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Abstract: In the current digital era, Wireless Sensor Networks (WSNs) and the Internet of Things (IoT)
are evolving, transforming human experiences by creating an interconnected environment. However,
ensuring the security of WSN-IoT networks remains a significant hurdle, as existing security models
are plagued with issues like prolonged training durations and complex classification processes. In
this study, a robust cyber-physical system based on the Emphatic Farmland Fertility Integrated
Deep Perceptron Network (EFDPN) is proposed to enhance the security of WSN-IoT. This initiative
introduces the Farmland Fertility Feature Selection (F3S) technique to alleviate the computational
complexity of identifying and classifying attacks. Additionally, this research leverages the Deep
Perceptron Network (DPN) classification algorithm for accurate intrusion classification, achieving
impressive performance metrics. In the classification phase, the Tunicate Swarm Optimization (TSO)
model is employed to improve the sigmoid transformation function, thereby enhancing prediction
accuracy. This study demonstrates the development of an EFDPN-based system designed to safeguard
WSN-IoT networks. It showcases how the DPN classification technique, in conjunction with the
TSO model, significantly improves classification performance. In this research, we employed well-
known cyber-attack datasets to validate its effectiveness, revealing its superiority over traditional
intrusion detection methods, particularly in achieving higher F1-score values. The incorporation of
the F3S algorithm plays a pivotal role in this framework by eliminating irrelevant features, leading
to enhanced prediction accuracy for the classifier, marking a substantial stride in fortifying WSN-
IoT network security. This research presents a promising approach to enhancing the security and
resilience of interconnected cyber-physical systems in the evolving landscape of WSN-IoT networks.

Keywords: wireless sensor network (WSN); internet of things (IoT); security; cyber-physical system;
intrusion detection; farmland fertility feature selection (F3S); deep perceptron network (DPN); tunicate
swarm optimization (TSO)

1. Introduction

A wireless sensor network (WSN) [1,2], which is made up of different kinds of sensors
with limited resources, is an important part of monitoring an environment and sending
important data to a designated node, also called a sink, through different communica-
tion protocols. These data are then relayed to a base station for meticulous analysis and
processing, catered to the specific demands of contemporary applications. Renowned for
their efficacy in remote monitoring, WSNs have a promising future, finding applicability
in critical domains such as border surveillance, industrial inspection, commercial utilities,
health monitoring, and environmental and infrastructure surveillance [3].

Conversely, the Internet of Things (IoT) [4,5] embodies an intricate network of inter-
connected smart devices tasked with the collection, processing, optimization, and dissemi-
nation of valuable data through internet channels. Each device, identifiable by a unique
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IP address or identifier, facilitates autonomous data exchange, enhancing the convenience
and efficiency of daily activities through technological advancements [6–8]. However, this
burgeoning development is not devoid of challenges, predominantly concerning secu-
rity [9].

The extensive integration of IoT into daily life and the surge in remote device op-
erations necessitate a unified platform facilitating seamless communication amongst a
diverse array of devices [10–12]. This prerequisite has spurred the creation of specific
IoT frameworks, outlining the architectural blueprint for selected applications and thus
working towards standardizing IoT security protocols.

WSN and IoT [13,14] stand as potent forces capable of spearheading a societal transfor-
mation towards a smarter, more connected world. Despite their distinctive characteristics,
they are occasionally utilized interchangeably owing to similarities in their processing
power, memory storage, and communication capabilities. Both networks hold remark-
able potential in real-time applications [15–17], yet they suffer from persistent security
challenges at the device level [18].

In this context, the adoption of lightweight, low-power security mechanisms is crucial,
aiming to enhance network longevity by minimizing power consumption during the
intrusion detection phase [19–21]. Traditional methods have endeavored to address security
concerns using minimal power consumption strategies, albeit with varying degrees of
success. As the IoT landscape expands, so does its vulnerability to external threats, making
the development of robust security infrastructure imperative.

Current classifiers have trouble differentiating normal and unusual system behaviors
because there are so many network traffic data, which have different features [22]. The
presence of irrelevant features and network communication disturbances further exacerbate
this challenge, leading to increased resource expenditure and diminished detection rates.
Therefore, the nuanced selection of features has emerged as a vital aspect of machine
learning designed to accurately encapsulate object properties while eliminating redundant
data [2].

Existing research has extensively explored the potential of feature selection and machine
learning algorithms in network security and traffic monitoring. Nevertheless, conventional
intrusion detection approaches exhibit significant limitations, including increased computation
time, reduced reliability, and heightened complexity. So, the goal of this study is to develop a
new Intrusion Detection System (IDS) framework to protect WSN-IoT networks as shown in
Figure 1. This was achieved by using new feature optimization and classification strategies to
improve accuracy and detection rates while cutting down on time [23].
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1.1. Research Contribution

The proposed Emphatic Farmland Fertility Integrated Deep Perceptron Network
(EFDPN) aims to bolster WSN-IoT network security through an innovative cyber-physical
system. This method involves a systematic workflow encompassing cyber-dataset col-
lection, preprocessing, and feature extraction, followed by implementing the Farmland
Fertility Feature Selection (F3S) technique and Deep Perceptron Network (DPN) classifi-
cation. In the final step, Tunicate Swarm Optimization (TSO) is employed to refine the
sigmoid transformation function, enhancing prediction accuracy in intrusion detection.
The major contributions of this work are as follows:

(1) An Emphatic Farmland Fertility Integrated Deep Perceptron Network (EFDPN)-based
cyber-physical system was developed for protecting WSN-IoT networks;

(2) By using the Farmland Fertility Feature Selection (F3S) algorithm, the processes of incursion
identification and classification are streamlined, with reduced computing complexity;

(3) A Deep Perceptron Network (DPN) classification technique was used to accurately
classify intrusion types, yielding great performance outcomes;

(4) A Tunicate Swarm Optimization (TSO) model was used to estimate the sigmoid
transformation function for better classification;

(5) Using well-known cyber-attack datasets, the results of the proposed EFDPN model
were validated and contrasted.

1.2. Paper Organization

The further portions of this paper are split into the following sections: Section 2 reviews
the literature relevant to cyber-security and intrusion detection in WSN-IoT networks, along
with their merits and demerits. Section 3 presents the overall explanation for the proposed
EFDPN model with system workflow and stage-wise descriptions. Section 4 validates
and contrasts the results of the proposed EFDPB-based security framework using several
performance measures. Section 5 provides a summary of the entire paper along with the
conclusions, results, and suggested next steps.

2. Related Works

This section investigates various intrusion detection approaches used to safeguard WSN-IoT
networks, wherein the positives and negatives of each model are discussed based on their performance.

Pundir et al. [24] investigated the different types of security challenges in WSN-IoT networks.
The different types of security requirements were also discussed in this study for protecting
WSN-IoT networks from intrusions. The following categories of potential threats could greatly
affect WSN-IoT networks: eavesdropping, impersonation attacks, DoS attacks, malware attacks,
database attacks, and man-in-the-middle attacks. Baraneetharan et al. [25] discussed the impacts
of using machine learning algorithms for intrusion detection in WSN-IoT systems. In this study,
classification, regression, and clustering-based machine learning algorithms were discussed with
regard to intrusion detection in WSN-IoT networks. Moreover, the suggested intrusion detection
approaches were compared based on the parameters of prediction accuracy, memory requirements,
network architecture, and energy consumption. Among other models, the hybrid IDS frameworks
are more suitable for WSN due to their improved energy efficiency and precise detection operation.
Jiang et al. [26] deployed a lightweight Gradient Boost Mechanism (GBM)-based cyber-physical
system for smart-networking environments. Amouri et al. [27] designed a cross-layered IDS-
framework-based linear regression model for increasing the security of WSN-IoT networks. The
authors aim to detect common malicious activities like blackholes, flooding, and DDoS within
networks [28]. The suggested model has the major drawbacks of an increased false-positive rate
and time consumption for attack detection.

Singh et al. [29] presented a comprehensive review to examine the different types of
machine-learning-based intrusion detection approaches. This paper covers a few well-
known and recently developed ML algorithms to highlight their strengths and weaknesses.
This will assist researchers in choosing the best algorithm for their studies. Damasevicius
et al. [30] utilized a new annotated dataset named LITNET-2020 for classifying normal and
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intrusive events pertaining to WSN-IoT systems. In addition, the authors suggested some
other cyber-attack datasets for IoT security. Safaldin et al. [31] implemented a binary gray-
wolf optimization algorithm incorporated with the standard SVM mechanism for detecting
intrusions in WSNs. When recommending a fitness function for assessing each subset of
the selected feature, the significance of accuracy and the overall number of features were
taken into account. According to the total number of features, the prediction performance of
the classifier was determined in the cited work. Here, the SVM uses a dimensionality-reduced
feature set for intrusion identification and classification. Some of the merits of using SVM
include better scalability, high process speed, and low complexity with a reduced feature set.

Krishnan et al. [32] introduced an anomalous intrusion detection and prevention
protocol for WSN-IoT networks. The authors aimed to increase the reliability of a network
and provide an expanded time frame for an organization. Jayanayudu et al. [33] utilized
hybrid Shuffled Frog Leap (SFL) and Ant Lion Optimization (ALO) algorithms to develop
an intrusion detection framework for protecting WSN-IoT systems. Typically, securing
data while improving energy efficiency is one of the most challenging network problems
in present times. Increased attention to security is necessary while monitoring IDS using
IoT-WSN systems. The authors of the suggested paper presented a safe routing intrusion
prevention architecture for IoT-WSN networks. Moreover, they concentrated on the en-
hancement of network efficiency and defense against fraudulent attacks. Here, the greedy
strategy was used for data routing, offering energy efficient solutions with security. Hussain
et al. [34] presented a comprehensive literature review examining various routing strategies
for low-powered IoT systems. Here, the assessment was carried out based on identification,
screening, eligibility, and inclusion. Moreover, their work investigated the strengths and
limitations of several security-based routing methodologies used in WSN-IoT networks. Al
Sawafi et al. [35] implemented a hybrid deep-learning-based intrusion detection framework
for WSN-IoT networks. In this paper, the authors intended to mitigate security attacks
by analyzing a network traffic dataset. According to the pre-trained features, the authors’
framework categorizes normal and malicious networking traffic in the network. Maheswari
and Karthika [36] constructed a multi-tiered intrusion detection (MDIT) framework for
safeguarding WSN-IoT networks. Here, the Spotted Hyena Optimization (SHO) algorithm,
integrated with the standard LSTM deep learning algorithm, was used to detect malicious
events in cyber-data. Table 1 summarizes the limitations of state-of-the-art systems.

Table 1. The table below provides a brief overview of the state of the art.

Reference Methodology Results Limitations

Pundir et al. [24] Investigated security challenges and
requirements in WSN-IoT networks.

Identification of potential threats like
eavesdropping, DoS, etc. Low performance in various models.

Baraneetharan et al. [25]
Explored machine learning algorithms
(classification, regression, clustering) for
intrusion detection.

Comparative analysis based on prediction
accuracy, energy, etc.

High false positive rate; increased time
consumption for attack detection.

Jiang et al. [26] Implemented a lightweight GBM-based
cyber-physical system. Enhanced smart-networking environment. Low performance in various models.

Amouri et al. [27] Cross-layered IDS framework using a
linear regression model.

Detection of malicious activities like
blackholes, DDoS, etc.

High false positive rate; increased time
consumption for attack detection.

Singh et al. [29]
Comprehensive review of
machine-learning-based intrusion
detection approaches.

Highlighted strengths and weaknesses of
various ML algorithms.

Low performance in various models;
insufficient memory use during classification.

Damasevicius et al. [30] Utilized LITNET-2020 dataset for classifying
events; suggested other datasets.

Identification of normal and intrusive
events in WSN-IoT systems. Inability to handle massive datasets.

Safaldin et al. [31]
Binary grey-wolf optimization with SVM
for intrusion detection, considering feature
set reduction.

SVM with reduced feature set achieved
efficient intrusion identification. High curse of dimensionality.

Krishnan et al. [32] Anomalous intrusion detection and
prevention protocol for WSN-IoT. Increased network reliability. Excessive memory use during classification.

Jayanayudu et al. [33]
Hybrid SFL and ALO algorithms for an
IDS framework; authors focused on energy
efficiency with a greedy routing strategy.

Enhanced network efficiency; defence
against fraudulent attacks. Low performance in various models.
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The following are some of the major drawbacks of the current approaches that were
identified in the literature review [37,38]:

• Low performance in various models;
• Excessive memory use during classification;
• High curse of dimensionality;
• Inability to handle massive datasets.

In order to create a highly effective cyber-physical system for WSN-IoT networks, in
the proposed work, we make use of innovative optimization and classification approaches.

3. Proposed Methodology

The proposed strategy describes how to build a cyber-physical system based on the
EFDPN in order to improve the security of WSN-IoT networks. Our intention in this
initiative is to adeptly identify security breaches in these networks by leveraging state-of-
the-art feature selection and classification algorithms. Commencing with the acquisition
of pertinent cyber datasets, the methodology transitions into a preprocessing and feature
extraction phase where data are refined and pivotal features are isolated to facilitate effective
intrusion detection. This is followed by the application of the Farmland Fertility Feature
Selection (F3S) technique, a pivotal process designed to alleviate computational complexity
by homing in on critical features. Subsequently, the Deep Perceptron Network (DPN) takes
the helm, functioning as a vital tool in the precise categorization of data points and thereby
playing an instrumental role in the meticulous identification of intrusions. This structured
approach culminates in the integration of the Tunicate Swarm Optimization (TSO) model,
fine-tuning the sigmoid transformation function in the classification phase to potentially
elevate prediction accuracy. Consequently, this holistic methodology envisages a fortified
security landscape for WSN-IoT networks, with a particular emphasis on enhancing the
accuracy and efficiency of intrusion detection systems.

In this section of the paper, a cyber-physical system based on Emphatic Farmland
Fertility Integrated Deep Perceptron Network (EFDPN) designed as a way of protecting
WSN-IoT networks is described in detail. The EFDPN is utilized to enhance security in
WSN-IoT environments by integrating advanced machine learning techniques, optimizing
computational efficiency, reducing false positives, and demonstrating readiness for real-
world applications. It offers accurate intrusion detection and quantitative performance
evaluations, making it a valuable asset in safeguarding interconnected cyber-physical
systems. With the aid of cutting-edge feature selection and classification algorithms, in
the proposed work, we created an efficient security framework for WSN-IoT systems. The
proposed EFDPN system’s workflow model is depicted in Figure 2, which consists of the
following operations:

• Cyber-dataset collection;
• Preprocessing and feature extraction;
• Farmland Fertility Feature Selection (F3S);
• Deep Perceptron Network (DPN) classification;
• Tunicate Swarm Optimization (TSO) for sigmoid transformation function estimation.

In the proposed EFDPN framework, the emerging public intrusion detection datasets
are acquired at the beginning. The next step is to conduct dataset normalization and
feature extraction in order to extract the appropriate features from the given dataset [32].
The recently introduced F3S algorithm is used to select the best features by lowering
dimensionality after the set of features has been extracted. This algorithm is designed to
produce accurate classification results with minimal time and computational overhead. By
using the features that are carefully chosen from the dataset, the DPN classifier can predict
malicious events. During this process, the TSO model is utilized to optimally compute the
sigmoid transfer function, which enhances the classifier’s performance in attack detection.
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3.1. Farmland Fertility Feature Selection (F3S)

In this stage, a number of features are selected from the original feature set with
the use of F3S algorithm. Feature selection or optimization is the most crucial operation
in the intrusion detection system since the classifier’s detection performance is highly
dependent on the features used for training and testing. A summary of earlier studies
on IDS reveals that the technique of integrating predictive classifiers plays a crucial role
in IDS. In contrast, the large set of data in this detection system decreases the precision
as well as speed of classifiers. Hence, meta-heuristic techniques are increasingly being
employed by researchers to minimize the features of data. In order to detect network
assaults, the hybridization of the classifiers and the subsequent choice of useful features are
essential. Here, a successful strategy for choosing the features based on F3S is introduced,
which substantially lowers the dimensionality of features with improved accuracy. In this
algorithm, the soil quality of each portion of the farm can vary from that of the others
because farmers typically split various parts of a farm into distinct soil types. The quality of
the soil in each segment can be changed by adding specific compounds. Therefore, farmers
apply specific materials that the soil requires in order to maximize the area of each segment
of the farm. Farmers alter each area of their farm in accordance with this model and by
monitoring each sector’s state of the soil. Then, they may determine the feasible ways of
enhancing each portion’s soil. After that, the most effective and essential materials are then
distributed to each sector in order to enhance the quality of the soil. The advantages of
the F3S algorithm are its low processing time, high convergence, and ability to reach the
best solution in the searching space with minimal iterations. Initially, the feature set Fs
is obtained as the input, and the estimated δf is delivered as the output of this algorithm.
After obtaining the original set of features, the number of solutions is estimated for each
portion of a farm, as shown below:

H = (β× y) (1)
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where β indicates a constant variable, and y is an integer number. After defining the initial
population, the quality of each portion of the farm is determined using the following model:

Qsection = Fs(α× d), α = y× (r− 1) : (y× r) r = {1, 2, . . . ,β}, k = {1, 2, . . . , 4} (2)

The average of each part is independently estimated using the aforementioned equa-
tion, where d with the interval [1, . . . , D] is determined using the variable Fs. Then, the
fitness of quality is estimated for each section as shown below:

fitsection = avg
(

objective
(

Fik
s

)
in sectionr

)
r = {1, 2, . . . ,β}, i = {1, 2, . . . , y} (3)

where objective(.) indicates the objective function, and avg(.) represents the average of the
solutions within each section of land. Consequently, local Lmem and global memory Gmem

updation are performed, and the best solution obtained from each portion is maintained in
the local memory as represented below:

Gmem = round(t×H); 0.1 < t < 1 (4)

Lmem = round(t× y); 0.1 < t < 1 (5)

Moreover, the soil quality of each portion is changed and determined using the solutions
of global memory in the farm’s worst section as represented in the following models:

ρ = τ× rand(−1, 1) (6)

Fnew
s = ρ×

[
Fik

s − FG
s

]
+ c (7)

where FG
s randomly selects one of the global memory solutions, and τ is a random number

between 0 and 1 that is initiated at the beginning of the algorithm. Furthermore, the
solutions based on both local and global memory are updated, providing the feasible
solutions in each portion, but they are not integrated with the local memory. However, some
of the solutions are integrated with the best solution for improving quality, as illustrated
below:

δf =

 Fnew
s = Fik

s +ϕ1 ×
[
Fid

s −Gbest
]

R > rand

Fnew
s = Fik

s + rand(0, 1)×
[
Fid

s −Gbest
]

else
(8)

where R indicates a random number ranging from o to 1 that represents the extent to
which the solutions are combined with best global, and ϕ1 is an integer determined at
the beginning of optimization. Finally, the optimized feature set δf is obtained as the
output of this algorithm, which is further used by the classifier for intrusion detection and
classification. The description of F3S technique is presented in Algorithm 1.

Algorithm 1: Farmland Fertility Feature Selection (F3S)

Input : Feature set Fs
Output : Selected Features δf
Step 1: → H for each section of land, as shown in Equation (1);
Step 2: → Initialize the populations, and determine the soil quality Qsec tion of each portion of the farm using Equation (2);
Step 3: → Compute the fitness of quality solution in each portion fitsec tion using Equation (3);
Step 4: → Perform local (Lmem ) and global (Gmem ) memory updation, where the best solutions in each portion are stored in
the local memory using Equations (4) and (5);
Step 5: → Change the quality of soil in each portion of the farm, which is determined with global memory solutions in the
farm’s worst section, as shown in Equations (6) and (7);
Step 6: → Update the solutions based on local memory and lobal memory Lbest, providing the feasible solutions in each
section.
Step 7: → Improve the quality of solutions, as depicted in Equation (8), for obtaining the optimized set of features δf.
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3.2. Deep Perceptron Network (DPN)

After choosing the features, the DPN classifier model is applied to classify the mali-
cious activities in a network according to their pertinent features. This is a deep learning
model developed based on the multilayer perceptron neural network. The structure of the
DPN is shown in Figure 3; it comprises more than three layers, including input and output
layers. In this model, the network is first constructed with the number of hidden layers,
and the output vector of the layer (i.e., feature map) is estimated, as shown in the following
model

Fl
m = f

(
ϑl
)
= f
(

Wl × Fl−1
m + biasl

)
(9)

where ϑl ∈ RNl
is the activation vector of the lth layer with Nl neurons, Wl ∈ RNl∗Nl−1

is
the weight matrix, and biasl ∈ RNl

represents the bias vector. Consequently, the sigmoid
transfer function is estimated, as shown in the following model:

f(ϑ) =
1

(1 + e−ϑ)
(10)
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Typically, the activation function must be properly selected according to the type of
prediction application. In the proposed framework, the activation function is optimally
computed using the TSO algorithm. The posterior probability of class j ∈

{
1, . . . , {

}
was

determined to be Pr(clsj
∣∣y) . Here, the softmax function is used to satisfy the posterior

probability function, as represented below:

FL
m = Pr

(
clsj |y

)
= softmax

(
ϑL
)
=

eϑ
L
j

∑{
k=1 eϑ

L
k

(11)

where ϑL
j is the element with jth index in the activation of vector ϑL. Moreover, the training

process is carried out with the optimized cost function, as represented in the following equation:

Q
(

Wl, biasl
)
=

1
S ∑S

a=1 QCE

(
Wl, biasl, ya, lf

)
+ β

∣∣∣Wl
∣∣∣2
F

(12)
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Finally, the predicted classified label can be produced, as shown in the following form:

QCE

(
Wl, biasl, ya

)
= −∑C

k=1 ya

[
Fl

m

]
(13)

clsf = QCE

(
Wl, biasl, lf

)
(14)

Based on this prediction operation, normal and attacking events are precisely classified
in the proposed framework. Moreover, the steps to develop DPN architecture is described
in Algorithm 2.

Algorithm 2: Deep Perceptron Network (DPN)

Input : Selected Features δf, Label data lf;
Output : Classified output clsf;
Procedure:
Step 1 : Compute the feature map Fm using Equation (9);
Step 2: → Estimate the Sigmoid transformation as an activation function f(ϑ), as shown in Equation (10);//Tunicate Swarm
Optimization;
Step 3: Compute the posterior probability of class,
j ∈

{
1, . . . , {

}
as Pr(clsj

∣∣y) ;
Step 4: → The softmax function is used to satisfy the posterior probability normalization requirement FL

m as shown in
Equation (11);
Step 5: → The training process is carried out with the optimized cost function as represented in Equation (12);
Step 6: → The classified output is predicted as shown in the form of Equations (13) and (14);

3.3. Tunicate Swarm Optimization (TSO)

During classification, the sigmoid transfer function is optimally computed by using the
TSO algorithm, which helps to improve the intrusion detection rate of the classifier. In general,
tunicates produce a bright, pale, blue-green bioluminescent light that can be seen from a few
meters away. When they reach a size of a few millimeters, these cylindrical creatures have to
crack at one of their ends. Each tunicate is made up of a developing gelatinous tunic that helps
to bind all the organisms together. These tunicates can grow up to a few millimeters in length
and only have an opening at one of their ends. Every tunicate develops a gelatinous tunic that
aids in the unification of all the individuals. By drawing water from the sea surrounding them,
each tunicate uses an atrial syphon to produce jet propulsions from its aperture. A tunicate
needs to meet three requirements in order to satisfy the operations of jet propulsion using the
statistical model: they need to avoid collisions between possible solutions, to move further in
the direction of the best solution, and to stay close to the best solution. In this technique, the
feature map result Fm is obtained as the input, and the optimal value

→
ϕr is produced as the

output. In the beginning, the parameters such as the constant (F̆), gravity force (Ğ), water flow
advection in the deep ocean (w̆f), social force M̆I, and the maximum number of iterations are
initialized as shown below:

F̆ =
Ğ

M̆I
(15)

Ğ = r2 + r3 − w̆f (16)

w̆f = 2× r1 (17)

M̆I = [ρmn + r1 × ρmx − ρmn] (18)

where r1, r2, and r3 are random numbers in the range [0, 1], and ρmn and ρmx are considered
to equal 1 and 4, respectively. After successfully avoiding a dispute with their neighbors,
the search agents move towards the best neighbors, as represented below:

d = |Fm − rand× →ϕr(x)| (19)
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where d is the total distance between the search agent and food source, rand is a random
number in the range [0, 1], x indicates the current iteration, Fm indicates the position of the
food source, and

→
ϕr is the position of the tunicates. The search agent may establish itself as

the top search agent, as represented below:

→
ϕr(x) =

{
Fm + F̆ × d , if rand ≥ 0.5
Fm − F̆ × d , if rand ≥ 0.5

(20)

Moreover, the position of all tunicates can be updated according to the position of the
first two tunicates, as shown in the following model:

→
ϕr(x + 1) =

→
ϕr(x) +

→
ϕr(x + 1)

2 + r1
(21)

where
→
ϕr(x + 1) represents the updated position of the tunicates. Overall steps of TSO

technique is described in Algorithm 3.

Algorithm 3: Tunicate Swarm Algorithm (TSO)

Input : Feature map result Fm;
Output: Optimal Value

→
ϕr;

Procedure:
Step 1 : The parameters F̆ (constant), gravity force (Ğ), water flow advection in the deep ocean (w̆f ), social force M̆I, and
the maximum number of iterations are initialized as represented in Equation (15) to (18);
Step 2: → After successfully avoiding a dispute with their neighbors, the search agents are directed towards the best
neighbors, as shown in Equation (19);
Step 3: → The search agent can even establish its position as the leading search agent

→
ϕr(x), as shown in Equation (20);

Step 4: → Update the position of all tunicates in accordance with the position of first two tunicates
→
ϕr(x + 1) using

Equation (21);
Step 5: → Obtain the optimal value

→
ϕr as the output;

4. Experimental Results
4.1. Experimental Setup

The effectiveness of the EEDPN was experimentally assessed, as shown in this section.
This section contains detailed descriptions of the evaluation dataset, the experimental
settings, and the experimental methods, as well as comparisons to traditional approaches,
imbalanced data-processing algorithms, and cutting-edge intrusion detection techniques.
To ensure efficient data handling and model training, hardware with the following speci-
fications was used. An Intel Core i7 8th Gen processor (or higher) with a clock speed of
at least 3.5 GHz was used. An NVIDIA GeForce RTX 2080 Ti GPU with 11 GB of GDDR6
VRAM was used due to its excellent deep-learning performance. The system has 16 GB
of DDR4 RAM (2400 MHz) and a high-speed SSD with a 500 GB storage capacity for
storing datasets, code, and model checkpoints. To support the specified hardware tools,
the following software was used. The system operates on Windows 10 (64-bit). Keras
2.13 with TensorFlow as a backend for deep learning model development and MATLAB
R2023b with the Statistics and Machine Learning Toolbox for machine learning algorithms
were installed. Python 3.7 was used for data preprocessing and analysis. NumPy (v1.18.5)
was used for numerical computations, pandas (v1.0.5) was used for data manipulation,
scikit-learn (v0.23.1) was used for machine learning tasks, Matplotlib (v3.2.2) was used for
data visualization, and Jupyter Notebook (v6.0.3) was used as the integrated development
environment (IDE) for coding and experimentation.

At this stage, emerging benchmarking datasets like UNSW-NB 15 (intrusion dataset
IS-1) and NSL-KDD (intrusion dataset IS-2) were taken into consideration for testing and
validating this system. The Australian Centre for Cyber Security (ACCS) produced the
UNSW-NB15 dataset in 2015. It comprises a wide range of deep-structure network commu-
nication data as well as minimal incursion information. As a result, it is better suited to
imitating the complicated modern network environment. It depicts the modern network
traffic mode. It has one unique attack category designation and 47 attributes. There are
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2,540,044 samples in the collection, representing nine different attack methods, includ-
ing fuzzers, DoS, analysis, reconnaissance, exploitation, shellcode, worm, backdoor, and
generic. The NSL-KDD and UNSW-NB15 datasets, which exhibit high feature dimensions
along with substantial data volume, are typical examples of high-dimensional imbalanced
datasets. The majority of the data contained in them are typical network data, with only a
trace quantity of attack data. Lower detection accuracy and longer training and detection
times are precipitated by duplicated features and unbalanced data. The test set encom-
passes unidentified attacks, which puts the capacity for generalization under greater strain.
Descriptions of the datasets are given in Table 2.

Table 2. Dataset details.

Attacking Classes No of Samples

IS-1
Normal 77,054
DoS 53,385
Probe 14,077
R2L 3749
U2R 252
UNSW-NB 15
Normal 2,218,761
Generic 215,481
Exploits 44,525
Fuzzers 24,246
DoS 16,353
Reconnaissance 13,987
Analysis 2677
Backdoor 2329
Shellcode 1511
Worms 174

The NSL-KDD Dataset requires approximately 2 GB of storage space, while the UNSW-
NB15 Dataset, being larger, requires around 4 GB of storage space. During deep-learning
model training, the GPU memory usage ranges from 6 GB to 10 GB. This is to accommodate
the model’s architecture and batch size. The NVIDIA GeForce RTX 2080 Ti provides
ample memory for efficient training. The bulk of CPU usage primarily occurs during
data preprocessing, where multiple CPU cores are used for parallel data processing. The
extent of CPU utilization varies but typically stays below 50%. RAM usage during model
training depends on the batch size and model complexity. With a batch size of 32–64, the
RAM usage remains within the available 16 GB, ensuring smooth model training. The
training time for the EFDPN model using the specified hardware ranges from several
hours to a day. This is related to the dataset’s size, model complexity, and the number of
training epochs. Adequate storage space (500 GB) is available for storing datasets, code,
model checkpoints, and experiment results. Multiple experiments were conducted to assess
the impact of hyperparameters and configurations. Computational overhead is incurred
for each experiment. Data preprocessing, including cleaning, normalization, and feature
engineering, primarily utilizes CPU resources and requires a few hours for completion,
depending on the dataset’s size.

4.2. Performance Metrics

The standard parameters such as accuracy, precision, recall, f1-score, and training time
were computed in this study in order to validate the proposed EFDPN model. These pa-
rameters determine the overall performance of the security framework, which is estimated
using the following models:

Accuracy =
T+ve + T−ve

T+ve + T−ve + F+ve + F−ve
(22)
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Precision =
T+ve

T+ve + F+ve
(23)

Recall or TPR =
T+ve

T+ve + F+ve
(24)

F1− score = 2×
(

Precision× Recall
Precision + Recall

)
(25)

FPR =
F+ve

F+ve + T−ve
(26)

FNR =
F−ve

T+ve + F−ve
(27)

where T+ve indicates a true positive, T−ve represents a true negative, F+ve is a false positive,
and F−ve is a false negative. Figure 4 evaluates the performance of the proposed EFDPN
model using IS-1 with and without the F3S mechanism.
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4.3. Results Analysis

This section validates the performance and results of the proposed EFDPN cyber-
physical system using a variety of measures and public datasets. The sample network
environment created in this analysis is shown in Figure 5, where the green-colored nodes
are considered normal, and other colors indicate the different types of intrusions. By using
the combination of F3S + DPN + TSO models, intrusions can be accurately predicted in the
proposed framework. For the testing and validation of this system, emerging benchmarking
datasets such as UNSW-NB 15 (Intrusion dataset IS-1) and NSL-KDD (Intrusion dataset
IS-2) were considered.
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Similarly, the results were estimated for IS-2, as shown in Figure 6. This analysis
was mainly carried out to determine the importance of using the F3S mechanism in the
intrusion detection approach. The results reveal that performance was greatly improved
with the use of the F3S algorithm for both datasets. As the increased dimensionality of
features may affect the performance of a classifier with low accuracy, it is essential to
squeeze the feature dimensionality for improved detection results. Figures 7–10 show the
results of the validation and comparison of the accuracy, precision, recall, and f1-score
parameters for both conventional [39] and the proposed intrusion detection approaches
with respect to the different types of attacks. These results include the following attack
categories: normal attack, brute force attack, botnet attack, and web attack. A subset of
the model’s performance was used to evaluate the accuracy of the algorithm. One of the
metrics used to evaluate the classification models was accuracy, as computed in Equation
(22). Precision implies a high rate of accurate estimation. It is a percentage of all genuine
positives that the model claims are connected with all positives that the model expects, and
it is estimated using Equation (23). Recall is also referred to as the true positive rate (as
computed in Equation (24)), which compares the total positives in all the system states to
the actual total of positives in the data. Additionally, model performance can be estimated
using the F1 score, which is the weighted average of precision and recall, as computed in
Equation (25). The obtained results reveal that the proposed EFDPN-based security model
provides an effective attack detection result when compared to the other techniques. Due
to the inclusion of the TSO and F3O algorithms, the security performance results are greatly
enhanced in the proposed cyber-physical system.
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Figure 10. Comparative analysis with other IDS approaches for web attacks.

Figure 11 validates the F1-score values of all the existing intrusion detection approaches in
accordance with the different types of attacks. The estimated results indicate that the proposed
EFDPN model triumphs over the conventional DBN-, SVM-, RNN-, SNN-, and FNN-based
intrusion detection approaches, presenting an increased F1-score value. The F3S algorithm plays
a vital role in obtaining better prediction results in the proposed framework since it eliminates
irrelevant features in order to improve the prediction process of the classifier.
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Figures 12 and 13 show the results of the validation and comparison of the existing [40]
and proposed security methodologies performed using the IS-1 dataset. The obtained re-
sults also indicate that the proposed EFDPN model outperforms the other models, yielding
high performance results. The deployed cyber-physical system represents a more ad-
vanced and intelligent approach to intrusion detection, integrating cutting-edge techniques
and optimizing the classification process. It offers improved adaptability, efficiency, and
performance compared to traditional IDSs.
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Figure 14 compares the conventional PSO-based classification [41] and the proposed
EFDPN models using the IS-1 dataset. In order to demonstrate the effectiveness of optimiza-
tion in the security framework, the optimization-integrated classifier models are compared
in this study. For this assessment, standard machine learning algorithms, including RF,
DT, KNN, and RC, are considered, which predict intrusions in the dataset according to the
features chosen via PSO. In contrast to these algorithms, the proposed EFDPN algorithm
yields improved detection results. Since the F3S technique provides the best solution
with an increased convergence rate, it effectively reduces the dimensionality of features
before the training and testing processes. Therefore, the proposed F3S incorporated with
the DPN model greatly outperforms the other classification approaches. A comparative
analysis based on the classifier’s training time was performed, as shown in Figure 15.
A good classification model should minimize the training time and offer an increased
attack detection rate. Typically, the classifier’s training time can be increased with the
use of high-dimensionality features, which also increases the computational complexity
of classification. Therefore, the input feature set used for the classifier’s training must be
optimized for better predictions. According to the results, the proposed EFDPN model
could effectively reduce the training time with the use of the F3S algorithm.
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Figure 16 compares the accuracy of various machine learning and deep learning tech-
niques [42] used for intrusion detection. In addition, the classifier’s detection accuracy is
estimated and compared for both IS-1 and IS-2, as shown in Figures 17 and 18, respectively.
In addition, a qualitative security analysis [31] was also performed in this study, as shown
in Table 3, based on the following parameters: false acceptance rate, accuracy, detection rate,
number of features, and time consumption. Overall, the estimated results demonstrate that the
proposed EFDPN cyber-physical system provides effective prediction results when compared
with the existing algorithms due to the inclusion of the F3S and TSO algorithms. This is
because effective dimensionality reduction was achieved with the use of the F3S technique
and the classifier sigmoid function was computed with the use of the TSO algorithm.
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Table 3. Security analysis.

Methods FAR Accuracy DR No of
Features Time

Multi-agent IDS L L VH NA NA
ARIMA-IDS L L VH NA H
Lightweight IDS VL H VH NA NA
Sensor IDS L H VH NA NA
PSO-IDS H H L VH NA
Evolutionary
NN—MO IDS VH VH VH L NA

GWO-SVM VL H H VL VL
Proposed VL VH VH VL VL

L—Low, VH—Very High, NA—Not applicable, H—High, and VL—Very Low.

5. Discussion

In this study, we embarked on a rigorous exploration of potential enhancements in
intrusion detection mechanisms within the framework of WSN-IoT networks through the
development and evaluation of an Emphatic Farmland Fertility Integrated Deep Perceptron
Network (EFDPN)-based cyber-physical system. Our investigative journey was grounded in
a substantial body of previous studies, which mapped out the present landscape of intrusion
detection systems, along with their respective merits and challenges ([24,25,29,30,35–38]). The
proposed EFDPN model represents a significant stride towards the fortification of WSN-IoT
networks, primarily anchored by its innovative Farmland Fertility Feature Selection (F3S)
mechanism and a potent classification stage leveraging a Deep Perceptron Network (DPN)
followed by fine-tuning with Tunicate Swarm Optimization (TSO) for sigmoid transformation
function estimation. This innovative concoction of methodologies not only hones the accuracy
of intrusion detection but also astutely manages feature dimensionality, thereby mitigating
computational complexity and enhancing the efficiency of the system.

When juxtaposed against existing models documented in previous studies, such as
DBN-, SVM-, RNN-, SNN-, and FNN-based approaches, our model exhibits a significant
escalation in performance metrics such as accuracy, precision, recall, and F1-score, as
evidenced by the results derived from utilizing the benchmark datasets UNSW-NB 15
and NSL-KDD ([39–42]). Notably, the implementation of the F3S algorithm resulted in
being a crucial factor in boosting the predictive efficacy of the classifier via allowing for
the meticulous filtering of irrelevant features, thereby facilitating an improved prediction
process and a commendable reduction in training time. However, it is imperative to
acknowledge potential limitations that might encumber the proposed framework. Future
studies might focus on further optimizing the computational efficiency of the EFDPN
model alongside exploring its applicability and performance across diverse, more complex
network environments. Additionally, a deeper dive into addressing potential vulnerabilities
to newer, sophisticated attack vectors would be a prudent avenue to tread.

While the results are promising, we recognize the need for continuous evolution in
optimizing computational efficiency and in tailoring the framework to counter newer,
sophisticated attack vectors. Future research trajectories should also explore the scalability
of the EFDPN in real-time environments with diverse infrastructures to fully realize its
robustness and adaptability.

Furthermore, the scalability of the proposed model should be tested in real-time
scenarios, spanning across diverse infrastructures and varying scales, to rigorously assess its
robustness and adaptability. Parallelly, fostering collaborations with industry stakeholders
could foster the refinement of the model to meet specific, real-world requirements and
standards. In conclusion, our study stands as a testament to the viable advancements in
securing WSN-IoT networks through intelligent, data-driven mechanisms. The EFDPN
model, with its innovative blend of feature selection and classification methodologies,
marks a promising precedent in the realm of cyber-physical systems security. As we venture
forth, it holds immense potential to spearhead a new generation of resilient, efficient, and
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intelligent intrusion detection systems, fostering a safer and more secure cyber-physical
landscape.

5.1. Advantages of EFDPN Model

Our study offers a novel strategy for protecting WSN-IoT networks using clever, data-
driven approaches. The EFDPN model, with its novel convergence of feature selection
and classification strategies, heralds a promising frontier in the security of cyber-physical
systems, promising a robust, effective, and intelligent infrastructure capable of fending off
the constantly evolving cyberthreats and fostering a safer and more secure cyber-physical
landscape. The following are the primary advantages of the proposed system:

(1) The model can precisely identify different types of incursions by combining F3S and
DPN, reducing false positives;

(2) The F3S method makes it easier to extract pertinent information, improving the
model’s capacity to pinpoint threats with greater accuracy while requiring less com-
putational effort;

(3) By including tunicate swarm optimization (TSO), the sigmoid transformation function
can be adjusted, improving the model’s ability to detect intrusions;

(4) Thanks to better feature selection and decreased dimensionality, the EFDPN model
efficiently decreases training time, boosting efficiency without compromising the
detection rate;

(5) The architecture of the EFDPN model allows for scalable deployment, making it
adaptable to various network sizes and complexities;

(6) The model is capable of identifying and mitigating a wide range of attack categories,
including brute force, botnet, and web attacks, thereby providing a robust defense
mechanism;

(7) The model’s compatibility with established benchmark datasets (UNSW-NB 15 and
NSL-KDD) showcases its readiness for real-world applications and further testing;

(8) Given its feature set and capabilities, the EFDPN model has substantial potential
for implementation in real-time environments, offering a timely response to security
breaches;

(9) The model is designed to minimize the usage of resources, such as memory, through
intelligent design choices in the classification and feature selection phases, which
contribute to overall system efficiency.

5.2. Future Works

The proposed EFDPN model heralds a promising frontier in the security landscape of
WSN-IoT networks. In the future, the following trajectories can be pursued to further its potential:

(1) Conduct pilot studies to assess the model’s adaptability and performance in real-time
environments, with a focus on scaling the model to accommodate larger and more
complex network infrastructures;

(2) Further refine the F3S and TSO algorithms to enhance computational efficiency and
accuracy, possibly integrating it with other optimization techniques to forge a more
robust system;

(3) Continually update and adapt the model to identify and counteract emerging and
sophisticated attack vectors, fostering a dynamic security framework that evolves
with the threat landscape;

(4) Develop multi-layered security protocols within the EFDPN framework, which can
work in synergy with existing security infrastructures, to provide a comprehensive
security solution;

(5) Explore the potential applications of the EFDPN model in other domains, such as
industrial control systems and healthcare networks, tailoring the model to meet the
unique security requirements of these sectors;

(6) Engage with the user and broader community to gather feedback and insights, foster-
ing a collaborative approach to further refine and enhance the model;
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(7) Develop educational initiatives and training programs to foster awareness and skill
development, equipping individuals and organizations with the tools to effectively
deploy and manage EFDPN-based security systems.

By pursuing these trajectories, we envision the EFDPN model evolving into a corner-
stone of cybersecurity in WSN-IoT networks, setting a new standard in resilience, efficiency,
and intelligence in the face of escalating cyber threats.

6. Conclusions

This paper introduces novel EFDPN-based cyber-physical systems designed to in-
crease the security of WSN-IoT systems. In this study, the combination of F3S, DPN, and
TSO mechanisms was implemented to construct a computationally effective and accurate
intrusion detection framework. The emerging public intrusion detection datasets IS-1 and
IS-2 were obtained first for processing. To extract the necessary features from the given
dataset, dataset normalization and feature extraction processes were carried out. After
the set of features was retrieved, the new F3S algorithm was utilized to choose the best
features by reducing dimensionality. The objective of this technique is to generate precise
categorization results with little computational overhead. The DPN classifier can then
forecast malicious occurrences using the attributes that were carefully selected from the
dataset. In this instance, the sigmoid transfer function is optimally computed using the
TSO model, which improves the classifier’s effectiveness in attack detection. Moreover,
standard performance measures such as accuracy, precision, recall, f1-score, and training
time were estimated and compared during evaluation to demonstrate the effectiveness of
the EFDPN model. Then, recent state-of-the-art models were compared with the EFDPN
mechanism using IS-1 and IS-2. Overall, the obtained results reveal that the EFDPN model
provides improved prediction performance over other algorithms following the inclusion
of F3S and TSO algorithms. In the future, the current security framework will be enhanced
to protect IoMT or IoHT from network intrusions with low complexity.
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