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Abstract: Smartwatches equipped with automatic atrial fibrillation (AF) detection through electrocar-
diogram (ECG) recording are increasingly prevalent. We have recently reported the limitations of the
Apple Watch (AW) in correctly diagnosing AF. In this study, we aim to apply a data science approach
to a large dataset of smartwatch ECGs in order to deliver an improved algorithm. We included
723 patients (579 patients for algorithm development and 144 patients for validation) who underwent
ECG recording with an AW and a 12-lead ECG (21% had AF and 24% had no ECG abnormalities).
Similar to the existing algorithm, we first screened for AF by detecting irregularities in ventricular
intervals. However, as opposed to the existing algorithm, we included all ECGs (not applying quality
or heart rate exclusion criteria) but we excluded ECGs in which we identified regular patterns within
the irregular rhythms by screening for interval clusters. This “irregularly irregular” approach resulted
in a significant improvement in accuracy compared to the existing AW algorithm (sensitivity of 90%
versus 83%, specificity of 92% versus 79%, p < 0.01). Identifying regularity within irregular rhythms
is an accurate yet inclusive method to detect AF using a smartwatch ECG.

Keywords: atrial fibrillation; Apple Watch; algorithm; electrocardiography; mobile health; wearables;
irregularity; regularity; smartwatch

1. Introduction

One of the most common cardiac arrhythmias is atrial fibrillation (AF), which results in
a completely irregular ventricular rhythm on the electrocardiogram (ECG), due to complete
loss of organized atrial contractility with signals being redirected intermittently to the
ventricles [1,2]. By definition, AF is an irregular rhythm without any pattern of regularity,
while most other irregular rhythms express regular patterns among the irregularities [3]. AF
may be asymptomatic, but many patients experience palpitations, fatigue, lightheadedness,
or even syncope [2]. The absence of symptoms leads to a late diagnosis of the arrhythmia
with a higher risk of clinical complications [4]. AF increases the risk of stroke and heart
failure and, therefore, it is imperative to diagnose the arrhythmia in a timely manner [5].
This is why wearables with AF screening capabilities are gaining in popularity [6]. Apple
Inc. was the first to obtain FDA approval for the automatic detection of AF on the ECG of a
smartwatch [7]. The growing number of consumers with smartwatches that can self-record
and auto-diagnose AF is associated with a growing number of diagnoses in the early stages
of the disease. Early treatment is more effective in AF, reducing the risk of stroke and heart
failure [3].

Nevertheless, the automatic diagnosis of AF in today’s smartwatches is far from per-
fect. Only a specific range of heart rates is allowed for the classification of AF, varying from
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50 to 120 or 150 beats per minute [8]. In addition, the Apple Watch (AW) diagnosis is often
inconclusive, which may delay the diagnosis significantly [9,10]. It is also possible to obtain
a poor reading notification, which arises due to electrode contact issues or movement,
etc. In an early study, we reported that when inconclusive results are considered false
results, there are important decreases in sensitivity (87% vs. 99%) and specificity (86%
vs. 93%) [9]. While in this study, only AF and sinus rhythm were compared, other ECG
abnormalities should also be taken into account for the validation of the AW classifica-
tion. More recently, we confirmed the importance of coexisting ECG abnormalities with
associated decreases in sensitivity (69%) and specificity (81%) [10]. It Is not surprising that
coexisting ECG abnormalities have an important negative impact on accuracy as other
arrhythmias (e.g., premature contractions) may also result in an irregular rhythm, lead-
ing to false positives. Also, AF is increasingly prevalent with age and the Apple Heart
Study contained mostly young and healthy patients [6]. The issue of overdiagnosis can
arise when smartwatch ECGs exhibit low sensitivity and specificity in detecting AF. This
scenario may result in false negatives and false positives, leading to the misclassification of
individuals [11].

Therefore, automatic detection of AF through lead I smartwatch ECGs seems to be
promising but could still use some improvements [12]. Our study aims to develop an
improved automatic AF detection algorithm for patients with or without coexisting ECG
abnormalities. We propose an inclusive two-step approach; first identifying any irregular
rhythm and then excluding ECGs which show patterns of regularity [13]. This approach
aims to be more inclusive (no rejection of low/high heart rates or less quality tracings) and
aims to reduce the number of false positives.

2. Material and Methods
2.1. Patient Population

The dataset contained ECGs of 723 patients hospitalized in the Cardiology department;
21% had AF and 24% had an ECG without any abnormality [10]. At rest conditions,
participants underwent a standard 12-lead electrocardiogram, followed by a smartwatch
ECG recording using the Apple Watch Series 5 (Apple Inc., Cupertino, CA, USA). The
first completed smartwatch ECG tracing was used. The 12-lead ECG diagnosis, as it was
interpreted by an expert electrophysiologist, was used as the gold standard for the diagnosis
of the concomitant smartwatch ECG, also confirmed by an expert electrophysiologist. Our
institutional review board authorized the research, and the participants gave written
informed consent.

2.2. Data Arrangement

Digital ECG signals were extracted from the PDF files received from the AW after
recording. The PDF files were transformed into SVG files in Python® (version 3.9.18) and
digitalization was performed using a vector detection approach, based on the red RGB
code of the signal on the PDF of the AW ECG [14]. The ECGs were then imported into
MATLAB® (version 9.12.0.1927505) together with the expert 12-lead ECG diagnoses and
automatic AW diagnosis.

2.3. R Peak Detection

The first step was the detection of the R waves. The detection of the R peaks was
performed in a multi-step approach, where the R peaks were enhanced by the Maximal
Overlap Discrete Wavelet Transform (MODWT) from the Wavelet Toolbox from MATLAB®

(version 9.12.0.1927505) and the find peaks function from the Signal Processing Toolbox
from MATLAB® (version 9.12.0.1927505) was used in three steps to detect the R peaks [15].
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2.4. Irregularity

The exact mechanisms of the AW algorithm for the detection of AF are unknown, but
it is presumably based on the irregularity of ventricular complexes [8]. In our approach,
we also used this feature as the first step of the novel algorithm [13].

Two methods were used to check for irregularity. The first method summed every
RR interval that is equal to the median of the RR intervals of the ECG with a range of
15 milliseconds, this is then divided by the heart rate (Equation (1)). The second method
used is a Singular Value Decomposition (SVD) that is performed on the Lorenz plot of
the RR intervals. The singular values are the values that give the lengths of the two main
directions of the Lorenz plot. These singular values were divided by each other, and this
gave a ratio in singular values (Equation (2)). A combination of both features was used for
AF detection and thresholds were found by creating a Receiver Operating Characteristic
(ROC) curve, which was generated with the different combinations of threshold values for
both features. A calculation of the distance from the perfect point (0, 1) on the ROC curve
was performed to obtain the best threshold values [16].

f or RR = median(RR)± 15 ms : count RR =
sum(RR)
heart rate

(1)

SVD ratio =
singular value 1
singular value 2

(2)

2.5. Finding Regularity in Irregularity

When observing Lorenz plots of irregular ECGs that are not AF, patterns of regularity
may be identified. In the case of premature complexes, three types of RR intervals can be
appreciated: the interval between normal beats, the short interval following the normal
beat until the premature complex, and the long interval between the premature complex
and the following normal beat. By comparing the Lorenz plot of a patient with AF with a
patient with premature atrial complexes (PACs) (Figure 1), clusters of points can easily be
identified in the latter patient, which signify the three types of RR intervals. Both ECGs
showed an irregular rhythm according to the irregularity feature.
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Figure 1. The Lorenz plot of a patient with AF (a) and a patient with PACs (b). The diagonal line
shows the line along which the perfectly regular intervals would be.

We used the k-means clustering function from the Statistics and Machine Learning
Toolbox from MATLAB® (version 9.12.0.1927505) to quantify the observed clustering [17].
This clustering method was chosen due to its computational efficiency, ease of implemen-
tation, and suitability for the dataset’s characteristics. It is also clear and straightforward,
ideal for this research where simplicity and clearness are valued over unnecessary com-
plexity. In addition, this function is robust to noise, as clusters are found in a certain radius
from a centre point and it is very useful in well-divided clusters, as is the case in this
research. K-means clustering is able to implement distance and width conditions for the
clusters. These two conditions were included to prevent the accidental detection of clusters
in an irregularly irregular signal (Equation (3)). The number of clusters found signifies the
presence or absence of other irregular ECG anomalies.

f or distance > 0.4
f or cluster width ≤ 0.5

}
[idx, C] = kmeans(2D list RR, k)
cluster count = sum(idx)

(3)

2.6. Validation

A systematic approach was used to find the optimal threshold values by exploring
various combinations of the features and selecting the combination that minimizes the
Euclidean distance from the ideal point (0, 1) on the ROC curve [16]. These threshold values
were then used for the test set. Sensitivity, specificity, PPV, NPV, F2 score, and accuracy will
show the validity of the algorithm based on the test set. The F2 score is based on the idea
that sensitivity should be given more weight than PPV [18].

The diagnostic accuracy of the new algorithm was then compared with the diagnostic
accuracy of the existing AF detection algorithm of the AW [10]. Inconclusive results were
considered as false results [9,10].

The McNemar test was used to identify if there is a significant difference between
the proposed algorithm and the existing AW algorithm [19]. The null hypothesis was that
the created algorithm and the AW algorithm had the same detection validation of AF. The
alternative hypothesis was that a significant difference was found between the two tested
algorithms. This was tested through the χ2-test on the discordant values of the two tests
with 1 degree of freedom. If a p-value lower than 0.01 was found by performing this test,
the null hypothesis was rejected and a significant difference between the two algorithms
was proven.
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3. Results
3.1. Baseline Characteristics

Table 1 summarizes the baseline patient characteristics. The study’s 723 participants
underwent simultaneous standard 12-lead and AW recordings [10]. In total, 173 (24%) of
the subjects were without known cardiac disease and 154 (21%) had been diagnosed with
AF. There were no mismatches (presence or absence of AF) between the expert diagnosis of
the 12-lead ECG and the Apple Watch ECG in any of the patients. The automatic diagnosis
of the AW declared 137 ECGs (19%) as AF and 142 ECGs (19%) as inconclusive. Examples
of the Apple Watch (AW) ECG, one without ECG abnormalities and one from an AF patient,
can be seen in Figure 2, respectively.

Table 1. Baseline patient characteristics.

Variable Disease/Diagnosis AW n (%)

Cardiac Disease No disease 173 (24%)
Atrial Fibrillation 154 (21%)

Atrial Flutter/Atrial Tachycardia 33
Ventricular Tachycardia 3
Junctional Tachycardia 5
Ventricular Extrasystole 54

Atrial Extrasystole 21
First-degree AV-block 77

Second/third-degree AV-block 21
Sick Sinus Syndrome/Sinus Bradycardia 65

Pacemaker 26
CRT 13

Right Bundle Branch Block 54
Left Bundle Branch Block 47

Intermittent Bundle Branch Block 13
Left Anterior Hemiblock 23

Right Heart Axis 13
Wolff-Parkinson-White Syndrome 26

Brugada Syndrome 13
Arrhythmogenic Right Ventricular Cardiomyopathy 20

Hypertrophic Cardiomyopathy 10
Long QT Syndrome 8

Q wave 20
ST elevation/depression 54

Negative T 59

AW diagnosis Sinus Rhythm 455 (62%)
Atrial Fibrillation 137 (19%)

Inconclusive 142 (19%)
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Figure 2. Example of the Apple Watch ECG without abnormalities (a) and from an AF patient (b) [10].

3.2. Irregularity

For the first tested irregularity feature, where RR intervals within a range of 15 ms
were divided by the heart rate (count RR), the median of the ECGs without anomalies was
0.269. For AF ECGs, the count RR median was 0.059. For atrial extrasystoles, this was 0.188,
and for ventricular extrasystoles, 0.154. These and values of other irregular arrhythmias
can be found in Table 2 (a).
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Table 2. The medians for the two tried irregularity features for different ECG abnormalities. The
first one (a), called count RR, where the number of regular RR intervals with a range of 15 ms are
considered and then divided by the heart rate. The second one (b), called the SVD ratio, is the ratio
between the two singular values of the Lorenz plot of RR intervals.

Disease (n) Count RR (a)
Median

SVD Ratio (b)
Median

Atrial Fibrillation (29) 0.059 7.45
AV block type 1 (12) 0.229 44.30
AV block type 2–3 (4) 0.267 48.42
No abnormalities (35) 0.269 64.41
Premature Atrial Contractions (5) 0.188 7.36
Premature Ventricular Contractions (8) 0.154 15.80
Sick Sinus Syndrome (12) 0.253 53.51

The second method attempted was the Singular Value Decomposition, which eval-
uated the ratio between the two singular values of the Lorenz plot of RR intervals (SVD
ratio). A regular ECG should give us a higher ratio than an irregular ECG. The median of
the ECGs without anomalies was 64.41. For AF ECGs, this was 7.45. For atrial extrasystoles,
this is 7.36, and for ventricular extrasystoles, 15.80. These and values of other irregular
arrhythmias can be found in Table 2 (b).

The optimal threshold values for the combined use of the SVD ratio was ≤ 13.31 and
for the count RR ≤ 0.146 for AF detection, these were found by creating a ROC curve of the
combinations of both thresholds and finding the closest point to the perfect point (0, 1). By
calculating the validation values of the test set using these threshold values that both need
to hold true, a sensitivity of 89.66% is found, a specificity of 86.96%, a PPV of 63.41%, an
NPV of 97.09%, an F2-score of 82.80%, and the accuracy is 87.50%.

3.3. Finding Regularity in Irregularity

After classifying irregularity, irregular ECGs were analyzed for the presence of clus-
tering in the Lorenz plot. As can be seen from Table 2, most AV blocks were already
diagnosed as no AF by the irregularity criterion, so the second function was mainly used
for premature beat detection. A few examples of the cluster search on the Lorenz plots are
shown in Figure 3 of, respectively, a normal ECG (a), AF (b), an ECG with PACs (c), and
with premature ventricular complexes (PVCs) (d). The optimal threshold was found by
adjusting the parameter in irregular ECGs with and without AF.
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Figure 3. The K-means clustering function in four different ECGs; (a) is a healthy ECG without any
irregularity and clusters, there are also no clusters found; (b) is an ECG with AF with irregularity, but
no clusters, which are also not found by the function; (c) is an ECG with PACs, so with irregularity
and clusters are found; and (d) is an ECG with PVCs, so also with irregularity and clusters are found.

3.4. Validation

The hypothesis of adding the finding clusters feature to the algorithm was to improve
the specificity of the irregularity feature solely. Validation of the proposed algorithm was
performed by combining the three thresholds that must hold true to diagnose AF for each
of the 144 ECGs in the test set; the SVD ratio needed to be ≤13.31, the count RR needed to
be ≤0.158, and the cluster count needed to be equal to 1.

Using these thresholds, the following diagnostic values were found by the test set: a
sensitivity of 89.66%, a specificity of 92.17%, a PPV of 74.29%, an NPV of 97.25%, an F2
score of 86.09%, and an accuracy of 91.67%.

The AW algorithm was also validated on the test set, with the inconclusive results
taken as false results. This gives a sensitivity of 82.76%, a specificity of 79.13%, a PPV
of 50.00%, an NPV of 94.79%, an F2 score of 73.17%, and an accuracy of 79.86%. For
the 25 inconclusive AW results in the test set, 19 were correctly identified by the novel
algorithm.

The McNemar test was used to check for a significant difference between the two
algorithms. The discordance is found in the cases where one of the algorithms correctly
identifies AF and the other does not. The χ2-test was performed on the discordance and
the p-value was calculated on this test. A p-value of 0.0014 was found, which rejects the
null hypothesis and proves a significant difference between the two algorithms.

Using the novel algorithm, nine false positives occurred, one had an ECG without
abnormalities, while the others had abnormalities such as premature beats, abnormal QRS
or flutter/atrial tachycardia. In comparison, the AW algorithm resulted in 24 false positives.

4. Discussion

We present a novel algorithm which automatically detects AF in a large and chal-
lenging group of patients. Where the AW does not look further than irregularity for AF
detection, we showed that improved AF detection needs a second step. Identifying clusters
of regularity within the rhythms declared as irregular is highly effective. Using cluster
identification in Lorenz plots increased the diagnostic accuracy as compared with the
pre-existing automatic diagnostic algorithm within the smartwatch. It is challenging to
compare existing studies of AF detection using the Apple Watch ECG as the type of subject
and clinical context in which the tracings are acquired may be different or even unknown.
The first, and perhaps most important study performed, by Apple remains unpublished,
but the main results are found within the FDA clearance of 2019 (21 CFR 870.2345) and can
be found in Table 3. It is unclear how the subjects were recruited and how the smartwatch
ECGs were registered. A later study performed by our group which aimed to compare
three different smartwatches found similar results for the Apple Watch as described in
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the FDA report (Table 3), but half of our patients had normal ECGs and the other half
had AF, which is also not a very realistic setting [9]. In our most recent and much larger
study, we also included patients with co-existing ECG abnormalities [10]. The accuracy
was notably lower with also double the number of patients where no diagnosis given by
the smartwatch (19% vs. 9% in the FDA report). The current work proposes an algorithm
which outperforms previous results by detection of clusters but also by an all-inclusive
approach.

Table 3. Comparison table of validation studies reporting sensitivity and specificity of the Apple
Watch ECG to identify AF.

Apple [12] Abu-Alrub et al. [9] Racine et al. [10] Current Study

Subjects (n) 602 200 734 144

Sensitivity (%) 85 87 83 90

Specificity (%) 91 86 79 92

No diagnosis (%) 9 13 19 0

Automatic AF detection through smartwatches leads to four times earlier detection of
AF, allowing earlier and more efficient treatment [6]. The higher sensitivity of the novel
algorithm improves the accurate diagnosis of AF and provides more patients with an early
diagnosis and, thereby, more effective treatment. Moreover, through the enhancement
of specificity through the novel algorithm, the occurrence of false positives is mitigated,
resulting in a reduced number of erroneously diagnosed patients entering the diagnostic
process.

Current smartwatches are associated with a high rate of non-diagnoses due to the
algorithm returning non-conclusive or out-of-range results. These labels greatly decrease
the confidence in using wearables as a diagnostic tool. Efforts need to be made to reduce
the amount of rejected ECGs to a minimum and the use of more inclusive algorithms
is an important step to the usability of smartwatch ECGs. The proposed algorithm is
all-inclusive, decreasing the uncertainty smartwatch users may be confronted with when
being presented with inconclusive ECGs. While AW classified a significant number of
ECGs inconclusive, this was not the case in the novel algorithm as all ECGs were included
in the algorithm. Including all the ECGs assured the higher validity and usability of the
novel algorithm. The novel algorithm correctly identified most of the ECGs which were
classified as inconclusive by the AW algorithm (19/25). The obvious potential downside of
a more inclusive algorithm is the higher risk of false positives, but this was not the case
with the novel algorithm because despite not rejecting any ECG, the specificity was still
higher.

Combining a higher inclusivity with a higher validity provides a more accurate
diagnosis of all patients using a smartwatch for the detection of AF. These patients may
receive early treatment, which has been shown the most effective in AF patients and the
reduction of complications due to an undiagnosed disease [20].

Apparently, the feature that counts RR intervals of the same length is already able to
exclude some regular irregular cases. This can be seen in Table 2 (a) where, for example,
PACs have a higher median for this feature and do not surpass the threshold value for AF
detection.

Detecting clusters within Lorenz plots has proven to be feasible and adding this feature
improved the specificity of the algorithm by 4 percent points. It should be noted that only
the Lorenz plots of the irregular cases were used because our approach was to exclude
the false positives from the ECGs suspected of showing AF. Using this feature, only a
single patient was misdiagnosed as AF; while in fact, the patient had PVCs which made
the rhythm irregular. No patients were misdiagnosed for ECGs with PACs or AV blocks.
The question arose whether an AF ECG with PVCs or PACs would also show clustering,
but this was not the case in any of the ECGs with either of these two pathologies.
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Figure 4 shows a challenging smartwatch ECG in a patient in sinus rhythm who
had both PACs and PVCs in a single tracing. Without surprise, the AW algorithm gives
the wrong diagnosis of AF. The novel algorithm reports a count RR of 0.053 and an SVD
ratio of 5.58, which both declare the rhythm as irregular, suspect of AF. However, when
using the second feature which searches for clusters in the Lorenz plot, clusters were found
(Figure 4b). As the algorithm shows, if a regularity in the irregularity is found, the diagnosis
of AF could be successfully rejected.
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Figure 4. The patient is diagnosed with AF by the AW algorithm (a). However, the novel algorithm
shows by finding clusters in the Lorenz plot (b), regularity within the irregularity, and so the novel
algorithm correctly identifies this patient with no AF.

4.1. Future Approaches

The ECG application of selected Withings smartwatches (Scanwatch) recently added
a feature which displays QRS, PR, QT, and QTc intervals on the ECG report [21]. This
signifies that these smartwatches identify P waves, which also is a sign of the absence of
AF [3]. However, this new feature remains untested, so the validity is unknown. We have
attempted the detection of P waves in our dataset but found it challenging and did not
report it in this work. If it shows to be a valid method for P wave detection, it could also be
used in AF detection to exclude these cases from AF.

Future approaches may include machine learning methods, using features beyond
clinical comprehension. Machine learning is well adapted for ECG diagnostics and may
outperform the algorithms proposed in this paper well [22,23]. A systematic review on
this topic shows very high performance with a mean sensitivity of 94.80% and a mean
specificity of 96.96% in 26 studies of ML in AF detection on smartwatch ECGs [24]. ML
is, thus, very robust for easy pattern recognition such as the presence or absence of AF
on a 30 s smartwatch ECG. However, ML requires immense computing power and is not
available in offline wearables. ML approaches can only be used to adjudicate a diagnosis by
use of an online platform. As smartwatches need to be able to directly deliver a diagnosis
(absence or presence of AF), a data science approach is still required. While ML hold
enormous potential for correction or confirmation of traditional algorithms, the limitations
of current on-board algorithms inhibit the widespread use and acceptance of AF screening
with a smartwatch ECG, let alone more complicated diagnoses such as other arrhythmia or
conduction diseases.

4.2. Study Limitations

We only recorded one AW ECG per patient. In reality, when one may obtain an
inconclusive, too high/low heart rate, or poor reading notification, the person can repeat
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the ECG and receive a more complete diagnosis. However, repeating tests using an
imperfect algorithm will result in multiple diagnoses, damaging the confidence of the user
and decreasing the clinical applicability of the smartwatch for the use of AF detection.

While our data holds relatively many subjects with cardiac abnormalities, a sub-
validation for specific pathologies (PACs, PVCs, AV block) remains challenging to merit a
proper subgroup validation.

We analysed a dataset with patients from the Cardiology department, which is not
representative of reality. The prevalence of ECG anomalies is, therefore, much higher than
in a randomly taken patient group. Therefore, it would be interesting to also test this
algorithm on a dataset that is a better representation of reality.

R wave detection showed some difficulties in some cases where the QRS complex did
not resemble a normal QRS complex, as the method used looks for a wavelet that matches
a reference QRS complex. This was surely the case for pacemaker and CRT patients.
However, AF detection in these cases has very limited clinical relevance, as patients with
CRT or a pacemaker are continuously being monitored for arrhythmias through their
implanted device [25]. Two of the false positives found are in pacemaker and CRT patients,
so, excluding these cases would improve the performance of the novel algorithm and of
the AW.

The Lorenz plot interpretation was performed very carefully, avoiding the detection of
clusters within AF. Therefore, the threshold values for minimum distance between clusters
were taken very widely to prevent accidentally detecting clusters in AF. Thus, in some
cases, clusters were missed. An example of an ECG with undetected PVCs can be seen in
Figure 5. However, in our study, there was only one ECG in the test set with PACs, PVCs,
or AV block which was misdiagnosed as AF.
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Figure 5. The ECG and found peaks by the algorithm (a) of a patient with PVCs, where the clusters
were not identified through the algorithm (b).

5. Conclusions

We developed and validated a multi-step algorithm that correctly identifies AF in
a complex group of patients, outperforming the existing algorithm. We first identified
irregularity using Lorenz plots and, in a second step, identified regularity within irregularity
using clusters. Future research will show to what extent this can be used in AF detection.
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