
ABERRATION THEORY OF FLAT APLANATIC METALENS 
DOUBLET AND DESIGN OF A META-MICROSCOPE OBJECTIVE 
LENS 
 

S1. Derivation of the phase gradient profiles of aplanatic doublet metalens 
 

 
Figure S1. The Abbe aplanatic condition of a metalens doublet. Schematic diagrams of (a) a 

finite object and (b) an infinite object, respectively. 

If 1 2sin / sin ' =u u M or 1 2/ sin 'ρ = −u f when very far distance object, for all 1ρ is satisfied by 
Abbe sine condition, it becomes aplanatic system [1]. M  and f  are magnification and focal 
length of system, respectively. Therefore, when M  or f  is determined, the ray passing 
through the system can be traced according to the aplanatic condition. To achieve the Abbe sine 
condition, the rays from the point object on the axis located at the distance L should be focused 
without any aberration in the back focal length 'L . The ray tracing notation and sine convention 
are adopted from the reference textbook by R. Kingslake [1]. The origin of coordinates is placed 
at the center of refracting surface. Distance along the optical axis is positive when it is measured 
to the right from the origin. The angles are consistent with right-handed Cartesian coordinate 
system; that is, a ray having a positive slope angle is considered positive [1].  

Thus, the condition 1 1 2 2sin 'sin '=n u Mn u  should be satisfied for all rays by the metasurface 
phase gradient profiles of both sides of the substrate.  

Based on the sine condition, in case of finite-finite imaging (Fig. S1(a)), the ray height 
positions reaching each surface are derived as 1 1tanρ = −L u  and 

{ }1
2 2 1 1 2' tan ' ' tan sin ( sin / ' )ρ −= − = −L u L n u n M . Here, 1n and 2 'n  are refractive index before 1st 



metasurface and after 2nd metesurface, respectively. And the difference between them is 
2 1 1tan 'ρ ρ− = T u where T is the substrate thickness (Fig. S1). 
Combination of the above equations can be arranged as a relation between ρ2 and ρ1 as 

following Eq. (S1) and (S2).  
For a finite distance object case,  
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For a very far distance,  
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2 1 2 1 1 2( ) ' tan ' ' tan sin / 'ρ ρ ρ−= − =L u L n n f .                                       (S2) 
And the relation between the refractive angle 1 'u  after passing through the 1st surface and ρ1 

is derived as Eq. (S3) and (S4). 
For a finite distance object case, 
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For a very far distance,  
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The derived results in Eq. (S1)-(S4) are only the results obtained from the Abbe sine 
condition. Now we apply the generalized Snell’s law to derive the required phase gradient 
profiles at the two surfaces. When the phase maps on the first and second metasurfaces are 
expressed as Φ 2(ρ1) and Φ 2(ρ2), respectively, and the Generalized Snell’s law is applied to the 
surfaces, the phase gradients of the 1st and 2nd metasurfaces can be expressed as 
∂Φ1(ρ1)/∂ρ1=k(n1’sinu1’-n1sinu1) and ∂Φ 2(ρ2)/∂ρ2=k(n2’sinu2’-n2sinu2), respectively [2]. 

Thus, by adopting the results of Eq. (S3) and (S4), the phase gradient on each surface can 
be expressed as a function of ρ1 as shown in Eq. (S5)-(S8). 

For a finite distance object case, 
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For a very far distance,  
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S2. Minimize tangential astigmatic blur and lateral achromatic 
S2.1 Derivation of tangential astigmatic blur 

 
Figure S2. Schematic of oblique ray tracing to minimize tangential image blur. 

Oblique and axial rays are traced to estimate and minimize tangential astigmatic blur. Fig. S2 
describes the trajectories of the two rays and the chief ray passing through the center of the first 
metasurface, o. When the system satisfies the aplanatic condition for arbitrary object distance 
( L), thickness of substrate (T), and back focal length ( 'L )  at magnification ( M ), the phase 
gradient of each plane can be obtained as follows.  

By the Eq. (S5), the 1st phase gradient at the r position (marked in Fig. S2) through which 
the oblique ray passes is, 
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For a very far distance, by the Eq. (S7), 
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The incident angle of oblique ray at the r position on 1st surface is, 
                                                             { }1

1 1tan ( ) /θ −= −Oh r L .                                          (S11) 
Where Oh  is height of object. For a very far distance, 
                                                                      1θ θ= r .                                                      (S12) 
Here, θr  is the slope angle of the chief ray. 
By the generalized Snell’s law, the refracted angle after passing the 1st surface is 
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The height of s position at 2nd surface is expressed as a function of r1 in Eq. (S14). 
                                                           2 1 1 1 1( ) tan '( )θ= +s r r T r .                                           (S14) 

By using Eq. (S1), the height on the 1st surface of the axial ray passing through the s position 
is derived as 
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For a very far distance, based on Eq. (S2), 
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From the Eq. (S6), the 2nd phase gradient at the s position through which the oblique ray 
passes is, 
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For a very far distance, from the Eq. (S8), 
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From the generalized Snell’s law, the refracted angle after 2nd surface is derived and 
organized as Eq. (S19). 
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The oblique ray height at the back focal plane is 
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h1(r1) in Eq. (S20) implies the magnitude of the amount of the tangential astigmatic blur of 
the system when the point r is moved to the margin of the 1st surface so that r1 becomes the 
semi-diameter of the 1st surface. 
 

S2.2 Finite-to-finite design of a meta-microscope objective lens 
 



 
Figure S3. Finite-to-finite design results. (a) Layout of optimized aplanatic meta-microscope 

objective lens. (b) MTF plot. (c) RMS wavefront error plot. (d) Image simulation result. 

Using the proposed semi-analytic optimization solution, the authors also design a meta-
microscope objective lens that satisfies NA 0.5, magnification 20X, and field of view ±0.65 
mm at 0.532 um wavelength (Fig. S3(a)). The system is designed as an finite to finite conjugate, 
and the combination of phase gradient that can minimize image blur was numerically found 
with object distance ( L), back focal length ( 'L ) and substrate thickness (T) as variables. The 
optimized phase gradients are fitted as less than than MSE (Mean Squared Error) 1.9 E-11 in 
function 6 2 1

2 11
'( )ρ ρ −

−=
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nn
A  when the object distance, thickness of substrate and back focal 

length are -223.462, 15.470 and 8.681 mm, respectively. And the performance is verified with 
the Binary 2 surface which adds phase to the ray according to the following polynomial 
expansion: 2

21
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nn
A  , provided by Zemax Opticstudio.  

With a paraxial magnification of -0.05X, the system has diffraction limited performance 
and RMS wavefront error of less than λ/30 for entire fields (Fig. S3(b) and S3(c)). Image 
simulation result in Fig. S3(d) also verifies its excellent near-diffraction limited imaging 
performance at the design wavelength (0.532 um). 

 

S2.3 Derivation of compensation of lateral chromatic aberration 

 
Figure S4. Scheme of the ray tracing for the lateral achromatic system at two different 
wavelengths. The figure describes that the back focal point is separated according to the 
wavelength since the lens is set to be laterally achromatic rather than longitudinally achromatic. 
The three different axial ray trajectories (marked as α, β, and γ) are depicted in the figure. α is 
the axial ray with the secondary blue wavelength (λs), passing through the point r and s at the 
first and second metasurfaces and reach the back focal point. On the other hand, β is the axial 



ray passing through the r point and goes to the different back focal point due to the difference of 
wavelength (wavelength of λp). γ is the axial ray of the primary wavelength (λp) passing the s 
point at the second metasurface and focused at the same focal point with the ray β. 

If the effective focal lengths and magnifications at the two wavelengths (the primary and 
secondary wavelengths) are equal, the lens is called ‘laterally achromatic’. Effective focal 
lengths are calculated based on paraxial approximation. Therefore, using the paraxial 
approximation, the phase profile satisfying the aplanatic condition for the primary wavelength 
(λp) and the lateral achromatic condition for the secondary wavelength (λs) can be derived. 

For a finite distant object case with a fixed magnification (M), the the aplanatic phase 
gradient conditions of the two surfaces proposed in section S1 can be expressed as Eq. (S21) - 
(S31) by the first order approximation. 
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For a very far object, 
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As described in Fig. S4, when a paraxial ray α with a wavelength λs, the angle of refraction 
passing through the point r of the 1st metasurface, uα1’, is determined according to Eq. (S3) 
and (S4) and generalized Snell’s law. That is, 
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Where r1 is height of r position. The refractive indices (marked as n2 in Fig. S5) of the 
substrate are pn  and sn  at the two wavelengths (λp and λs), respectively. Therefore, the ray 
height passing through s position is, 
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Applying the generalized Snell’s law with wavelength at the each side of the surface, the 
relation between the two phase gradient maps are derived as follows:  
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In addition to the setting of 1 1α β=u u , as the system has the same magnification ( 2 2' 'α β=u u

) for the wavelengths λs and λp, the lateral achromatic design condition without sacrificing the 
aplanatic condition at the λp is derived as a relation between T, M, L, and L’ for a finite-finite 
case (Eq. (S30).  
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For a very far distance object, the condition for lateral achromatic and aplanatic at the 
wavelength of λp is changed as Eq. (S31). 
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 Figure S5. Simulated point spread function (PSF) intensity profiles of lateral achromatic doublet 
in XY plane at each focal plane respectively. 

 



 
 Figure S6. Simulated point spread function (PSF) intensity profiles of lateral achromatic doublet 
with small size in XY plane at each focal plane respectively. 

 
 

 
  

  



S3. MATLAB codes for semi-analytical design of the proposed doublet phase 
profiles 

S3.1 Condition for monochromatic aplanatic doublet 
clear; clc; close all; 
  
%%%%Input Values%%%% 
%%%%%%%%%%%%%%%%%%%% 
f=10; % effective focal length (mm) 
L=8.681; % back focal length (mm) 
Lam=0.000532; % wavelength (mm) 
T=15.47; %substrate thickness (mm) 
n=1.5468694858; %quartz's refractive index at 532nm wavelenght 
D=10; % aperture Diameter (mm) 
S=0.01; % Sampling pitch of aperture (mm) 
%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 
  
syms x 
k=2*pi/Lam; %wavenumber 
u2(x)=asin(-x/f); %incident angle at focal plane 
u1(x)=atan(-(tan(u2)*L+x)/T); % refractive angle after 1st surface 
dy1(x) = k*n*sin(u1); %phase gradient of 1st surface 
x2(x)=x+T*tan(asin(dy1/(n*k)));%radius of 2nd surface. 
dy2(x)=k*(-x/f-n*sin(u1));%phase gradient of 2nd surface 
x=-D/2:S:D/2; %radius range of 1st surface. 
ans1=double(dy1(x)); %ploted phase gradient of 1st surface 
ansx2=double(x2(x));%plotted radius of 2nd surface 
ans2=double(dy2(x));%plotted phase gradient of 2nd surface 
  
% First surface's gradient 
figure 
plot(x, ans1, 'b') 
xlabel('r1') 
ylabel('Phase Gradient') 
title('1st surface') 
% Second surface's gradient 
figure 
plot(ansx2, ans2, 'r') 
xlabel('r2(r1)') 
ylabel('Phase Gradient') 
title('2nd surface') 

 

S3.2 Minimization of tangential astigmatic blur 
clear; clc; close all; 
  
%%%%Input Values%%%% 
%%%%%%%%%%%%%%%%%%%% 
f=10; %effective focal lenghth (mm) 
fov=1.3; %full FoV in (mm) 
ENPD=5; %Entrance pupil diameter 
Lam=0.000532; % wavelength (mm) 
n=1.5468694858; %quartz's refractive index at 550nm wavelenght 
T1=10;%minimum Thickness (mm) 
T2=20;%maximum Thickness (mm) 
L1=5;%minimum Back focal lenght (mm) 
L2=15;%maximum Back focal lenght (mm) 
S=0.1;%sampling pitch of Thickness & Backfocal lenght (mm) 



%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 
  
k=2*pi/Lam; %wavenumber 
v=atan((fov/2)/f); % half FoV in (rad) 
field=rad2deg(v); % half FoV in (degree) 
P=ENPD/2; %maximum radius of upper aperture stop 
Q=-ENPD/2; %maximum radius of lower aperture stop 
[T,L]=meshgrid(T1:S:T2,L1:S:L2); %sampling of Thickness & Backfocal 
length 
  
P1=-k*n*sin(atan((P-L.*tan(asin(P/f)))./T)); %1st phase gradient at P 
Pvv=asin((P1/k+sin(v))/n); %diffracted marginal angle at P after 1st 
surf. 
PP=P+T.*tan(Pvv); %The position on the second surface of the marginal 
field passing through point P.  
RP=f*sin(atan(PP./L)); %The position of the first surface to 
calculate the gradient at the position of PP. 
P2=-k*(RP/f-n*sin(atan((RP-L.*tan(asin(RP/f)))./T)));%2nd phase 
gradient at PP 
Pvvv=asin(P2/k+n*sin(Pvv)); %The refractive angle after the second 
surface of the marginal field passing through point P. 
PPP=PP+L.*tan(Pvvv); %The height at the focal plane of the marginal 
field passing through point P. 
  
Q1=-k*n*sin(atan((Q-L.*tan(asin(Q/f)))./T)); %1st phase gradient at Q 
Qvv=asin((Q1/k+sin(v))/n); %diffracted marginal angle at Q after 1st 
surf. 
QQ=Q+T.*tan(Qvv); % The position on the second surface of the 
marginal field passing through point Q.  
RQ=f*sin(atan(QQ./L)); %The position of the first surface to 
calculate the gradient at the position of QQ. 
Q2=-k*(RQ/f-n*sin(atan((RQ-L.*tan(asin(RQ/f)))./T)));%2nd phase 
gradient at PP 
Qvvv=asin(Q2/k+n*sin(Qvv)); %The refractive angle after the second 
surface of the marginal field passing through point Q. 
QQQ=QQ+L.*tan(Qvvv); %The height at the focal plane of the marginal 
field passing through point Q. 
  
%Plot of Blur of Marginal Field. 
B=abs(QQQ-PPP); 
figure, contourf(T,L,B,100, 'linestyle','none'),colorbar; 
 

S3.3 Extension to lateral achromatic design 
clear; clc; close all; 
  
%%%%Input Values%%%% 
%%%%%%%%%%%%%%%%%%%% 
f = 10; % effective focal length (mm) 
wP = 0.000532; % primary wavelength (mm) 
wS = 0.000460; % secondary wavelength (mm) 
nP = 1.5468694858; % primary wavelength's refractive index of quartz 
nS = 1.5516044205; % secondary wavelength's refractive index of 
quartz 
T1=15.5;%minimum Thickness (mm) 
T2=20;%maximum Thickness (mm) 
S=0.01;%sampling pitch of Thickness(mm) 
%%%%%%%%%%%%%%%%%%%%% 



%%%%%%%%%%%%%%%%%%%%% 
  
T_values = T1:S:T2; % T values to iterate over 
L_values = zeros(size(T_values)); % initialize L_values array 
syms L; 
for i = 1:length(T_values) 
    T = T_values(i); 
  
    A = 0; 
    A = wS/wP.*(nP./T.*(L./f-1)-f./L.*(1+nP./nS*wS/wP.*(L./f-
1)).*(1./f+nP./T.*(L./f-1)))+1/f; %Equation (21) 
  
    L_solve = solve(A==0, L, 'Real', true); % solve for L values 
    L_values(i) = min(double(L_solve(L_solve > 0))); % save the first 
positive L value for current T 
end 
  
%Plot of Backfocal lenght value according to Thickness 
plot(T_values, L_values,'b'); % plot T vs L 
xlabel('T'); 
ylabel('L'); 
title('Combination of T&L'); 

 

S4. Meta-atom simulations 

 
Figure S7. Electromagnetic simulation results for a design example of a TiO2 nanofin meta-
atom. (a) Schematic diagram of a TiO2 nanofin unitcell for geometric phase modulation located 
on Quartz substrate. p and w are fixed to be 210 and 60 nm, respectively. Cross-polarized 
transmittance for the (b) blue (0. 460 μm, upper figure) and (c) green (0.532 μm, lower figure) 
according to the change of t (height). The legends in (b) denote the values of d and the inset 



figure in the lower figure in (b) describe the magnetic field intensity profile in the xz plane 
containing the center of the nanofin. (c) Numerical verification of geometric phase modulation 
according to the nanofin rotation angle in the xy plane. 

Electromagnetic simulation results of high-efficiency nanofin unitcell for geometric phase 
modulation is provided as seen in Fig. S7(a). For the simulations, COMSOL Multiphysics 5.6 
RF solver is used and the optical property of TiO2 is quoted from the literature [3]. Local 
periodic approximation, the basic and conventional method to design nanostructures for phase-
gradient metasurface, is assumed by neglecting near-field coupling between adjacent nanofins. 
The optimal conditions are searched through some parameter sweeps when the fast axis nanofin 
length (w) and unitcell period (p) are fixed as the constant values. Fig. S7(b) shows that the 
height (t) of 1200 nm and the slow axis length (d) of 140 nm can be the optimal choice for the 
most efficient nanofin design in the suggested simulation results. For the chosen values of p 
(210 nm), d (140 nm), w (60 nm), and t (1200 nm), it is found that the theory of geometric 
phase for full phase modulation by 180 deg rotation shows good agreement with numerical 
results at the both wavelengths suggested in Fig. S7 (c). And there is enough room for 
improving cross-polarization transmittance for the two design wavelengths, if advanced 
numerical optimization based on numerous repetitive simulations is adopted. 
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