
Citation: Ji, W.; Cao, Z.; Li, X. Small

Sample Building Energy Consumption

Prediction Using Contrastive

Transformer Networks. Sensors 2023,

23, 9270. https://doi.org/10.3390/

s23229270

Academic Editor: Aritra Ghosh

Received: 3 October 2023

Revised: 26 October 2023

Accepted: 17 November 2023

Published: 19 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Small Sample Building Energy Consumption Prediction Using
Contrastive Transformer Networks
Wenxian Ji 1, Zeyu Cao 2 and Xiaorun Li 1,*

1 College of Electrical Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China;
11910094@zju.edu.cn

2 School of Spatial Planning and Design, Hangzhou City University, 51 Huzhou Street, Hangzhou 310015,
China; caozy@hzcu.edu.cn

* Correspondence: lxr@zju.edu.cn

Abstract: Predicting energy consumption in large exposition centers presents a significant challenge,
primarily due to the limited datasets and fluctuating electricity usage patterns. This study introduces
a cutting-edge algorithm, the contrastive transformer network (CTN), to address these issues. By
leveraging self-supervised learning, the CTN employs contrastive learning techniques across both
temporal and contextual dimensions. Its transformer-based architecture, tailored for efficient feature
extraction, allows the CTN to excel in predicting energy consumption in expansive structures,
especially when data samples are scarce. Rigorous experiments on a proprietary dataset underscore
the potency of the CTN in this domain.
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1. Introduction

In recent years, numerous countries have mandated “low-carbon” and “energy-saving”
criteria for the construction and operation of buildings as a commitment to environmental
protection [1,2]. The emphasis on curtailing the energy demands of building operations has
positioned the accurate prediction of electricity consumption at the forefront of research
for many engineers and scholars. Precise forecasting of future electricity consumption
during building operation and maintenance can inform judicious electricity procurement
strategies and guide equipment selection. This not only considerably trims the economic
costs associated with operation and maintenance but also paves the way for the realization
of low-carbon, energy-efficient buildings. By optimizing energy utilization, buildings can
diminish their excessive consumption, thereby reducing their carbon footprint. This fosters
enhanced load shifting, seamless integration of renewable energy, and the actualization of
energy efficiency measures.

At present, numerous studies related to building energy consumption prediction have
been presented. Divina et al. [3] employed a range of machine learning techniques to
predict energy consumption in smart buildings. Their research provided a comparative
analysis utilizing data from thirteen buildings on a university campus, shedding light on the
performance of various machine learning approaches. Sehovac et al. [4] employed recurrent
neural networks (RNNs) and sequence-to-sequence (S2S) deep learning models for energy
load predictions. Their results underscored the models’ capability to efficiently process
time-series data, resulting in precise short-term forecasts. Haq et al. [5] amalgamated
convolutional long short-term memory (ConvLSTM) with bidirectional long short-term
memory (BiLSTM) to predict energy consumption in both residential and commercial
sectors. Their combined model exhibited enhanced accuracy and stability, particularly
when handling multi-modal sensor data. Khan et al. [6] put forth an ensemble technique,
integrating long short-term memory (LSTM) with a Kalman filter (KF), targeting short-term
energy consumption predictions in multifamily residential buildings. Their approach
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leveraged LSTM’s adeptness at sequence modeling with the KF’s noise filtering capabilities,
producing predictions that are both consistent and applicable in real-world scenarios. Olu-
Ajayi et al. [7] delved into the appropriateness of different machine learning techniques
for projecting potential residential building energy consumption during the early design
phase, aiming to mitigate the creation of energy-inefficient structures. Wenninger et al. [8]
introduced the innovative QLattice algorithm, applying it to a dataset encompassing over
25,000 German residential buildings. Their goal was to predict annual building energy
performance while emphasizing the balance between predictive accuracy and the potential
of explainable artificial intelligence.

Although numerous methods have been proposed for predicting building energy
consumption [9], a majority of these forecasting approaches necessitate vast amounts of
training data to ensure robust predictive accuracy. In situations with consistent electricity
usage patterns, acquiring data is relatively straightforward. For instance, utilizing electricity
consumption data from multiple residents in an apartment complex to estimate the energy
usage of other inhabitants, or harnessing data from several office buildings to forecast
the energy demands of similarly purposed offices. However, unique structures, such
as exhibition centers designated for trade shows, often exhibit electricity consumption
patterns that deviate from residential and conventional office edifices. Acquiring data from
analogous buildings to aid in prediction becomes challenging, culminating in a scarcity
of training data for forecasting electricity consumption in these sizable establishments.
Considering the high energy demands of such structures, precise prognostications of future
energy usage could yield significant financial savings. Consequently, addressing the energy
consumption forecasting challenges for these edifices is of paramount research significance.

Given the contemporary research landscape, deep learning algorithms manifest supe-
rior performance in contexts abundant in data [10]. Conversely, in situations marked by
data paucity, traditional machine learning techniques tend to excel [11]. This differential
efficacy can be attributed to the inherent data-centric nature of deep learning algorithms,
making them profoundly reliant on the volume of the training data. Traditional machine
learning approaches, in juxtaposition, discern pivotal samples from the training dataset,
utilizing them as foundational elements for crafting a predictive model. Nonetheless, such
strategies are often vulnerable to anomalies in the training samples. These anomalies or
outliers can inadvertently infuse biases into the predictive framework. A pertinent example
of this sensitivity is evident in models like the support vector machine (SVM) [12]. To cir-
cumvent data-induced biases whilst optimally harnessing the information encapsulated
within the dataset, self-supervised learning emerges as a potent and forward-looking deep
learning paradigm.

Self-supervised learning autonomously generates labels by orchestrating a pseudo-
task, typically entailing the prediction of specific segments of data, be it regions within
an image or words in a textual context [13]. This methodology obviates the necessity
for labor-intensive manual labeling. In the aegis of these pseudo-tasks, adeptly crafted
network architectures assimilate data features through contrasting input samples. This
dynamic culminates in network weights that are optimally tuned for subsequent task
training. Pertinent research has unequivocally showcased that integrating self-supervised
learning can effectively diminish the reliance of deep learning architectures on voluminous
training data, thereby broadening the purview of deep learning techniques [14].

Momentum Contrast (MoCo), pioneered by He et al. [15], emerged as a response to
the challenges of extracting meaningful representations from unlabeled datasets. MoCo
utilizes a dynamic dictionary, facilitated by a queue and a momentum-updated encoder. Its
distinguishing innovation lies in the sustenance of a coherent and evolving representation
domain, enhancing the efficacy of contrastive learning. Such a strategy augments the
quality of acquired representations, proving especially valuable in environments with a
limited labeled dataset.

SimCLR, presented by Chen et al. [16], champions a relatively lucid yet potent frame-
work. By employing data augmentation as a mode of self-supervision, SimCLR endeavors
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to maximize the affinity between variedly augmented interpretations of the same data
instance within the latent domain. By obviating the need for intricate architectures or
memory repositories, it presents itself as a more streamlined and scalable solution relative
to its self-supervised counterparts.

Both MoCo and SimCLR have epitomized the potential of self-supervised learning,
at times surpassing supervised methodologies in specific arenas. Their salient contributions
underscore the feasibility of leveraging unlabeled datasets to generate representations
that serve a multitude of downstream applications, substantially mitigating the onus of
data annotation.

In spite of the evident promise exhibited by self-supervised learning modalities, there
is a conspicuous dearth of scholarly contributions in the realm of energy consumption
forecasting, to the best of our current understanding. A plausible impediment could be
the intricate nature of pinpointing suitable pseudo-tasks for guiding the model’s prelim-
inary training. Concurrently, there exists the challenge of architecting an apt network
structure that adeptly amalgamates facets of both self-supervised and supervised learn-
ing paradigms.

In recent years, the advent of the transformer architecture [17] has catalyzed a re-
naissance in deep learning research. Owing to its remarkable feature extraction prowess,
the architecture has found prolific applications in domains ranging from machine transla-
tion [18] to image processing [19,20]. A spate of studies has also explored its potential in
time series analysis [21,22], corroborating its efficacy therein. Given these developments, it
is reasonable to posit that transformer derivatives are apt candidates for integrative training
spanning self-supervised and supervised learning paradigms.

Drawing upon the principles of self-supervised learning, we have architected a robust
transformer-based framework termed as contrastive transformer networks (CTNs). This
architecture embarks on an unsupervised pre-training trajectory, leveraging pseudo-tasks
to attain optimally initialized network weights. Subsequently, a traditional supervised
training regimen is employed for fine-tuning. Empirical evaluations underscore the potency
of our proposed paradigm and the inherent feature extraction capabilities of CTNs. Notably,
our architecture outperforms extant methodologies in forecasting future building energy
consumption, thereby cementing its position as a promising avenue for advancements in
building energy consumption prediction.

The contributions of this research can be summarized as follows:

1. We have designed efficient contrastive transformer networks (CTNs) for both self-
supervised and supervised learning.

2. We have introduced self-supervised learning methods into the field of building energy
consumption prediction, reducing the dependency of deep learning algorithms on the
number of training data.

3. By combining the network architecture and self-supervised learning methods, we
have designed an effective algorithm for predicting building energy consumption.

2. Related Works
2.1. Transformer

Transformer networks, initially proposed by Vaswani et al. [17], have revolutionized
various fields of machine learning, including natural language processing and computer
vision. The core concept behind the Transformer architecture is the self-attention mech-
anism, which enables the model to consider other parts of the input when processing a
specific element.

The Transformer architecture consists of an encoder and a decoder. Both the encoder
and the decoder are comprised of multiple identical layers, which utilize multi-head self-
attention and feed-forward neural networks. The architecture employs positional encoding
to infuse the sequence order into its representation.
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Self-attention allows the network to focus on different parts of the input by computing
a weighted sum of all input elements, guided by the attention scores. Formally, given a
query Q, key K, and value V matrices, the attention is calculated as follows:

Attention(Q, K, V) = Softmax

(
QK>√

dk

)
V

where dk is the dimensionality of the key.
Transformers have been extensively applied in tasks such as machine translation [23],

text summarization [24], and even in remote sensing for object detection [25]. Their paral-
lelizable nature and ability to capture long-range dependencies have made them a popular
choice for many sequence-to-sequence tasks.

Several variants and extensions of the Transformer architecture have been proposed to
improve its efficiency and applicability, such as the BERT [26] for language understanding,
and Vision Transformer (ViT) [27] for image classification tasks.

2.2. Temporal and Contextual Contrasting Method

Unsupervised representation learning for time-series data has been a challenge that
researchers have been attempting to address for years. One significant contribution in this
realm is the temporal and contextual contrasting (TCC) framework [28]. This method aims
to learn robust representations from unlabeled time-series data.

The TCC framework initially processes raw time-series data into two different yet
correlated views using both weak and strong augmentations. The first major innovation of
this framework is the temporal contrasting module, designed to capture robust temporal
dynamics. It does so by setting up a challenging cross-view prediction task. The framework
then further refines these temporal representations using a contextual contrasting module,
designed to maximize the similarity among different contexts within the same sample
while minimizing similarities across different samples.

TCC has been applied to multiple real-world time-series datasets. The empirical results
demonstrate that even a simple linear classifier, when trained on the features learned by
TCC, can perform comparably to supervised methods. The framework has also shown
promise in scenarios involving few-labeled data and transfer learning, thus proving its
versatility and efficiency.

While other unsupervised learning methods focus mainly on either temporal dynamics
or contextual information, TCC seamlessly integrates both. This dual focus allows for a
more nuanced and robust feature representation, enabling the framework to outperform
several existing methods in various applications.

3. Methods

As illustrated in Figure 1, the contrastive transformer network (CTN) presents a
sophisticated multi-stage architecture:

1. Data Augmentation: The input data undergo two distinct augmentation processes:

• Strong Augmentation: Incorporates a permutation-and-jitter approach.
• Weak Augmentation: Introduces random perturbations and amplifying data’s scale.

2. Encoding Phase: Both the strongly and weakly augmented data are processed through
dedicated “Encoder” blocks, resulting in latent vectors z. Here, we adopt a transformer
network instead of a convolutional network as the encoder to better capture the series
information of data.

3. Temporal Contrasting: Latent vectors are passed through a “Transformer” block
to capture temporal dependencies, producing embeddings c. c is restricted by the
temporal contrasting loss LTC.

4. Contextual Contrasting: Embeddings undergo a “Non-linear Projection Head” to
project them into a space where similarity is maximized, leading to the final loss LCC.
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The CTN framework leverages both temporal and contextual contrasting to yield rich
representations, making the network adept for subsequent downstream tasks.

Figure 1. Structure of the proposed contrastive transformer networks (CTNs).

3.1. Data Augmentation and Encoding

In the domain of contrastive learning, an essential innovation is the dual data aug-
mentation scheme proposed in the TCC [28]. The TCC methodology employs two distinct
families of augmentations, Tw and Ts, to generate weak and strong augmented views, xw
and xs, of each sample x. By contrasting these two distinct perspectives, the model is
enabled to learn more robust features.

For the weak augmentation, we manipulate the input signal by introducing random
perturbations and amplifying its scale. In contrast, the strong augmentation strategy
incorporates a permutation-and-jitter approach. This involves segmenting the signal into
a randomly determined number of partitions, capped at M, followed by their random
rearrangement. Subsequently, random fluctuations are added to the rearranged signal. It is
crucial to tailor the augmentation parameters in accordance with the specific characteristics
of the time-series dataset. For instance, when segmenting the signal, the upper limit M
should be adjusted based on the sequence length and higher values of M are preferable for
longer sequences. Similarly, the magnitude of the jitter should be considerably lower for
normalized datasets as compared to unnormalized ones.

While the data augmentation approach contributes to the effectiveness of the contrastive
model, it is important to clarify that this aspect of our research adopts TCC’s methodology and
is not an original contribution. Contrary to TCC, we diverge by implementing a Transformer-
based encoder instead of the conventional three-block convolutional structure. CTN opts for
the Transformer architecture to mitigate potential information loss and to more effectively
focus on individual features within each sample. Mathematically, the Transformer encoder
maps an input x into a high-dimensional latent space z via a function fenc, such that

z = fenc(x) (1)

This modification aims to address limitations in convolutional networks, particularly
when dealing with inputs of shorter signal lengths. Through the integration of the Trans-
former encoder, our methodology aspires to enhance both the robustness and adaptability
of the learned representations for various downstream tasks.

We represent the high-dimensional latent space as z = [z1, z2, . . . , zT ], with T denoting
the total number of timesteps and each zi being a d-dimensional feature vector. From this
representation, we obtain zs and zw corresponding to the strong and weak augmented
views, respectively. These are subsequently input into the temporal contrasting module for
further analysis.
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3.2. Temporal Contrasting

The Temporal Contrasting module utilizes a contrastive loss function in combination
with an autoregressive model to capture temporal dynamics in the latent feature space.
Given a set of latent vectors z, the autoregressive model, denoted as far, aggregates all
instances of z up to time t to produce a context vector ct = far(z ≤ t). This vector resides in
an h-dimensional hidden space, i.e., ct ∈ Rh. Subsequently, this context vector is employed
to forecast the latent states from zt+1 to zt+k, where 1 < k ≤ K. For such predictive
modeling, we apply a log-bilinear function defined as fk(xt+k, ct) = exp((Wk(ct))Tzt+k),
where Wk is a linear transformation that maps ct back to the original latent space, or Wk :
Rh → Rd.

In our methodology, strong augmentation yields context vectors cs
t while weak aug-

mentation provides cw
t . We introduce a challenging cross-view prediction task that employs

cs
t from the strong augmentation to anticipate future latent states in the weak augmented

sequence zw
t+k, and vice versa. The contrastive loss aims to minimize the cosine similarity

between the predicted and true latent vectors of the same sample, while maximizing the
similarity with alternative samples Nt,k in the minibatch. We accordingly derive the loss
terms Ls

TC and Lw
TC as Equations (2) and (3) show them.

Equation (2) represents the loss incurred when the context vector derived from the
strong augmentation, denoted as cs

t , is utilized to predict future latent states in the weak
augmented sequence, symbolized by zw

t+k. The term inside the exponential function,

(Wk(cs
t))

Tzw
t+k, calculates the dot product between the transformed context vector and the

future weak latent state. The objective here is to maximize the similarity of the dot product
with the actual future state while reducing its similarity with other alternative samples,
Nt,k, present in the minibatch.

Ls
TC = − 1

K

K

∑
k=1

log
exp

(
(Wk(cs

t))
Tzw

t+k

)
∑n∈Nt,k

exp
(
(Wk(cs

t))
Tzw

n

) (2)

Conversely, Equation (3) elucidates the loss when the weak augmentation’s context vec-
tor, cw

t , is employed to predict future latent states in the strong augmented sequence, denoted
by zs

t+k. Similarly, the term inside the exponential function, (Wk(cw
t ))

Tzs
t+k, signifies the dot

product between the weak context vector and the future strong latent state. The objective
remains consistent: enhancing the similarity of the dot product with the correct future state
and diminishing its similarity with the alternative samples, Nt,k, in the minibatch.

Lw
TC = − 1

K

K

∑
k=1

log
exp

(
(Wk(cw

t ))
Tzs

t+k

)
∑n∈Nt,k

exp
(
(Wk(cw

t ))
Tzs

n

) (3)

Similar to the encoder architecture, we continue to employ a Transformer model to
encode the latent vectors z. The resulting context vectors cs

t and cw
t are subsequently fed

into the ensuing contextual contrasting module for further processing.

3.3. Contextual Contrasting

We extend our methodology by introducing a Contextual Contrasting module de-
signed to yield more discriminative feature representations. Initially, we employ a non-
linear projection head, similar to the approach in Chen et al.’s work [16], to map the context
vectors into the contrasting space.

The concept of using a non-linear projection head is critical as it allows for a more
robust transformation of the original context vectors. By doing so, we can better harness
the discriminative information contained within the vectors, positioning them optimally
in the contrasting space. This methodology is inspired by the success seen in the work by
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Chen et al. [16], where such projections have shown significant benefits in the realm of
self-supervised learning.

For a batch comprising N samples, each having two augmented views, we obtain
2N context vectors. Let ci

t represent a specific context, and ci+
t denote its positive coun-

terpart, generated from the other augmented view of the same sample. Thus, (ci
t, ci+

t )
constitutes a positive pair, while the remaining (2N − 2) contexts from different inputs
form negative pairs.

In simpler terms, for every sample in our batch, we generate two context vectors
from two augmented views. A positive pair is formed when these two context vectors are
derived from the same sample. On the other hand, any context vector, when paired with
another vector from a different sample, forms a negative pair. This approach ensures a
balanced representation of both similarity (positive pairs) and dissimilarity (negative pairs)
within our contrasting space.

To leverage this configuration, we define a Contextual Contrasting loss function,
denoted as LCC as Equation (4) shows.

LCC = −
N

∑
i=1

log
exp

(
sim

(
ci

t, ci+
t

)
/τ
)

∑2N
m=1 I[m 6=i] exp

(
sim

(
ci

t, cm
t
)
/τ
) (4)

The above equation is the heart of our contrastive framework. It quantifies the disparity
between the similarity score of the positive pairs and that of the negative pairs. The objective
is to make sure that positive pairs have high similarity scores compared to any negative
pairs. The function sim computes the similarity, and the term τ serves as a temperature
parameter, providing a scaling factor to the similarity values.

The similarity is computed using a normalized dot product, given by

sim(u, v) =
uTv
‖u‖‖v‖ (5)

This is a fairly standard way to measure similarity in high-dimensional spaces. By nor-
malizing both vectors and then computing their dot product, we ensure that the similarity
score remains in a bounded range and provides a clear measure of how alike two vectors are.

An indicator function 1[m 6= i] ∈ {0, 1} is utilized, which equals 1 when m 6= i.
Additionally, we introduce a temperature parameter τ to modulate the loss.

The indicator function is a simple way to exclude the main diagonal elements (which
are the self-similarities of the vectors) from the computation, ensuring that we do not com-
pare a vector with itself. The temperature parameter τ is pivotal in controlling the sharpness
of the probability distribution, thereby influencing the convergence and performance of the
contrastive task.

As Equation (6) shows, the overall self-supervised learning objective consists of the
sum of the Temporal Contrasting losses and the Contextual Contrasting loss, weighted
by scalar hyperparameters λ1 and λ2 that indicate the importance of each respective
loss component.

L = λ1 · (Ls
TC + Lw

TC) + λ2 · LCC (6)

The final learning objective, as described above, beautifully brings together the in-
dividual contrasting loss components. The scalar hyperparameters allow for a nuanced
control over the contribution of each loss component, enabling the model to be tailored
according to specific requirements or based on empirical evaluations.

Through the integration of these modules, the contrastive transformer network (CTN)
is proficient at leveraging the initial samples for feature extraction, thereby facilitating the
training of downstream tasks.
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4. Experimental Setup
4.1. Dataset

For our empirical analysis, we procured a comprehensive dataset detailing the electric-
ity consumption of the Hangzhou International Expo Center (HIEC) in China. Spread over
a colossal area of 850,000 square meters, the HIEC, by the conclusion of December 2022, has
been the venue for an impressive tally of over 7400 conferences and 260 exhibitions. Given
its significant energy requirements, the HIEC stands as a prime candidate for in-depth
power consumption prognostication studies.

The dataset chronicles the daily electricity demand of the HIEC spanning from
1 September 2019 to 30 December 2022. The infrastructural layout of the HIEC bifur-
cates it into three disparate sectors: conference, hotel, and exhibition domains. These
sectors, by virtue of their unique operational purposes, are naturally expected to exhibit
divergent electricity consumption trajectories. However, a compelling congruence was
discerned in the power uptake patterns of air conditioning systems across these sectors.
Consequently, our dataset meticulously encompasses the air conditioning consumption
metrics from each of these domains.

To ascertain the integrity and precision of our recorded data, we harnessed sophisti-
cated remote sensing methodologies. This entailed deploying an ensemble of cutting-edge
sensors, judiciously positioned across the establishment. The instrumentation—a syner-
gistic blend of piezoelectric energy meters and infrared thermal sensors—empowered us
to chronicle instantaneous power consumption with impeccable accuracy. Specifically,
the piezoelectric meters adeptly registered the nuances in electrical demand, while the
infrared thermal apparatuses oversaw the performance and power metrics of the HVAC
(Heating, Ventilation, and Air Conditioning) systems, with a focus on air conditioning units.

Aware of the significant impact of climatic conditions on energy consumption, espe-
cially in HVAC systems, our dataset was complemented with historical weather data. This
information was sourced from the China Meteorological Data Service Center, providing
detailed records of daily maximum and minimum temperatures. By integrating these
weather variables, we not only enhanced the depth of our dataset but also underscored the
nuanced relationship between temperature variations and the energy requirements of air
conditioning units.

A sample display of the dataset can be found in Table 1. Different areas were categori-
cally encoded, i.e., 0 means conference area, 1 means hotel area, and 2 means exhibition
area. In the dataset, every record can be identified by the “Date” and “Area” columns. The
“Consumption(kWh)” column is the consumption of air conditioners, which is the target
value to forecast. The “Max_temperature(°C)” and “Min_temperature(°C)” columns are
auxiliary input variables to help forecasting.

Table 1. Daily samples of the dataset used in the paper.

Date Consumption (kWh) Max_Temperature (°C) Min_Temperature (°C) Area

5 January 2022 59.39 11 6 1
16 November 2021 667.93 19 10 2

4 May 2020 2366.46 36 20 1
15 November 2021 584.63 19 9 2

3 October 2021 5894.18 34 21 0

We also show part of the dataset in Figure 2. In the hotel area, the consumption of air
conditioners is visibly higher than other months in summer, which indicates that using
months as part of the input features can help the prediction. This pattern is similar in two
other areas. And it implies that temperature is an important variable that influences the
power consumption of air conditioners. Also, some anomaly points (zero values) in the
dataset are shown in Figure 2, so we cleaned the data before building the training and
testing set. For those points with zero values, we replaced them with the mean of the
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normal points neighboring the anomaly points. And the neighboring window size is set
to 14.

Figure 2. Daily consumption of the air conditioners in hotel area.

4.2. Comparative Methods

To validate the utility of proposed CTN model, we used five baseline methods for
comparison in the experiments. First, we adopted a simple model that uses the last known
target value to make a prediction, named as Baseline. Then, we adopted a designed LSTM
network [29] and a designed gated recurrent unit (GRU) neural network [30] for comparison.
Also, we used the classical self-supervised method SimCLR for comparison. LSTM and
GRU are both types of recurrent neural networks (RNNs) that have been specifically
designed to address the problem of vanishing gradients in traditional RNNs. Both GRU
and LSTM employ gating mechanisms that enable them to selectively retain or discard
information from previous time steps. Such mechanisms facilitate the preservation of long-
term dependencies in time series data. While GRU excels in capturing these dependencies, it
has occasionally been outperformed by LSTM in certain scenarios. Therefore, utilizing GRU
and LSTM offers a reflection of the performance of classic deep learning prediction methods
on this task. It is worth noting that we implemented time-series specific augmentations to
adapt SimCLR to our application as it was originally designed for images.

To further demonstrate the efficacy of the CTN model, we introduce two other baseline
methods for comparison: Random and Supervised. The Random approach initializes all
layers within the CTN model with random weights and subsequently freezes them; only
the final non-linear layer undergoes updates during training. Conversely, the Supervised
approach bypasses any pre-training of the CTN and trains it directly with labeled data.
Comparing the CTN’s performance against these methods provides clear evidence of the
benefits derived from its self-supervised learning phase in enhancing prediction accuracy.

We posit that employing these six comparative methods sufficiently underscores the
architectural merits of CTN as well as its advantages in self-supervised learning.

4.3. Implementation Details

To capture the intricate relationship between time and electricity consumption, we
undertook specific preprocessing steps during dataset construction. Initially, the “Date”
attribute was transformed into a “Month” variable. Subsequently, this “Month” variable
was combined with other features, namely “consumption”, “Max temperature”, and “Min
temperature”, to structure the dataset into four-dimensional vectors.
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A sliding window of length 7 was established to capture sequential temporal depen-
dencies, where data within each window served as historical context and the “consumption”
value of the subsequent day was treated as the prediction target. By employing this scheme,
the dataset was segmented into multiple overlapping samples.

Out of our dataset, a total number of 3515 samples were extracted. Every sample
corresponds to 7 days of data, capturing four distinct features for each day. Mathematically
speaking, our dataset is a tensor whose shape is (3515, 7, 4).

For enhanced model training and evaluation, the data samples underwent a random
split in a 4:1 ratio, designating the latter fraction for the testing set. The larger portion was
subsequently subdivided into training and validation sets at a 3:1 distribution.

Following our data split method, we obtained a distribution of 2109 samples for the
training set, 703 samples for the validation set, and 703 samples for the testing set.

All experiments were implemented on a personal computer with 32 GB RAM, and
an RTX 3090ti GPU manufactured by NVIDIA Corporation, headquartered in Santa Clara,
CA, USA. The coding environment wasPytorch [31]. We repeated all the experiments over
five times and recorded the average results.

The evaluation metrics are root mean squared error (RMSE) and mean absolute per-
centage error (MAPE). RMSE is a measure of the average deviation of the predicted values
from the actual values. As shown in Equation (7), RMSE is computed by three variables, yi
is the actual value of the i-th observation, ŷi is the predicted value of the i-th observation,
and n is the total number of observations.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

MAPE is a measure of the percentage difference between the predicted and actual values.
Equation (8) shows how MAPE is computed, yi is the actual value of the i-th observation, ŷi is
the predicted value of the i-th observation, and n is the total number of observations:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (8)

5. Results

The experimental results are presented in Table 2, which documents the RMSE and
MAPE metrics for both the comparative methods and CTN in the prediction task.

Table 2. Results of the comparative methods. The best results are shown in bold.

Method Baseline LSTM GRU SimCLR Random Supervised CTN

RMSE (kWh) 2536.55 2370.40 2416.31 2263.72 2919.22 2156.47 2117.31
MAPE 1.08 0.98 1.06 0.96 3.68 0.74 0.75

From an RMSE perspective, the CTN demonstrates superior performance with the
lowest error of 2117.31, slightly surpassing the Supervised method with an RMSE of 2156.47.
This suggests that our self-supervised learning enhances model proficiency, particularly
in limited data contexts. LSTM and GRU, while respectable, do not exceed the CTN’s
performance. The Random method’s high RMSE of 2919.22 highlights its inefficacy and
reaffirms the value of our pre-training strategy.

In terms of MAPE, the Supervised method slightly outperforms with a score of 0.74,
but the CTN closely follows at 0.75, reiterating its robust predictive power. The Random
method’s high MAPE of 3.68 further elucidates its predictive shortcomings.

The results underscore the CTN framework’s potential, outstripping traditional mod-
els like LSTM and GRU. SimCLR, another self-supervised approach, posts an RMSE of
2263.72 and MAPE of 0.96. While it surpasses models like LSTM and GRU, it does not match
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CTN’s prowess. The disparity suggests the limitations of relying solely on contrastive
learning, like SimCLR, without the CTN’s integrated advantages.

The uniqueness of the CTN lies in its fusion of contrastive self-supervised learning
and transformers, enhancing its ability to discern intricate temporal patterns crucial for
forecasting tasks like power consumption. SimCLR emphasizes instance discrimination
without accentuating temporal correlations, possibly explaining its marginally elevated
error metrics. Moreover, the CTN’s Contextual Contrasting module refines its feature
representations, strengthening its overall performance. This consolidative approach ensures
that the CTN achieves a comprehensive contrasting technique, refining feature robustness.

Conclusively, while SimCLR is an effective self-supervised method, electricity consump-
tion forecasting appears to benefit more from CTN’s comprehensive design. This emphasizes
the importance of tailoring self-supervised approaches to specific prediction challenges.

6. Conclusions

In this study, we developed the contrastive transformer network (CTN) for predicting
energy consumption in large buildings using small sample data. The model leverages an
efficient feature extraction architecture and self-supervised learning to improve predictive
accuracy. This research is important because it presents a new approach to tackle the
problem of small sample energy prediction, offering a valuable alternative when large-scale
data are unavailable or expensive to acquire. Our empirical results demonstrate that the
CTN is a superior method in this domain, especially in scenarios wherein data are limited.
For our small dataset, the CTN obtained 2117.31 in terms of RMSE, outperforming other
baseline methods. Going forward, we plan to explore more advanced self-supervised
techniques and alternative architectures to further refine the model’s predictive capabilities.
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