them, the best number of sensors was identified as
four. For the Fassano bell tower, a minimum number of fourteen was defined as optimal
without losing performance in terms of offMAC values. At the San Jerónimo monastery,
the minimum number of sensors, between two and sixteen, was defined based on the
analysis of the error in terms of frequencies between the identification using the data
from the dynamic campaign and the identification using just the resultant sensors of the
optimisation. The authors concluded that the error was stabilised for a number of sensors
greater than eight.
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In the case of the Cathedral of Saint John, a viability analysis of three potential metrics
was conducted, namely, the loss of information measured by the determinant of the FIM,
the MAC and the EfI value. It is important to note that the loss of information metric is
relative and strictly depends on the initial candidate set’s characteristics. The MAC metric
seems to be more suitable when dealing with a substantial number of sensors. As a result,
the EfI value is favoured, and even though the primary objective of this method is not the
definition of the minimum number of sensors, this metric is used for setting an arbitrary
threshold of 0.1 to determine the number of sensors.

As can be seen in Figure 4, attempts to determine a minimum value for the number
of sensors based on the metrics (cases highlighted in dark orange in the graph) generated
very different results. This was likely affected by the problem input, such as the number
and selection of target modes or the number and location of candidate nodes, as well
as the choice of the metric itself. Moreover, it is potentially influenced by the way the
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adopted algorithm explored the domain of feasible solutions in the following iterations. It
is therefore essential to define robust strategies to solve this open issue within the OSP.

A relevant issue of OSP for heritage buildings is the level of uncertainties involved in
the definition of the model. In all cases, except one (i.e., the Venetian palace), the FEM used
for the optimisation was updated based on dynamic identification tests to minimise this
issue. In most cases, piezoelectric accelerometers were used for the identification, except for
the San Jeronimo monastery, where force balance accelerometers were used. More details
regarding the sensors adopted in these case studies are reported in Table 1.

Table 1. Characteristics of the sensors adopted for the dynamic identification of the investigated
case studies.

Case Type Axis Model Sensitivity Accel. * Points **

San Jerónimo monastery Force balance Uni KINEMETRICS ES-U2 10 V/g 8 32

Salzedas monastery Piezoelectric Uni PCB 393B12 10 V/g 12 40

Saint John Cathedral Piezoelectric Uni PCB 393A03 1 V/g 7 7

Camerino church Piezoelectric Uni PCB 393B31 10 V/g 16 28

Visso collegiata Piezoelectric Tri - 1 V/g 4 11

Fossano bell tower Piezoelectric Uni PCB 3701G3FA3G 1 V/g 20 20

* Number of accelerometers used, ** number of positions measured.

In the Venetian palace, instead, the sources of uncertainty in the model were included
in the optimisation using an extensive Monte Carlo simulation (MCS), treating several
unknown features of the model and sampling 200 sets of values for them. Continuous
distribution was used for the variables related to the walls, namely, elastic modulus and
shear modulus with a log-normal probability distribution function (PDF) and mass density
and thickness with a normal PDF. Discrete distributions were used for the floor properties
and the connection between walls, considering three values with uniform probability in
each case. Then, the optimisation was carried out for each sample, and the preliminary
results were discussed without providing, at this stage, a strategy for the definition of the
overall best placement.

A similar stochastic approach was used at the San Jerónimo monastery, where the
MCS considered the elastic modulus of the brick and the stone masonries to be stochastic
with normal distribution to generate the samples. For this case, the determination of the
optimal number of samples was defined by analysing the dispersion percentage, which
was stabilised for a number of samples greater than 64. In this case, the probability of
sensor selection was computed for each method, obtaining the most recurrent positions.

A simpler approach to include uncertainties was presented for the Slottsfjell tower,
where only two scenarios were analysed and compared: one where the tower was fixed to
the soil, and a second one where the soil–structure interaction (SSI) was considered. Finally,
the OSP application to the Cathedral of Saint John included the uncertainties according to
an enhanced version of the EfI proposed in [42], which considered the possible inaccuracies
of the numerical model by assuming a 5% error in the model input parameters. Thus,
five new FEMs were generated with a 5% reduction in the elastic modulus of one of each
material type at the time (assigned for ribs/arches, vault webbing, rubble surcharge, piers
and walls) to be compared against a reference model.

4. OSP in Historical Masonry Buildings—Insight from a Simple Numerical Benchmark

To illustrate the aforementioned outstanding challenges, this section demonstrates
the use of two main OSP techniques on a simple but effective benchmark, namely, the
numerical model of a three-nave masonry church with a pitched roof, twin towers at the
sides of the façade, a transept and an apse with two secondary chapels. The openings were
asymmetrical in both the transept and in the towers to include more complexity. The overall
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dimensions of the three naves were 40 m by 20 m. A solid FEM with 243,000 elements was
created with the software DIANA [43]. The elements were defined as quadratic/hexagonal
mesh elements (primarily the CHX60 twenty-node isoparametric solid brick element).

The methodology proposed included an initial examination of eight different config-
urations according to a two-level full factorial design of the following three parameters
(i.e., all combinations of parameters and levels were tested): candidate locations, number of
sensors to place and heuristic optimisation algorithm adopted. One of these configurations
was then chosen and compared with four other cases, where four alternative scenarios were
simulated by modifying the model to account for uncertainties. The auto-MAC metric was
then calculated for these four scenarios, using the chosen location configuration. Finally,
one of the previous eight configurations was implemented in the four additional scenarios
by considering a larger number of modes.

The reference scenario assumed that the longitudinal walls were interconnected by
the roof, with all wall intersections perfectly interlocked. Within this reference scenario,
two sets of candidate points were considered, as shown in Figure 5. One set consisted of
179 nodes, while the other was a selection of 113 nodes, which was achieved by eliminating
areas that could pose accessibility problems in a real-world application, such as the upper
level of the towers and the top of the central nave.
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For each node, the three translational DOFs were considered as candidates. Both sets
of candidates were used for the optimisation with two well-established methods: EfI and
the maximum offMAC methods. Finally, the final number of sensors to place was assumed
equal to either 10 or 15, which was defined on the basis of the experience of the authors as a
reasonable number considering the number of involved modes in the optimisation and the
configurations of the other variations of the model analysed in this section. In this initial
application, the seven modes shown in Figure 6 were employed, covering both the global
modes and local modes of the towers. Modes 1 and 2 were mainly transversal modes of
the naves, while modes 3 to 6 were local modes of the towers. Modes 7 and 8 affected the
central nave but they were rejected for their complexity. Finally, mode 9, which represented
a longitudinal mode of the nave, was selected.
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For the results of the 179-node case (Figure 7a,b), both methods yielded similar place-
ments when 10 sensors were selected. In this arrangement, one sensor was placed on
each of the longitudinal walls in the transverse direction; one on the façade along the
longitudinal direction; and five sensors were distributed along the towers, covering both
horizontal directions. However, when five additional sensors were included, a clustering
phenomenon appeared. In this case, three of the additional sensors were located at the
top of the towers, and each tower had two sensors in both horizontal directions. When
the offMAC-based optimisation method was used, the two supplementary sensors were
located on the nave, close to two of the existing sensors (Figure 7b). With the EfI method,
the clustering appeared in the façade, but not in the naves (Figure 7a).

When 113 candidate nodes were considered, the 10-sensor optimisation provided a
configuration that closely resembled the equivalent one obtained from the 179 candidate
nodes, with minimum adjustments due to the reduction in the feasible solutions. For this
reason, the sensors placed in the tower moved from the upper to the lower level, and the
sensors placed on top of the central nave moved to the corresponding positions on the
external walls. It is worth noting that considering the top of the façade was inaccessible,
the sensor that was intended to be located here was moved to the tower and the final
configuration lacked any sensor monitoring the nave in the longitudinal direction. When
15 sensors were employed, the clustering problem became even more pronounced due to
limitations on the number of candidates, as can be observed in Figure 7c in the nave and
Figure 7d in the towers.

For a further analysis of the results obtained using the OSP methods, the layout
obtained was compared with the placement based on expert judgement in similar case
studies, namely, Saint Torcato church [44], Matera Cathedral [45], church of the Monastery
of Saint Miguel de Refojos [46] and church of Saint Juan Bautista de Huaro [47]. It is
worth noting that in all these cases, the number of measured DOFs was larger than in the
numerical benchmark, thus only a qualitative comparison can be conducted.
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In the Saint Torcato church, sensors were distributed symmetrically in the towers. This
happened in the benchmark 179-node 15-sensor case but not in the other cases. In Matera
Cathedral, seven uniaxial accelerometers were located in the corners of the tower. The
sensors were distributed over two levels and two horizontal directions. The results for the
benchmark case (179-node) only located sensors in the higher level of the towers and not
always in the corners; however, as in Matera Cathedral, the locations were distributed in
both horizontal directions.

Regarding the nave, for the three-nave Matera Cathedral, the one-nave church of the
Monastery of Saint Miguel de Refojos and the one-nave church of Saint Juan Bautista de
Huaro, the accelerometers were always located on the external walls measuring the corners
in both horizontal directions and distributing two (at Matera and Saint Miguel de Refojos)
or three (at Huaro) accelerometers along the transversal direction over the longitudinal
walls. In the benchmark, two sensors in the transversal direction of both lateral walls were
included in the 113-node scenarios only.

Four additional scenarios were created to account for reasonably expected uncertain-
ties within the model due to limited knowledge of the building. Scenario SCN01 assumed
a poor connection between the top of the longitudinal walls (roof without stiffness and/or
weak connection to the masonry walls). The following three scenarios included the same
poor connection plus a disconnection between the nave and the towers (SCN02), the pres-



Sensors 2023, 23, 9304 13 of 23

ence of soft soil (SCN03) and a disconnection of the transept from the nave (SCN04). Soil
settlement is a common threat to historical massive buildings especially churches, whereas
disconnections are not uncommon in such constructions that have often undergone several
alterations with additions of portions over time.

First, the capability of the optimised placement based on the initial assumptions,
through the model of the reference scenario, to correctly interpret the modes of the building
in the presence of one of the alternative scenarios was tested. To this end, the final locations
from the original 179 candidates for the 10 sensors provided using the EfI method were used
to simulate monitoring by partitioning the mode shape matrix to the measurement DOFs
and all the modes in the range up to 5 Hz. Since the modes selected for the optimisation of
the reference model were not representative of the alternative scenarios, the latter criterion
was established by considering a bandwidth that was likely to be excited by ambient
sources of vibrations, and thus, are commonly identified during field tests. Applying this
criterion to the reference scenario, 14 modes were found. The auto-MAC for these modes,
considering the 10 measurement points, is shown in Figure 8.
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The modes used for optimisation (i.e., modes 1 through 6 and mode 9) appeared
to be clearly distinct, with the maximum off-diagonal value reaching 0.23. However,
distinguishing between mode 1 and mode 8 was complicated with the current sensor
configuration, as the MAC value was 0.93. Similarly, modes 1 and 12 presented a MAC
value of 0.72. In Figure 9, these modes can be compared visually. This highlights the critical
role of mode selection during optimisation, even when the preliminary model is perfectly
representative of the real scenario, as modes that are not targeted during the optimisation
may be less identifiable or interpretable through the reduction in measurement points.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24 
 

 

   

(a) (b) (c) 

Figure 9. Modal shapes of the reference scenario: (a) mode 1; (b) mode 8; (c) mode 12. Maximum 
displacemnt represented by red, zero displacement represented by blue.  

In what concerns the alternative scenarios, local modes appeared due to the reduced 
connection between the distinct portions of the buildings leading to 16, 20, 30 and 22 
modes under 5 Hz for SCN01, SCN02, SCN03 and SCN04, respectively. The auto-MAC 
calculated for the alternative scenarios, considering such modes and the 10 sensors, is re-
ported in Figure 10. Here, for the sake of clarity, the values are not presented but only the 
colour scale is shown and the higher the number and intensity of the red squares, the more 
difficult it was to differentiate and identify the modes. 

 

 
(a) (b) 

 

 

(c) (d) 

Figure 10. Auto-MAC tables considering all the modes under 5 Hz and the EfI 10-sensors 179-node 
optimisation for the reference scenario: (a) SCN01; (b) SCN02; (c) SCN03; (d) SCN04. MAC values 
represented by colour scale: red represents 1, white represents 0. 

Comparing the results of Figure 10 with Figure 8, there was a clear deterioration of 
the performance of the optimised placement when the actual scenario presented slight 
alterations with respect to the original assumption used for the OSP. This implies that 

Figure 9. Modal shapes of the reference scenario: (a) mode 1; (b) mode 8; (c) mode 12. Maximum
displacemnt represented by red, zero displacement represented by blue.



Sensors 2023, 23, 9304 14 of 23

In what concerns the alternative scenarios, local modes appeared due to the reduced
connection between the distinct portions of the buildings leading to 16, 20, 30 and 22 modes
under 5 Hz for SCN01, SCN02, SCN03 and SCN04, respectively. The auto-MAC calculated
for the alternative scenarios, considering such modes and the 10 sensors, is reported in
Figure 10. Here, for the sake of clarity, the values are not presented but only the colour scale
is shown and the higher the number and intensity of the red squares, the more difficult it
was to differentiate and identify the modes.
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Comparing the results of Figure 10 with Figure 8, there was a clear deterioration of
the performance of the optimised placement when the actual scenario presented slight
alterations with respect to the original assumption used for the OSP. This implies that
whenever a limited level of knowledge leads to a preliminary model that is not representa-
tive of the real building, the optimisation conducted on a deterministic model can easily
fail to distinguish mode shapes activated by overlooked features of the real structural
configuration. The presence of a poorer connection at the roof level (SCN01) led to at
least five couples of modes being almost indistinguishable (Figure 10a). The disconnec-
tion in the tower (SCN02), the presence of soft soil (SCN03) and the disconnection of the
transept (SCN04), dramatically increased the couples of similar mode shapes, as presented
in Figure 10b–d, respectively.

Consequently, one can ask whether the optimised placement was at least capable of
informing the structural identification through the extracted modal properties, namely,
whether the information provided by the identified mode shapes was sufficient to distin-
guish the actual scenarios. Although this is a complex task that in real applications requires
an interpretation of the experimental data and a detailed model calibration, a simple test
was conducted here by evaluating the cross-MAC, namely, the MAC between the reference
scenario and the four alternative ones (Figure 11). The intensity of the red scale suggests
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that several modes in the pairwise comparison of the scenarios may be confused, potentially
preventing a profitable use of the extracted shapes to calibrate the model and support the
identification of the actual scenario.
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Finally, optimisation was conducted on the models of the alternative scenarios to
analyse the differences in the final placements. The results of the optimisation are illustrated
in Figure 12. In this optimisation, the selected candidate nodes were the complete initial
179 nodes, leading to 537 DOFs for the uniaxial sensors. The number of modes varied for
each scenario, comprising all global and local ones in the range up to 5 Hz.

The number of sensors placed was 15 and the optimisation method was based on the
offMAC method. This approach was preferred since for the EfI, the minimum number of
sensors cannot be less than the number of modes, which in these scenarios, would exceed
15 and be variable, preventing a fair comparison.

In general, the sensors were located and distributed throughout the building without
exhibiting clustering. This could be attributed to the inclusion of a broader range of
modes in the optimisation and was particularly evident for the towers. As the number
of local modes of the towers was balanced by a larger number of modes involving the
other components, their role became less relevant, leading to a reduction in the number of
sensors placed there.

The rest of the sensors were distributed mainly along the length of the building. The
façade contained one sensor in SCN01 and SCN04, but, as expected, it gained importance
when it was disconnected from the towers in SCN02, containing more sensors in the final
placement. The only case where a vertical sensor was introduced was in the scenario
representing the soft soil and was located in the centre of one of the arcades. This was likely
due to the way the soil–structure interaction was modelled, allowing for the occurrence of
vertical modal displacement. Finally, SCN04 incorporated two sensors in a side chapel at
the disconnection point. Due to the poorer involvement of the apse in the mode shapes, no
sensors were placed in this area in any of the scenarios.

The auto-MAC was calculated for all the results (Figure 13). When comparing these
outcomes with Figure 10, the improvement in the identifiability of the modes was evident,
as these were targeted in the optimisation, resulting in less indistinguishable couples
of modes.
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5. Main Open Issues in OSP for Historical Masonry Buildings

Upon the comprehensive analysis of the literature and the application to the numer-
ical benchmark discussed in the previous section, a clear set of relevant open issues and
challenges that hinder a successful application of OSP methodologies to historical masonry
buildings were identified and hereafter discussed. Such challenges can be classified accord-
ing to the three main components of the OSP strategy: model-related, experiment-related
and optimisation-related challenges.

Commonly, the OSP problem is addressed before a detailed investigation of the struc-
ture, with the goal being the identification of the best measurement points to maximise the
information quality and minimise the resources needed for the acquisition. To this end, a
preliminary model that is sufficiently representative of the structure is used to predict the
expected behaviour. The generation of a reliable model involves the definition of numerous
parameters that usually present a high level of uncertainty [48]. Such parameters comprise
material properties, complex geometries, connection between elements, presence of damage
and soil structure interaction, among others [19]. To minimise the uncertainties related to
geometry, advanced surveying techniques, such as photogrammetry or laser scanning, are
commonly employed. These tools can provide detailed values of deformations and damage
locations, as well as accurate information for the definition of the structural numerical
model. However, avoiding uncertainties in the definition of the other parameters is not so
simple. One of the fundamental challenges in modelling historical masonry structures is the
accurate characterisation of the material properties of aged and weathered masonry [49].
Traditional construction materials often lack the homogeneity and consistency seen in
modern materials, making it difficult to define reliable values for the analysis. The con-
struction techniques employed in historical masonry buildings can vary significantly from
contemporary practices. These techniques may not be well documented and understanding
them is crucial for creating accurate models. Additionally, historical masonry structures
have often undergone modifications and repairs over the years. Documenting these alter-
ations and understanding their impact on structural behaviour is essential but cumbersome.
Numerical models should be able to accurately account for these changes. Determining
the load history of a masonry structure is also challenging, especially when considering
long-term effects, such as settlement, creep and thermal cycling [50]. Obtaining accurate
load data for historical structures is often impossible, and assumptions need to be made,
which can introduce uncertainties into the numerical model.

This kind of uncertainty undoubtedly compromises the quality of the results obtained
using the OSP methodologies if a purely deterministic approach is followed. As shown
in the benchmark application, slight changes to the original assumptions and unexpected
configurations are hardly identifiable and distinguishable when their main features are
not accounted for in the preliminary model used for the OSP. Similarly, including the
uncertainties in the optimisation, as demonstrated by several applications (i.e., Venice
palace, San Jerónimo monastery, Slottfjell tower and the numerical benchmark), leads
to distinct optimised placements, calling for the definition of a robust strategy to select
a final overall optimal localisation. The deterministic applications in literature try to
circumvent the problem by employing a numerical model calibrated to the experimental
response of the building. However, this solution requires a preliminary acquisition, failing
to fulfil the original premise of providing an optimised placement before conducting
any test. On the other hand, stochastic approaches try to include uncertainty analysis in
the optimisation problem by simulating a wide range of possible scenarios. Two of the
investigated applications proposed the MCS technique to sample several different instances
from pre-set probabilistic functions for each stochastic variable [21,22]. However, this
approach is much more computationally demanding, and several aspects are not fully
agreed upon and need more research, such as the definition of the number of samples,
the variables and their statistical distributions, and the final configuration considering the
dispersion of the results.
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Data-driven methods constitute a quite novel and completely alternative approach
to avoid problems with uncertainties related to the definition of the model. In this case,
the aforementioned premise of OSP is completely subverted and the aim becomes the
determination of the optimal placement starting from a large number of measurement
points recorded during an extensive ambient vibration test. This approach, indeed, opens a
new scenario, in which the stakeholders prefer to invest in a large testing programme and
a very high level of knowledge of the structure is obtained, making the generation of the
numerical model unnecessary for the optimisation purpose. This implies avoiding the costs
of creating a reliable numerical model, the complexity of dealing with the uncertainties,
and the need for the necessary skill and expertise for the numerical simulation. On the
other hand, this approach presents clear shortcomings, such as the cost of conducting
a large testing programme in advance that for its scale, may interfere with the regular
functioning of the building. Moreover, the lack of previous information about the dynamic
behaviour of the structure may hinder proper test planning. A discussion of these two
alternative scenarios (i.e., data-driven, high level of knowledge and experimentally inten-
sive without numerical simulations required vs. model-based, low level of knowledge and
computationally intensive without preliminary experiments) has been provided in [34].

The analysis of the data-driven approach leads to the discussion on experiment-related
issues [39]. Such issues affect the campaign conducted before the application of data-driven
OSP but also the preliminary test for numerical calibration purposes in model-based
approaches [38]. Moreover, such issues should be taken into account while conducting the
optimisation, irrespective of the adopted approach, to enhance the optimised monitoring.

Historical masonry buildings possess unique characteristics that greatly impact the
modal analysis process [51]. These structures are often massive and exhibit potentially
nonlinear responses and complex damping mechanisms due to ageing, material degrada-
tion and structural modifications, making them inherently different from more modern,
homogeneous constructions. Furthermore, they can exhibit brittle behaviour, and their
complex layouts, as seen in structures like churches, defy the simplifying assumption of
box-like behaviour.

The challenges presented by these peculiarities extend to the domain of experimental
modal analysis [52]. Historical masonry building high and local modes are not easily
excited, and thus, can be hardly identified. However, the very essence of these structures
calls for an optimisation of the sensor placement driven not only by the global modes but
also by the local ones, which are often overlooked due to the complexity they introduce
but play a key role in the structural response. A homogeneous selection of modes from
different components and all major directions is also essential to avoid biases that arise
from a selection that prioritises certain macroelements or mode shapes. All these issues
can be observed in the application of the benchmark. Since all these decisions significantly
influence the final configuration, it is important to define a global strategy that can be
extrapolated to other cases of masonry buildings, despite the case-specific peculiarities.

In light of these structural complexities, there are several other pressing issues to
contend with. Ambient vibration sources in the vicinity of such historical buildings may be
weak, exacerbating the challenges in acquiring reliable modal data. These buildings often
stand in restricted areas or, in general, far from heavily trafficked areas, where ambient
vibrations are typically more substantial. Moreover, the operations around these heritage
structures may introduce non-stationary inputs, including the periodic tolling of bells,
micro-tremors and other sporadic disturbances. Traditional output-only modal analysis
techniques, which are primarily designed for stationary and time-invariant inputs, struggle
to handle these variable forces effectively [52].

Practical considerations are equally significant. Historical masonry buildings often
operate within constraints imposed by their significance. This means that the installation
and operation of the sensing devices must be minimally invasive and visually unobtrusive
to comply with the conservation principles of these cultural assets, namely, preserving
their visual and structural integrity. This limits, in many cases, the feasible candidate
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locations. However, selecting a sufficient number of candidate points to ensure the adequate
performance of the optimisation strategy is paramount [39].

Not only the input of the optimisation process poses a problem but also the opti-
misation algorithm itself. Regarding the optimisation-related issues, the importance of
the selection of the technique was demonstrated, which is a complex decision because of
the large number of available alternatives, with all of them having different advantages
and disadvantages. The applications in the literature that compare several optimisation
methods, as in the case of the monastery in Salzedas, concluded that quite large variability
in the estimation of the relevance of each candidate according to distinct metrics emerged,
especially when the global and local modes were targeted.

In the case of the San Jerónimo monastery, among the four OSP algorithms analysed,
the EfI method provided a solution that allowed for the identification of natural frequencies
with less error, whereas the solution of the KEMRO method was the one that gave the great-
est error in the modal identification. When uncertainties were considered for this structure,
the SEMRO method was the one that presented the lowest dispersion in its solution for all
the scenarios analysed. The different results and conclusions exposed the lack of robustness
in OSP, as different methods provided very distinct placements and presented significant
variability in the performance for various scenarios and investigated cases.

For the Fassano bell tower, multi-objective optimisation was addressed using genetic
algorithms. In this case, the metrics were based on MAC functions. In particular, two
objective functions were combined to ensure that the sensor pattern remained optimal
throughout the lifetime of the structure, allowing for the successful detection of damage
onset reflected in the alteration of the mode shapes. Although this approach offers several
advantages, it requires the definition of more input parameters and the selection of the
final single optimal solution is challenging, as a trade-off between potentially competing
objectives must be found, which involves choosing among Pareto-optimal solutions that
offer varying advantages in distinct aspects.

An additional inference to draw pertains to the necessity of establishing a methodol-
ogy for determining the optimal number of sensors to place. In most cases, no optimisation
was conducted, and the number was predefined based on specific demands, such as the
availability of the sensors or a limitation of the budget. Indeed, the problem of optimis-
ing the network cost, possibly considering purchasing and installation costs for different
types of sensors (tri-, bi- and uniaxial), even in combination, and the ease of access of
the measurement points have not attracted much attention yet [37]. Thus, a recurrent
strategy to determine the number of sensors to place was to set it equal to the number of
targeted modes. More complex approaches analyse the evolution of one or more metrics
for a variable number of sensors [38]. However, by lacking a benchmark for the minimum
necessary value of these metrics, the identification of their optimum can provide an unreal-
istic number of sensors in complex cases, generating redundant information. This latter
problem often emerges, even for a rather limited number of sensors, due to the tendency of
several algorithms to cluster them. Indeed, as demonstrated by the benchmark application
but also by the investigated literature (i.e., monastery of Salzedas and Venice palace), the
adopted metrics often reward the point with larger modal displacement, whereas they tend
to penalise nodes of the modes that would often be equally important for the interpretation
of the shapes with more inflection points. As shown in the benchmark, this problem also
depends on the number of modes chosen for optimisation, and thus, a wider selection
of local and global modes and their proportion relative to the number of sensors could
minimise this problem. In the Cathedral of Saint John, to address this issue, the EfI method
was improved, including a distance-based criterion (DBC) to reject sensors closer than a
minimum distance. Although the authors analysed various minimum distances from 0 to 3
m and the method provided promising results, it required a case-specific definition of the
DBC that is hardly generalisable and applicable to other cases.
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6. Conclusions

In the present paper, a comprehensive overview of OSP methods for historical masonry
buildings is presented, which involves an introduction to the OSP problem, including an
explanation of the involved steps and problem formulation. The paper comprises a review
of eight applications found in the literature. The examined case studies encompass six
religious buildings and two civil constructions. Four cases optimised the placement for
the complete structure, while four focused on specific portions of it. The analysis covered
objectives, input definition, candidate and mode selection, optimisation algorithms, result
validation metrics, minimum sensor selection and uncertainty incorporation, aiming at
identifying the unresolved issues associated with applying this technique to historical
masonry buildings.

Based on these identified issues, a numerical benchmark was generated to illustrate
the challenges more effectively. Two methods, namely, EfI and offMAC, were utilised,
comparing various initial candidate locations and sensor quantities. Additionally, five
scenarios (i.e., one reference and four alternatives) were defined through slight variations
in the numerical model to account for typically expected uncertainties due to limited
knowledge of the investigated historical building.

The analysis of the eight papers and the results obtained from the numerical bench-
mark yielded significant insights into the challenges associated with OSP in historical
masonry buildings. These challenges could be categorised into three primary aspects:
model-related, experiment-related, and optimisation-related challenges:

• Model-related problems stem from the unique characteristics of these buildings and
the alterations that likely affected them over time, making the modelling task extremely
challenging and affected by significant sources of uncertainty, which, if not properly
addressed, may lead to a simulated behaviour not being representative of the real one.

• Experiment-related problems originate from common peculiarities of the historical
masonry buildings that affect the interpretation of ambient vibration test data, such as
the brittle behaviour and nonlinear response, the difficulty in exciting high and local
modes despite their relevance, and the availability of mostly weak vibration sources
with non-stationary inputs. Moreover, conservation principles prevent the adoption
of invasive and obtrusive sensor installations.

• Optimisation-related issues depend on the optimisation algorithms and procedures,
as existing methodologies fail to provide a univocal answer to the main goals of
OSP. Variability in the optimised locations for the same application through distinct
methods is significant and robust strategies to optimise the number and the overall
costs along with the placement are still missing.

Building on the insights gained from this study, future research in the field of OSP
for historical masonry buildings should focus on addressing the identified challenges
and exploring novel techniques for optimising the sensor placement while considering
the unique characteristics of the historical masonry structures. One potential avenue for
further investigation is the development of cost-effective techniques that account for the
uncertainties within the optimisation. Additionally, research could delve into innovative
OSP methods to include costs and budget-related aspects. In this respect, one of the major
problems consists of the selection of an optimal minimum number of sensors. To this
end, multi-objective optimisation strategies could offer some advantages by allowing for
managing several potentially conflicting objectives at the same time.

Finally, it is important to mention the need to explore issues related to experimentation,
such as the difficulties in experimentally exciting and identifying specific modes and
defining viable solutions to account for them within the optimisation process.
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