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Abstract: Real-time flight controllers are becoming dependent on general-purpose operating systems,
as the modularity and complexity of guidance, navigation, and control systems and algorithms
increases. The non-deterministic nature of operating systems creates a critical weakness in the
development of motion control systems for robotic platforms due to the random delays introduced by
operating systems and communication networks. The high-speed operation and sensitive dynamics
of UAVs demand fast and near-deterministic communication between the sensors, companion
computer, and flight control unit (FCU) in order to achieve the required performance. In this paper,
we present a method to assess communications latency between a companion computer and an RTOS
open-source flight controller, which is based on an XRCE-DDS bridge between clients hosted in the
low-resource environment and the DDS network used by ROS2. A comparison based on the measured
statistics of latency illustrates the advantages of XRCE-DDS compared to the standard communication
method based on MAVROS-MAVLink. More importantly, an algorithm to estimate latency offset and
clock skew based on an exponential moving average filter is presented, providing a tool for latency
estimation and correction that can be used by developers to improve synchronization of processes that
rely on timely communication between the FCU and companion computer, such as synchronization
of lower-level sensor data at the higher-level layer. This addresses the challenges introduced in GNC
applications by the non-deterministic nature of general-purpose operating systems and the inherent
limitations of standard flight controller hardware.

Keywords: flight control unit; companion computer; DDS network; non-deterministic delay; communication
latency; MAVLink; robot operating system; loosely coupled systems

1. Introduction

The growing interest in Autonomous Aerial and Underwater Vehicles (AAUVs) is
rapidly reshaping technologies that support new applications and improve performance.
The extensive range of applications and increasing complexity of missions are prompting
the development of advanced real-time flight controllers capable of integrating guidance,
navigation, and control (GNC) algorithms to reliably execute increasingly complex tasks.

State-of-the-art systems use a divided architecture to address the computational lim-
itations of standard flight control units (FCU), separating tasks between low-level and
higher-level layers [1]. This allows computationally intensive GNC functions to be handled
by the higher-level layers, which rely on companion computers that are typically more pow-
erful than the low-level FCU. While this division is a good alternative to support mission
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goals, it introduces a critical drawback in that high-level layers often use general-purpose
operating systems known for their non-deterministic time management and unpredictable
delays [2]. This creates challenges in developing high performance GNC solutions, as ran-
dom latencies introduced by the operating system and interface networks can affect the
overall performance of motion control systems [1–4].

The development of autonomous robotic platforms emphasizes software modularity
and integration with widely used frameworks. This study presents an innovative method
for reducing latency in packet synchronization between a companion computer and a Real-
Time Operating System (RTOS) flight controller (a device notably constrained in ternms
of computational resources) based on widely available open-source tools: a DDS network
in the Robot Operating System 2 (ROS 2) environment, the PX4 FCU, and the eXtremely
Resource Constrained Environment-Data Distribution Service (MicroXRCE-DDS) as an
intermediary agent between system level layers. Latency measurements for the proposed
method are compared against results from the same flight controller software, PX4, with the
well-known open-source Micro Air Vehicle Link (MAVLink) protocol, Robotic Operational
System (ROS), and MAVROS, a communication bridge between MAVlink and ROS [1,5–8].

In summary, this paper presents a method to assess latency in communications be-
tween the flight controller and companion computer. A comparison based on the measured
latency statistics illustrates the advantages of XRCE-DDS compared to standard communi-
cation methods based on MAVROS-MAVLink. More importantly, an algorithm to estimate
latency offset and clock skew based on an exponential moving average filter is presented,
providing a tool for latency estimation and correction that can be used by developers to
improve synchronization of processes that rely on timely communication between the
FCU and companion computer, such as synchronization of lower-level sensor data at the
higher-level layer. This addresses the challenges introduced in GNC applications by the
non-deterministic nature of general-purpose operating systems and the inherent limitations
of standard flight controller hardware.

2. Materials and Methods
2.1. Flight Controller Unit

The flight control unit used in this study was the Holybro Pixhawk 4, running a
slightly modified PX4 firmware version 1.14.0 [7]. The FCU uses two ARM processors:
an STM32F765 as the CPU and an STM32F100 as the IO processor. The internal sensors
include an inertial measurement unit (IMU), magnetometer, and barometer, which can be
fused with other non-deterministic and deterministic sensors for state estimation during
operation. Communication between the FCU and high-level layer was implemented using
an FCU UART port at 921600 BPS.

2.2. PX4 Firmware

PX4 works through a topic publish/subscribe framework called uORB that uses inter-
nal message definitions. This format allows the user to declare custom uORB definitions
to be used internally in the FCU, and enables all uORB definitions to be exported for
use in an ROS/ROS 2 package. While PX4 can accept MAVlink messages, these have to
be converted to uORB in order to properly interface with critical internal functionalities;
custom modifications to MAVlink require substantial user effort [7].

2.3. ROS/ROS 2

In robotic systems with divided architectures, the two most popular current frame-
works are the Robot Operating System (ROS) and Robot Operating System 2 (ROS 2).
Although similar in name, their internal publish/subscribe models have fundamentally
different protocols. ROS uses a custom message queuing protocol similar to Advanced
Message Queuing Protocol (AMQP), in which two types of nodes are used: ROS nodes and
a ROS Master. A roscore is a computational entity that can communicate with other nodes
and can publish and subscribe to receive and transmit data. The ROS Master acts as central
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hub for the ROS ecosystem, keeping a registry of active nodes, services, and topics to ease
communication between nodes, i.e., discovery registration. Multiple ROS nodes can be
executed at the same time and be registered to a roscore; however, cooperation between
multiple roscores is not natively supported by ROS [9]. In contrast, ROS 2 implements a
decentralized architecture using a Data Distribution Service (DDS), which eliminates the
need for a ROS Master and automates the discovery registration. ROS 2 nodes can transmit
and receive data without central coordination, with the direct result that ROS2 incurs less
latency than ROS. ROS 2 enables the use of several node types (regular, real-time, intra-
process, composable, and lifecycle nodes), enabling cooperation between different layers of
a system as long as the ROS 2 nodes of interest are under the same DDS domain [10,11].

2.4. MAVlink

MAVlink is an open-source messaging protocol widely used by the UAV industry. It
uses a header-only message marshaling library optimized for low-resource environments.
The implementation of custom messages in MAVlink is a demanding task, in particular
when integrating ROS/ROS 2 routines. Custom implementations require changes to the
FCU’s source code as well as modifications to the communications bridge used to transmit
and translate messages between the ROS/ROS 2 nodes and the FCU [8,10–12].

2.5. MAVROS

MAVROS is the most commonly used open-source bridge between ROS and MAVlink,
converting ROS messages to their MAVlink equivalent. MAVROS source code has to
be modified to implement custom MAVlink messages; for instance, a MAVROS extra
plugin, which requires a complex set of tasks, is needed to implement a simple addition.
Although the MAVROS team has announced their intention to support ROS 2 in the future,
the majority of current UAV applications using MAVlink coupled with ROS/ROS 2 use the
ROS-compatible MAVROS version. The use of MAVROS and ROS 2 could be implemented
using a ROS–ROS2 bridge, although this would increase computational effort and latency,
as ROS and ROS2 use different communication architectures [13].

2.6. MicroXRCE-DDS

MicroXRCE-DDS (Figure 1) is a protocol that allows low-resource devices to be in-
tegrated with a DDS network while maintaining real-time and reliable data distribution
capabilities (RTPS). In this investigation, it is used as an ROS 2 middleware to enable
nodes running on the FCU to communicate with nodes running on the companion com-
puter [2,14,15].

Figure 1. MicroXRCE-DDS architecture [15].

2.7. Companion Computer

The companion is an auxiliary computer running ROS/ROS 2 nodes to support the
required mission functionality. It communicates with the FCU using an FTDI cable (USB to
UART). For this investigation, the companion computer was an RPi 4 with 8 GB of RAM.
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2.8. Host Computer

The host was implemented on an x86 computer with an Intel Xeon(R) Gold 6148 CPU
running Ubuntu 22.04 with Gazebo 11 and QGroundControl. The host was used as the
terminal for the FCU and as a virtual environment to emulate the PX4 internal sensor
data [16,17].

2.9. Latency Assessment

Latency assessment was implemented via hardware-in-the-loop simulation, and con-
sisted of measuring the time offset between transmitted and received messages on both
the FCU side and a high-frequency ROS or ROS 2 node. The forward path consisted of
messages sent from the companion computer, simulating data from an external vision sen-
sor to be fused at the PX4’s Extended Kalman Filter (EKF2); latencies were collected when
the message was parsed into the estimator module in the FCU. The reverse path consisted
of messages sent from the FCU to the ROS or ROS 2 node containing raw measurements
from the FCU’s IMU. The choice of messages relates to typical GNC applications such as
SLAM or Visual Inertia Odometry, in which rapid IMU feedback and fast state estimate
transmission are crucial for mission performance. The messages were custom-modified to
carry the same number of 115 bytes.

Figure 2 outlines the PX4’s EKF2 algorithm [18]. The top block shows the main
estimator, which uses a ring buffer to account for different sensor sampling frequencies and
predict the states in a delayed horizon. The second block is the output predictor, which
uses corrected high-frequency IMU measurements for quick state prediction and UAV
rate control. Pseudocode and diagrams outlining communications between higher-level
and lower-level processors are presented for both scenarios in Algorithms 1 and 2, and in
Figures 3 and 4.

Figure 2. PX4 EKF2 architecture [18].
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Figure 3. ROS and FCU communications for latency assessment using MAVROS/MAVlink bridge.

Algorithm 1 Latency Test Node in rospy (ROS)

Class LatencyTest:
Initialize variables
Initialize publisher and subscriber
Initialize timer

function INITIALIZE VARIABLES
time_packet_creation← empty deque of max length 2
o f f set_estimated, N, high_dev_counter, high_rtt_counter ← 0
alpha, beta← 0.05
skew← 0
convergence_window← 500

function INITIALIZE PUBLISHER AND SUBSCRIBER
Subscribe to ’mavros/imu/data_raw’
Publish to ’mavros/vision_pose/pose’

function INITIALIZE TIMER
Set timer frequency to 200 Hz

function SENSOR CALLBACK(msg)
Calculate imu_timestamp, current_time
Obtain imu_time_o f f set_observed, rtt
Update o f f set and counters based on rtt and imu_time_o f f set_observed
Write data to log.txt

function UPDATE OFFSET AND COUNTERS(rtt, imu_time_offset_observed)
if rtt < 10,000 then

Update alpha, beta, and o f f set using imu_time_o f f set_observed
else

high_rtt_counter ← high_rtt_counter + 1

function CMDLOOP CALLBACK(event)
Create and publish vio_msg
Append vio_msg.header.stamp to time_packet_creation

function RESET FILTER
N← 0
OffsetEstimated ← 0
SkewEstimated ← 0
α̂← αmax
β̂← βmax
high_deviation_count← 0
high_rtt_count← 0
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Figure 4. ROS 2 and FCU communications for latency assessment using the MicroXRCE–DDS bridge.

Algorithm 2 Latency Test Node in RCLPY (ROS 2)

Class LatencyTest extends Node:
Initialize variables
Initialize publisher and subscriber
Initialize timer

function INITIALIZE VARIABLES
time_packet_creation← empty deque of max length 2
o f f set_estimated, N, high_dev_counter, high_rtt_counter ← 0
alpha, beta← 0.05
skew← 0
convergence_window← 500

function INITIALIZE PUBLISHER AND SUBSCRIBER
Create a subscription to ‘/fmu/out/vehicle_imu’
Create a publisher to ‘/fmu/in/vehicle_visual_odometry’

function INITIALIZE TIMER
Set timer frequency to 200 Hz

function SENSOR CALLBACK(msg)
Calculate imu_timestamp, current_time
Calculate imu_time_o f f set_observed, rtt
Update o f f set and counters based on rtt and imu_time_o f f set_observed
Write data to “time_offsets.txt”

function UPDATE OFFSET AND COUNTERS(rtt, imu_time_offset_observed)
if rtt < 10,000 then

Update alpha, beta, and o f f set using imu_time_o f f set_observed
else

high_rtt_counter ← high_rtt_counter + 1

function CMDLOOP CALLBACK
Create and publish vio_msg
Append vio_msg.timestamp_sample to time_packet_creation

function RESET FILTER
N← 0
OffsetEstimated ← 0
SkewEstimated ← 0
α̂← αmax
β̂← βmax
high_deviation_count← 0
high_rtt_count← 0
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The ROS messages in Table 1 directly translate into the uORB messages shown in
Table 2. The red and blue lines in Figures 3 and 4 show the message flow (IMU and VIO)
and modules involved. Interpreting the time offset results requires understanding how
the FCU firmware and the ROS/ROS 2 nodes estimate the time offset in each message,
including how both lower-level and higher-level system time bases can be aligned and how
the communication delay is quantified. The time offset is defined as the difference between
two clock readings:

OffsetObserved(i) =
TPacket Creation(i) + TCurrent(i)− 2× TRemote Stamp(i)

2
(1)

where TPacket Creation is the time when the packet containing the uORB or MAVlink messages
was created, that is, the time when information originated from the ROS/ROS 2 node or FCU
was serialized and sent, TRemote Stamp is the time when the message was received and sent
back from the remote level (either the higher-level or lower-level system layer), and TCurrent
is the current system time. Clock skew is defined as the difference in the register update
rate (loop rate) at both the FCU and companion computer. The offset and clock skew are
estimated using an exponential moving average filter, as described in [19,20]:

OffsetEstimated(i) = α×OffsetObserved(i)

+ (1− α)× (OffsetEstimated(i− 1) + SkewEstimated(i− 1))
(2)

SkewEstimated(i) = β× (OffsetEstimated(i)−OffsetEstimated(i− 1))

+ (1− β)× SkewEstimated(i− 1)
(3)

where α and β are the filter gains for the offset and skew, respectively. To check convergence
of the estimated offset, the message round-trip time is obtained and to determine whether
it falls within a maximum threshold:

TRTT(i) = TCurrent(i)− TPacket Creation(i) < 10 ms. (4)

If Equation (4) is true, the deviation between the estimated offset and the latest
observed offset is compared against a maximum threshold:

OffsetEstimated(i)−OffsetObserved(i + 1) < 100 ms. (5)

If Equation (5) holds, the statistical quality of α and β is assessed for each estimated
offset by counting the number of times the expressions used to determine α and β are called
in the code:

N ≥ 500 = Convergence Window⇒ Converged. (6)

If Equations (4) and (5) hold while Equation (6) fails (i.e., the number of calls is smaller
than the convergence window), then α and β are corrected by interpolation:

p = 1.0− exp

(
0.5×

(
1.0− 1.0

1.0− N
500

))
(7)

α̂ = p× αmin + (1.0− p)× αmax (8)

β̂ = p× βmin + (1.0− p)× βmax (9)

with αmax and βmax set as 0.05 and αmin and βmin set as 0.003 for convergence of the moving
average filter under the tested conditions. The one-way time-synchronized latency is
as follows.



Sensors 2023, 23, 9269 8 of 16

Latency1 = THigher-level⇒Lower-level −OffsetHigher-level⇒Lower-level (10)

Latency2 = TLower-level⇒Higher-level −OffsetLower-level⇒Higher-level (11)

The respective bounds of 10 ms and 100 ms in Equations (4) and (5) are specific to the
implementation in the PX4 platform, and are MAVlink defaults [12,18]. While they can be
fine-tuned, this could affect the number of filter resets, in turn impacting estimation of the offset.

Table 1. ROS: FCU communication using MAVROS bridge.

MAVROS Topic ROS Message Rate (Hz)

mavros/vision_pose/pose 1 PoseStamped 200
mavros/imu/data_raw 2 Imu 200

1 Published from companion computer, assessed at FCU. 2 Published from FCU, assessed at companion computer.
The message and topic rate were custom-modified for comparison; the original rate was 50 Hz.

Table 2. ROS 2: FCU communication using MicroXRCE-DDS bridge.

Topic uORB Rate (Hz)

vehicle_visual_odometry 1 VehicleOdometry 200
vehicle_imu 2 VehicleImu 200

1 Published from companion computer, assessed at FCU. 2 Published from FCU, assessed at companion computer.
Custom definition.

2.10. Experimental Setup

A hardware-in-the-loop (HIL) setup was used for the latency assessment (Figure 5),
based on the following: Pixhawk 4 flight controller FMU-V5 (Lower-level system), compan-
ion computer (Higher-level system), and HIL simulation host computer.

Figure 5. Hardware-in-the-loop setup for end-to-end latency measurements.

3. Results
3.1. Latency Comparison in the Flight Control Unit

The experiment sequence is described in detail in Section 2.9. After collecting time
stamps from the Extended Kalman Filter (EKF2) module, the advantages of DDS net-
work communication in UAVs become quite clear. A reduction in average latency is
found; more importantly, the reduction of latency peaks with the use of the MicroXRCE–
DDS bridge, which enables more accurate delay prediction for external sensor data fusion.
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Figures 6 and 7 show results from a stress test at maximum companion computer CPU
usage while prioritizing the ROS2 or ROS process in order to check the latency difference
when transmitting an external odometry message. In this scenario, the latency is defined
as the time elapsed between message creation at the ROS/ROS2 Node and message ar-
rival at the EKF2 module, including the time synchronization process at the FCU, i.e.,
Algorithm 3 and Equation (10). Figure 8 shows the consequence of transmitting and receiv-
ing high-frequency topics in a low-resource device coupled to a slightly non-robust DDS
network due to high companion computer CPU usage, namely, latency peaks, which can
usually be mitigated using ROS2 Quality of Service settings [21]. For all assessments using
the MicroXRCE-DDS–ROS 2 bridge, the publishers and subscribers used the following
configuration settings:

• Reliability: BEST_EFFORT; the publisher attempts to deliver the maximum number of
samples possible.

• History and Queue Size: KEEP_LAST; only one message is stored in the processing
queue.

• Durability: TRANSIENT_LOCAL; the publishers are responsible for sending the last
available message to newly discovered subscribers.

Figure 6. Visual odometry message: latency comparison, FCU.

Figure 7. Visual odometry message: comparison of latency probability distribution, FCU.
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Algorithm 3 Time Synchronization Algorithm (PX4 uORB/MAVlink [12,18])

1: N← 0
2: OffsetEstimated ← 0
3: SkewEstimated ← 0
4: α̂← αmax . Initialize α̂ as αmax
5: β̂← βmax . Initialize β̂ as βmax
6: high_deviation_count← 0
7: high_rtt_count← 0
8:
9: procedure UPDATE(TCurrent, TRemote Stamp, TPacket Creation)

10: if TRemote Stamp > 0 then

11: OffsetObserved ←
TPacket Creation+TCurrent−2×(TRemote Stamp)

2
12: TRTT ← TCurrent − TPacket Creation
13: deviation← |OffsetEstimated −OffsetObserved|
14: if TRTT < 10 ms then
15: if est_sync_converged()∧ (deviation > 100 ms) then
16: high_deviation_count← high_deviation_count + 1
17: if high_deviation_count > 5 then
18: RESET_FILTER

19: else
20: if not EST_SYNC_CONVERGED then
21: progress← N/500
22: p← 1− exp

(
0.5× (1− 1

1−progress )
)

23: α̂← p× αmin + (1− p)× αmax
24: β̂← p× βmin + (1− p)× βmax
25: else
26: α̂← αmin
27: β̂← βmin

28: ADD_SAMPLE(OffsetObserved)
29: N← N + 1
30: high_deviation_count← 0
31: high_rtt_count← 0
32: else
33: high_rtt_count← high_rtt_count + 1
34:
35: procedure ADD_SAMPLE(OffsetObserved)
36: OffsetEstimated−1 ← OffsetEstimated
37: if N == 0 then
38: OffsetEstimated ← OffsetObserved
39: else
40: OffsetEstimated ← α̂×OffsetObserved + (1− α̂)× (OffsetEstimated + SkewEstimated)
41: SkewEstimated ← β̂ × (OffsetEstimated − OffsetEstimated−1) + (1 − β̂) ×

SkewEstimated

42:
43: procedure RESET_FILTER
44: N← 0
45: OffsetEstimated ← 0
46: SkewEstimated ← 0
47: α̂← αmax
48: β̂← βmax
49: high_deviation_count← 0
50: high_rtt_count← 0



Sensors 2023, 23, 9269 11 of 16

Figure 8. Visual odometry message: latency when using MicroXRCE-DDS–ROS 2.

3.2. Latency Comparison at the Companion Computer

The latency measurements at the companion computer follow the logic shown in
Algorithms 1–3. Figure 9 shows the latency values with the elapsed time between an IMU
sample and message arrival at the ROS/ROS2 Node, including the time synchronization
correction at the companion computer, i.e., the estimated offset from Equation (2) after
convergence is reached. Figure 10 shows the corresponding probability distribution. The
messages are time-synchronized at the same node where the latency is assessed, as can be
seen by comparing Figure 9 to Figure 6. There is a 349.01 us difference in average latency
between the MAVROS–ROS and XRCE–DDS architectures.

Figure 9. IMU message: latency comparison, companion computer.



Sensors 2023, 23, 9269 12 of 16

Figure 10. IMU message: comparison of latency probability distribution, companion computer.

3.3. Flight Controller CPU and RAM Utilization

The effect of the MicroXRCE-DDS–ROS2 bridge implementation in terms of FCU
CPU and RAM usage is significant, and can provide insights into the minimum hardware
requirements of future UAV missions. In this study, both MAVROS–ROS and MicroXRCE–
DDS bridges were deployed using only those topics listed in Tables 1 and 2. The CPU
demand decreases when using the MicroXRCE-DDS–ROS2 bridge. However, this is related
to the capabilities of the chosen FCU hardware (in this case, the PX4 FCU V5, a popular
flight control unit) and the number and loop rate of the topics transmitted to the FCU and
companion computer. The jump in CPU/RAM usage shown below (Figure 11) corresponds
to the beginning of operations, i.e., the start of the Gazebo simulator; a second jump can
occur if the MicroXRCE–DDS bridge is not active at the beginning of operations or is not
running at its fullest yet, i.e., when the ROS/ROS 2 routines have not yet started.

Figure 11. Pixhawk 4 FMU-V5: CPU and RAM load comparison during latency testing.

4. Discussion
4.1. Latency Reduction and Time Synchronization for Enhanced GNC in UAVs

This study highlights a crucial aspect of software development for complex UAV
missions: the inherent latency in multi-layer system architectures. The results presented
(Figures 6 and 9) illustrate that the XRCE-DDS–ROS 2 bridge is not only an effective method
to reduce communication latency; it is a cornerstone for the development of enhanced GNC
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algorithms, as the performance of GNC algorithms relies on timely and reliable data ex-
change [22]. The proposed approach paves the way to develop synchronization corrections
for internal and external sensor data within UAV systems, enabling higher performance
by providing more accurate timing. The latency correction approach boils down to the
estimation of the offset and clock skew, as respectively described in Equations (2) and (3).
Note that time synchronization is not symmetrical; the latency in each direction needs to be
corrected separately.

4.2. Time Synchronization Effects in UAV High-Level Layer (Companion Computer)

Synchronization is a fundamental aspect of real-time systems. Lack of accurate time-
keeping introduces jitter in control signals and degrades the performance of sensor fusion
estimation. The proposed synchronization approach allows ROS or ROS 2 nodes to combine
their time-synchronized sensor data (data from a low-resource device) with sensor data at
the higher-level layer (e.g., a camera connected to the companion computer), which enables
improved sensor fusion at the companion level for operations such as Visual Inertial Odom-
etry (VIO) and SLAM, thereby enhancing loosely coupled distributed UAV systems [3,4,23].
Implementing Algorithm 1 or Algorithm 2 in the high-level layer accounts for asymmetrical
network paths and processing delays until data arrival at the GNC ROS/ROS 2 node by
using reliable and updated offset and clock skew estimates as opposed to assuming a
symmetrical network path with time synchronization at the communication bridge. Fur-
thermore, the proposed implementation accounts for synchronization of the sample time
instead of the message header time, i.e., the timestamp when the measurements (e.g., IMU
or VIO) were collected, as opposed to the timestamp when the message was sent from
the FCU to the companion computer (or vice-versa). A particular case of interest is where
TRemote Timestamp = TSensor Sample.

4.3. Event-Driven Communication between Flight Controller and Companion Computer

The modifications implemented in the PX4 firmware to support this study include
a complete event-driven MicroXRCE-DDS–ROS 2 bridge, which allows incoming and
outgoing messages to be consumed by requesting processes as soon as they are available.
A direct consequence of this is a reduction in the latency’s standard deviation, increasing
offset predictability and lowering end-to-end delays.

4.4. Trade-Offs of Using DDS Networks in UAV Systems

The decentralized nature of a DDS network improves fault tolerance by improving
the system’s resilience against data outliers. Furthermore, robust security features can be
employed in DDS (DDS-security). Security enhancements in ROS2 include authentication
of nodes joining the DDS domain and encryption of data transmitted through ROS2 topics.
DDS enables deployment of companion computers that use real-time operating systems,
with potential to further reduce latency and improve synchronization [9,11,24,25].

On the other hand, even when coupled with MicroXRCE-DDS, DDS networks can
cause spikes in the FCU’s CPU and RAM utilization if the amount of topics or the message
size to be transmitted and received is not properly monitored. This increase is only signifi-
cant when the FCU publishes and subscribes to a large number of topics (10+), which is
not common in UAV missions; nevertheless, it should be carefully monitored, as routine
complexity and scalability are related to this issue.

4.5. Current Limitations of MAVlink and MAVROS

The MAVlink protocol, although widely used, is expected to become unsuitable in the
future as an internal communication protocol between FCUs and companion computers.
Message types are constantly evolving as new algorithms, sensors, and data acquisition
technologies are developed. Adding a new MAVlink message and streaming it to and
from the FCU using MAVROS is a demanding process, and requires extensive knowledge
of the MAVlink and MAVROS libraries. ROS depends on a central node that acts as a
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look-up table with respect to the network nodes, which creates further increases in latency
compared to ROS 2, where nodes are discovered automatically. The PX4 FCU firmware
uses one type of message for internal communications, uORB, which can be used directly
in ROS 2 nodes. On the other hand, MAVROS-ROS uses MAVlink messages that need to be
converted to ROS messages on the companion computer side and to uORB in the FCU side.

The results presented here (Table 3) clearly show the increased latency created by the
interface layer that converts MAVlink messages to the internal communication protocol in
the PX4 FCU. Even with a MAVROS version capable of working in the ROS 2 framework,
the delay created by the interface layer remains an issue for future UAV applications.
MAVlink messages will continue to be used in several FCU applications, in particular those
with well-establish functionalities such as radio transmission of telemetry packets. That
said, the MAVlink community should continue to develop alternative communications
solutions that can be used with uORB [12].

Table 3. Results summary.

Method Path FCU Resource
Utilization (%) 1

Average Latency and
Standard Deviation

(Microsec)

MicroXRCE-DDS–ROS 2 Companion Computer→ Flight Controller CPU: 28.5 1329 ± 162
Flight Controller→ Companion Computer RAM: 57.6 1752 ± 315

MAVlink–MAVROS (ROS) Companion Computer→ Flight Controller CPU: 59.1 1678 ± 560
Flight Controller→ Companion Computer RAM: 64.9 2133 ± 1020

1 Average values, Holybro Pixhawk 4 FMU-v5.

5. Conclusions

Our analysis and testing results show that MicroXRCE-DDS–ROS 2 is a better option
as a communication bridge between a high-level companion computer and a low-resource
FCU compared to the MAVROS–ROS bridge, having smaller communication latency and
providing operation closer to real-time in GNC applications. The decentralized nature of
DDS networks enables enhanced security features and risk reduction in AAUV missions.
The proposed approach to time synchronization and latency correction improves perfor-
mance in multi-layered AAUV systems, as it allows proper time alignment of sensor data
from lower-level layers; algorithms in the higher-level layer have have access to data with
more accurate timestamps. This can be particularly beneficial in sensor fusion for depth
and visual-inertial odometry applications, where IMU measurements from the FCU need to
be time-synced with camera frames at the companion computer for improved performance.
An algorithm to estimate latency offset and clock skew based on an exponential moving
average filter has been presented, providing a tool for latency estimation and correction
that can be used by developers to improve synchronization of processes that rely on timely
communication between an FCU and companion computer, such as the synchronization of
lower-level sensor data at the higher-level layer. This addresses the challenges introduced
in GNC applications by the non-deterministic nature of general-purpose operating systems
and the inherent limitations of standard FCU hardware.

Future Work

• Assessment of the effect of high-level latency correction in the performance of GNC
algorithms, in particular motion control.

• Assessment of scalability effects on latency and latency correction when using denser
ROS 2 routines, i.e., when more DDS topics are shared between the FCU and compan-
ion computer.

• A latency comparison between the MicroXRCE-DDS–ROS 2 bridge and other emerging
technologies, such as Zenoh-Pico–ROS 2 [26].
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