
Citation: Dini, P.; Saponara, S.

Design and Experimental

Assessment of Real-Time Anomaly

Detection Techniques for Automotive

Cybersecurity. Sensors 2023, 23, 9231.

https://doi.org/10.3390/s23229231

Academic Editor: Hwan-Sik Yoon

Received: 12 October 2023

Revised: 14 November 2023

Accepted: 15 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design and Experimental Assessment of Real-Time Anomaly
Detection Techniques for Automotive Cybersecurity
Pierpaolo Dini 1,* and Sergio Saponara 1

Department of Information Engineering, University of Pisa, Via Girolamo Caruso n.16, 56100 Pisa, Italy
* Correspondence: pierpaolo.dini@ing.unipi.it

Abstract: In recent decades, an exponential surge in technological advancements has significantly
transformed various aspects of daily life. The proliferation of indispensable objects such as smart-
phones and computers underscores the pervasive influence of technology. This trend extends to
the domains of the healthcare, automotive, and industrial sectors, with the emergence of remote-
operating capabilities and self-learning models. Notably, the automotive industry has integrated
numerous remote access points like Wi-Fi, USB, Bluetooth, 4G/5G, and OBD-II interfaces into vehi-
cles, amplifying the exposure of the Controller Area Network (CAN) bus to external threats. With a
recognition of the susceptibility of the CAN bus to external attacks, there is an urgent need to develop
robust security systems that are capable of detecting potential intrusions and malfunctions. This
study aims to leverage fingerprinting techniques and neural networks on cost-effective embedded
systems to construct an anomaly detection system for identifying abnormal behavior in the CAN bus.
The research is structured into three parts, encompassing the application of fingerprinting techniques
for data acquisition and neural network training, the design of an anomaly detection algorithm
based on neural network results, and the simulation of typical CAN attack scenarios. Additionally, a
thermal test was conducted to evaluate the algorithm’s resilience under varying temperatures.

Keywords: artificial intelligence; machine learning; statistical learning; controlled area network;
networking; cybersecurity; automotive; mechatronics

1. Introduction
1.1. Motivations for CAN Cybersecurity

Rapid technological progress has made it possible for a wide range of industries,
such as robotics, mechatronics, automation, and the automotive sector, to operate in a
highly networked global environment. Although efficiency has increased significantly,
these domains are now more vulnerable to growing cybersecurity threats [1–5]. The ex-
tensive usage of automation systems in the field of robotics has made them susceptible to
cyber-attacks, which might endanger both human safety and valuable assets [6–9]. Com-
parably, industries across the board are now vulnerable to cybersecurity attacks due to
the incorporation of software components in mechatronics, which combines electronics,
software, and mechanics [10–13]. Automation in digital networks across several industries
has increased the risk of cyber-attacks, which might have major operational and financial
consequences [14–17]. The continuous shift in the automotive industry toward connected
and automated vehicles has highlighted how important cybersecurity is for protecting
user privacy and vehicle management systems. In digital technology-driven areas, cyber-
security essentially acts as the cornerstone for safeguarding against monetary losses and
guaranteeing human welfare. This requirement also applies to car networking systems,
where hackers may put human lives in danger. The automotive sector actively works
with cybersecurity professionals to strengthen security measures. They concentrate on
secure updates, customized communication protocols, and intrusion detection systems for
vehicular networks. To sum up, cybersecurity plays a critical role in these many industries,
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acting as the foundation for guaranteeing safety and smooth functioning. Through ongoing
research and innovation, we can create a future where technology is strong and resilient
against cyber-attacks, ensuring security and peace of mind.

In modern vehicles, there are numerous electronic control units (ECUs) used for
automation and comfort features, both of the driver and passengers [18]. Included in
this class are ECUs on which advanced algorithms and features are integrated for cruise
control, airbag control, temperature management, assisted parking, infotainment, etc. One
of the problems for security in data exchange and enabling cybersecurity issues is related
to the interconnections between the various ECUs [19]. The use of remote access points,
including Wi-Fi, USB, Bluetooth, 4G/5G, and OBD-II interfaces, has increased dramatically
in the automotive industry in recent years [20]. On the other hand, because of their
widespread use, automotive networks are now more susceptible to outside attacks. These
networks may be targeted by hostile parties who want to take over, change car systems,
or steal confidential data. As a result, creating strong security systems that can identify
and stop such breaches or assaults is imperative. In the automotive industry, one of the
most often used protocols for intra-ECU communication is the Controller Area Network
(CAN) bus. The numerous noteworthy characteristics of the CAN protocol include its
ease of wiring, strict response times, high immunity to interference, error containment,
and multi-master protocol capabilities [21]. The Carrier Sense Multiple Access/Bit-wise
Arbitration (CSMA/BA) technique is used by the CAN system to control bus traffic. When
two or more nodes initiate transmission simultaneously, an arbitration process based on ID
prioritizing is commenced. But it is important to understand that the CAN bus protocol
does not include a basic security mechanism, which leaves connected devices vulnerable to
adversaries [22]. By taking advantage of weaknesses in the CAN bus protocol, aggressors
can initiate various assaults that have the potential to impede vehicle functions. The lack
of an authentication element in CAN frames creates this vulnerability, which allows any
transmitting ECUs to mimic other ECUs. Additionally, the lack of content encryption in
CAN frames gives adversaries a simple way to examine how target ECUs operate using
CAN frame records from the past [23].

Although data encryption techniques have been proposed in the literature, their
application to the CAN bus protocol has shown them to be unsuccessful [24]. Moreover,
frames with lower IDs (the highest priorities) might preempt the bus using the priority-
based arbitration process, forcing all other CAN frames to cede. In light of these technical
aspects, a wide range of techniques have been put forth in the body of literature to detect
possible assaults on the CAN network. Our novel method, which we provide in this study,
improves and applies previous research findings to real-world CAN networks.

Our approach makes use of real-time analysis on a simple platform, and thermal
testing is used to validate the results. The first part will address data acquisition, explaining
the methods and approaches used to collect and organize data. Because of the remarkable
multi-class classifier performance of Artificial Neural Networks (ANNs) and their simplicity
in embedded system integration, we have decided to use them. The results of experimental
testing, which include the evaluation of several attack scenarios put out in the literature to
verify the Intrusion Detection System (IDS) algorithm, will then be presented. In the end,
the robustness of our proposed method with respect to temperature variation is shown,
and this is well known to affect the circuit aspects, and consequently, the physical layer
associated with the CAN protocol.

1.2. The State-of-the-Art on CAN Cybersecurity

There are several detection algorithms proposed in the literature to address the cyber-
security issues related to the Controller Area Network (CAN) protocol. Here is an overview
of some of the state-of-the-art detection algorithms.

(1) Two-Step Algorithm: This algorithm uses a mixed approach of temporal-spatial
analysis to detect cyber-attacks over the CAN bus. The algorithm first detects the
abnormal behavior of the CAN bus and then identifies the source of the attack [25–29].
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(2) Intrusion Detection System (IDS): IDS is a popular security solution that uses crypto-
graphic-based software to address CAN network security issues. The IDS ensures that
the exchanged CAN data frame between the two end nodes is authorized. Researchers
have proposed various IDS algorithms, such as a lightweight algorithm based on the
observance of CAN packets frequencies, an anomaly-based detection method based
on the time interval feature of the consecutive CAN packets, and a graph-based feature
method that uses machine learning algorithms [30–42].

(3) CAN-ADF: The Controller Area Network Attack Detection Framework (CAN-ADF)
is a framework that uses field classification, modeling, and anomaly detection to
detect cyber-attacks on unknown CAN bus networks. The framework uses a holis-
tic approach to detect cyber-attacks and provides a comprehensive solution to the
cybersecurity issues related to the CAN protocol [43,44].

(4) Deep Learning Techniques: Intrusion Detection Systems (IDSs) using deep learning
techniques are also proposed in the literature. These IDSs identify cyber-attacks when
given a sample of network traffic collected from real-world computer networks. The
IDSs using deep learning techniques are powerful and can detect cyber-attacks with high
accuracy [45–49].

In summary, various detection algorithms have been proposed in the literature to address
the cybersecurity issues related to the CAN protocol. These algorithms use different
approaches, such as temporal-spatial analysis, cryptographic-based software, anomaly-
based detection, graph-based feature methods, and deep learning techniques. The selection
of the detection algorithm depends on the specific requirements of the application and the
level of security needed.

Electronic Control Units (ECUs) are an essential component of the Controller Area
Network (CAN) protocol used in the automotive industry. ECUs communicate with each
other over the CAN bus protocol, which ensures high communication rates. However, the
CAN protocol is prone to various cybersecurity attacks, and ECUs are vulnerable to these
attacks. To address this issue, researchers have proposed ECU fingerprinting algorithms
to detect and prevent cyber-attacks on the CAN bus. Here is an overview of some of the
state-of-the-art ECU fingerprinting algorithms:

(1) Clock-based IDS (CIDS): CIDS is an anomaly-based intrusion detection system that
measures and exploits the intervals of periodic in-vehicle messages for fingerprint-
ing ECUs. The fingerprints are then used for constructing a baseline of the ECUs’
clock behaviors with the Recursive Least Squares (RLS) algorithm. Based on this
baseline, CIDS uses Cumulative Sum (CUSUM) to detect any abnormal shifts in the
identification of errors, which is a clear sign of intrusion [50–56].

(2) Physical-Fingerprinting of Electronic Control Unit (ECU) Based on Machine Learning
Algorithm: This algorithm uses machine learning algorithms to identify the phys-
ical fingerprints of ECUs based on the time and frequency domain features of the
consecutive CAN packets. The algorithm classifies the ECUs based on their physical
fingerprints and detects any abnormal behavior [57–64].

(3) ECU Fingerprinting through Parametric Signal Modeling and Artificial Neural Net-
works: This algorithm uses parametric signal modeling and Artificial Neural Networks
to identify the physical fingerprints of ECUs. The algorithm extracts the features of
the CAN packets and uses them to train the Artificial Neural Network. The trained
network is then used to classify the ECUs and to detect any abnormal behavior [65–70].

(4) Two-Point Voltage Fingerprinting: This algorithm uses voltage measurements to identify
the physical fingerprints of ECUs. The algorithm measures the voltage at two points
in the CAN bus and uses the difference between the two measurements to identify the
ECU. The algorithm can detect any masquerading attacks on the CAN bus [71–76].

In summary, ECU fingerprinting algorithms are proposed to detect and to prevent cyber-
attacks on the CAN bus. These algorithms use different approaches such as clock-based IDS,
machine learning algorithms, parametric signal modeling, and Artificial Neural Networks.
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The selection of the ECU fingerprinting algorithm depends on the specific requirements of
the application and the level of security needed.

2. Background on CAN Cybersecurity
2.1. CAN Protocol Basics

The Controller Area Network, commonly referred to as CAN bus, is a serial standard
for field buses that is primarily employed in the automotive industry. It was introduced in
the 1980s by Robert Bosch as a means to connect various electronic control units (ECUs).
Notably, the CAN protocol offers a range of key advantages:

• Simplicity of Wiring: The CAN bus operates on a message-oriented approach, rather
than an address-oriented one. This design allows for the straightforward addition or
removal of peripherals (nodes), simplifying the wiring process.

• Rigid Response Times: CAN bus technology enables the creation of systems with
highly predictable and rigid response times. This is achieved through specific tech-
niques that are designed to minimize time-related delays.

• High Immunity to Interference: The ISO 11898 standard mandates that the CAN
protocol must maintain operability, even in scenarios where one of the two wires is
severed, or if a bus line to the power supply experiences a short-circuit.

• Error Confinement: Each peripheral device connected to the CAN bus possesses the
capability to self-diagnose hardware issues. In the event of a malfunction, a peripheral
can voluntarily remove itself from the bus, allowing other peripherals to continue
using it.

• Multi-Master Protocol: Within the CAN protocol, every node has the capacity to
compete for control of the bus. This means that each node can assume the role of a
master, taking control of the bus and initiating transmissions.

To manage traffic on the bus effectively, the CAN protocol employs the CSMA/BA (Carrier
Sense Multiple Access/Bit-wise Arbitration) method. In situations where two or more
nodes attempt to transmit simultaneously, an arbitration mechanism based on priority
is applied.

2.2. Vulnerabilities and Attack Scenarios

It is brought to attention that the CAN bus, an essential communication protocol in
various automotive systems, is deficient in fundamental security measures, rendering the
wired units susceptible to potential breaches orchestrated by malevolent entities. According
to the CIA (Confidentiality, Integrity, Availability) security model, a comprehensive exami-
nation reveals the existence of six critical vulnerabilities within the CAN bus framework.
These vulnerabilities emerge from two distinct sources: the vulnerabilities concerning
the traffic transmission through the CAN bus and those intrinsic to the protocol’s unique
characteristics [77–80].

Among the pressing concerns, the absence of encryption, authentication, and integrity
checking in the data transmission via the CAN bus represents a severe violation of the
fundamental principles of data security, particularly confidentiality and integrity. Further-
more, the characteristics inherent in the CAN bus protocol, such as broadcast transmission,
priority-based arbitration, and limited bandwidth, contribute to the system’s susceptibility
to various security threats. The combination of these factors contributes to the heightened
risk of a Denial-of-Service (DoS) attack, thus compromising the system’s availability. The
specific vulnerabilities identified within the CAN bus context can be discerned as follows:

• The lack of encryption allows potential adversaries to decipher the historical data
transmitted via the CAN bus, thereby comprehending the intricate functionalities of
the target Electronic Control Units (ECUs) with relative ease [81,82].

• The absence of an authentication mechanism in the CAN frame implies that any trans-
mitter can surreptitiously send deceptive CAN frames to any of the interconnected
ECUs, potentially gaining unauthorized control over the target ECUs [83–85].
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• The absence of integrity checking exacerbates the security concerns, as the receivers
might unknowingly accept manipulated data, leading to potential system malfunc-
tions or even complete breaches by malevolent entities [86,87].

• The broadcast transmission characteristic of the CAN bus, where the frames are
disseminated to all interconnected ECUs, acts as a double-edged sword, facilitating
system-wide communication, but also enabling unauthorized eavesdropping, which
jeopardizes the confidentiality of the communication.

• The priority-based arbitration, which allows frames with higher priority to dominate
the communication channel, poses a significant security risk, as it enables an aggressive
Electronic Control Unit (ECU) to manipulate the communication channel, potentially
disrupting the entire network’s functioning [88–90].

• The limited bandwidth and payload capacity of the CAN bus results in the insuffi-
ciency of robust access control mechanisms, creating a vulnerability that could be
exploited by adversaries attempting to compromise the security of the system.

The collective presence of these vulnerabilities within the CAN bus infrastructure
calls for urgent attention to fortify the security measures and to establish robust protocols
to safeguard against potential breaches and malicious attacks that could compromise the
integrity and functionality of the system. In the following, we also report on the definition
of specific cyber-attacks that could be applied on the CAN base networking system.

(1) Unauthorized access: Since the network is centralized, nodes trust each other, and a
malicious node that is attached to the network can have access to all the data flowing
and can disrupt the data flow [91–97].

(2) Replay attacks: An attacker intercepts and records a message, and then replays it later
to achieve a malicious goal [98–102].

(3) Denial of Service (DoS) attacks: An attacker can flood the network with messages,
causing the network to become unresponsive [103–107].

(4) Spoofing attacks: An attacker can send messages with a fake source address, making
it difficult to identify the source of the attack [108–112].

(5) Physical layer attacks: An attacker can manipulate the physical layer of the CAN bus
to cause malfunctions in CAN nodes [113–118].

To address these vulnerabilities, various solutions have been proposed, such as intrusion
detection systems, encryption, and authentication mechanisms. However, there is no
optimal solution, and the problem is mitigated with network segmentation and intrusion
detection systems. It is essential to establish a strong security system for automotive
networks to maintain the advances in safe technologies and to advance the state of the art
in automotive cybersecurity [119–122].

To monitor message flow from different ECUs, a modern CAN-based network can be
accessed by peripherals like Bluetooth, Wi-Fi, and OBD. This makes it possible for IDs to be
replicated, which can prevent some ECUs from communicating. Different vulnerabilities
exist based on the hardware, software, and attack surfaces of the ECUs in the CAN network;
the idea of Strong and Weak Attackers is explained. Fully and weakly compromised ECUs
are the two categories of compromised ECUs that we distinguish. A weakly exploited ECU
lacks the capacity to insert fake messages, and can stop some message transmissions or
function in listen-only mode. On the other hand, an attacker with complete access to an ECU
can take full control, access data stored in memory, and insert any attack message. Because
the CAN bus protocol does not provide encryption, authentication, or integrity checking, it
is vulnerable to a number of security issues. The system is unable to determine whether
the data have been replayed by a malicious node, even in the event that cryptographic
techniques are used.

We consider three main attack paths based on these weaknesses. Because integrity
checking is not present, the impersonation attack can change CAN frames, and the replay
attack can succeed if sufficient defenses are not taken.
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• Replay Attack for CAN: Without authentication and integrity for the CAN frames,
a Strong Attack is able to launch the replay attack. As shown in Figure 1, a fully
compromised ECU A transmits the CAN frames received from the ECU C, modifying
its data field. As a result, the receiver ECU B will function abnormally under the
replayed control information.

Figure 1. Schematic representation of the Replay attack concept.

• Impersonation Attack for CAN: Having known the IDs of the CAN frames from ECU
B, the Strong Attack is able to launch the impersonation attack, as shown in Figure 2.
The Weak Attacker first suspends the transmission of ECU B, and the strong attacker
then controls ECU A to transmit the CAN frames using the ID of ECU B to manipulate
the target, ECU C.

Figure 2. Schematic representation of the Impersonation attack concept.

• Injection Attack for CAN: As shown in Figure 3, a Strong Attacker ECU A is able
to inject CAN frames with arbitrary IDs and content. On the one hand, the injected
frames with the highest priority ID will always occupy the CAN bus. On the other
hand, it can compromise the functionality of the bus occupying the transmission.
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Figure 3. Schematic representation of the Injection attack concept.

3. Proposed Algorithm Design

The primary objective of this research is to demonstrate the deployment of a classi-
fication system designed for ECUs that are connected to the CAN network. This system
leverages the NXP S32K144 embedded system as a Traffic Analyzer. The classification pro-
cess relies on fingerprinting features and is executed through a pre-trained neural network.

3.1. Voltage Sampling Method

The objective here is to identify a sampling technique that is capable of optimizing
the performance of the ADC integrated into the S32K144 board, which serves as the Traffic
Analyzer. The goal is to achieve the highest possible number of voltage samples at a
12-bit resolution. This is accomplished by utilizing the Hardware Trigger mechanism in
conjunction with the PDB timer module, as illustrated in Figure 4.

Figure 4. ADC Hardware Trigger with PDB in back-to-back mode.

This approach significantly boosts the sampling rate, achieving a five-fold increase
compared to the Software Trigger method, which is typically adopted in embedded systems.
With the ADC Hardware Trigger method, the PDB timer module is employed to initiate
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ADC conversions, enabling the conversion of analog voltage inputs from two distinct
channels, namely CANH and CANL, into digital values. Given the specified parameters:

- Bit resolution = 12 bits
- CAN rate = 125 Kbit/s
- Bit number for message = 110 bits
- PDB Period = 2.15 µs

We can calculate the following:

(1) One message time:

– One message time = (Bit number per message)/(Can bus velocity)
– One message time = 110 bits/(125 Kbit/s) = 880 µs

(2) Number of samples per each message:

– Number of samples per each message = (One message time)/(PDB period)
– Number of samples per each message = 880 µs/2.15 µs ∼= 410 samples

This calculation is performed for each channel, resulting in a total of 820 samples.

3.2. Features Extraction

The voltage features represent the measurable characteristics of the phenomenon under
observation. Only dominant values are taken into consideration for feature calculation
because they correspond to the moments when the units transmit voltage values. Values
associated with the ACK bit are excluded from consideration as they signify the instances
where each of the ECUs acknowledges the receipt of the message. To illustrate this, consider
the sampling of a CAN signal from a message transmitted on the bus, as depicted in Figure 5.
In this context, dominant values are graphically identified as those lying above the average
voltage of CANH and below the average voltage of CANL.

Figure 5. Dominant values extraction.

The dominant voltage samples that we acquired are used for extracting features.
However, we chose to utilize only six out of the twelve features that were initially proposed.
These features are divided equally between CANH and CANL, resulting in a total of twelve
features. While we did explore the use of frequency-based features, they were found to be
impractical given the limited number of dominant samples that can be obtained from each
message. In Table 1, the features used as input for the proposed Artificial Neural Network
classifier are reported.
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Table 1. Time-domain features set.

Features Equation

Max value M = max(vi)

Min value m = min(vi)

Mean vm = 1
n ∑n

i=1 vi

Standard Deviation σ =

√
∑n

i=1(vi−vm)
2

n

Skewness S = ∑n
i=1(vi−vm)

3

nσ3

Kurtosis K = ∑n
i=1(vi−vm)

4

nσ4

3.3. Features Scaling

In this section, our goal is to establish continuous communication among the three
units (ECUs). Meanwhile, the Traffic Analyzer will print feature values that are associated
with the sender for each message. We anticipate sending approximately 1000 messages on
the bus using the communication method illustrated in Figure 6.

Figure 6. Method of communication between boards during dataset collection.

After collecting the data, we proceed to analyze the data trends for the three units. We
compare the Probability Density Functions (PDFs) estimated from the features obtained
from both CANH and CANL to a Normal distribution. The Normal distribution is char-
acterized by a mean that is equal to the mean of the analyzed feature, and a standard
deviation that is equal to the standard deviation of the analyzed feature. An example of the
data trend for Unit A CANH is illustrated in Figure 7.

The data trends for the other three units exhibit similar patterns to those presented. It
is important to note that these data trends do not follow a Normal distribution. In machine
learning, it is a common practice to scale input data for neural networks to eliminate redun-
dancy, enhance stability, and facilitate convergence. Given the non-Gaussian distribution
of the data, we opted for Normalization using the Min-Max scaling method rather than
Standardization for feature scaling.

X′ =
X− Xmin

Xmax − Xmin
(1)
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Figure 7. Estimation of Probability Density function of Unit A CANH features compared with the
Normal Distribution.

3.4. Neural Network

It has been determined that the most suitable approach to implementing a neural
network involves use of the TensorFlow [123] and Keras [124] environments. This choice
offers the advantage of allowing for the use of the TensorFlow Lite format, which in turn
allows us to exploit the capabilities of the hardware while reducing the size of the network
in terms of storage space, measured in Kbytes. The characteristics of the chosen neural
network model are described below:

• Learning Algorithm: The learning algorithm selected for classification is a Supervised
Learning Algorithm. In particular, Gradient Descent is a common technique that
is used to optimize the weights of the neural network during the training process.
This algorithm can be implemented using several variations, including Stochastic
Gradient Descent (SGD), which uses a random sample to calculate the weight update,
and Adaptive Gradient Algorithm (adagrad), which adapts the learning rate for
each parameter of the network. The calculation of stochastic gradient descent occurs
according to Equation (2):

wt+1 = wt − α∇Q(wt) (2)
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where wt represents the weights of the network at time t, α is the learning rate, and
∇Q(wt) indicates the gradient of the cost function Q with respect to the weights wt.

• Activation Function: The Rectified Linear Unit (ReLU) activation function was cho-
sen, defined as f (x) = max(0, x). ReLU is one of the most widely used activation
functions for hidden layers of neural networks. Its simplicity of implementation and
compatibility with TensorFlow Lite makes it a practical choice.

• Model Type: The type of neural network model adopted here is a Feed-Forward
network. In this type of model, connections exist only between successive levels,
avoiding interconnections between neurons of the same level.

• Optimization Algorithm: The Adam optimization algorithm, derived from adaptive
moment estimation, was selected. Adam is an extension of Stochastic Gradient Descent
(SGD), which combines first-order and second-order information to update weights
efficiently, and with an adaptive learning rate. The weight update rule in Adam is
defined with the set of recursive equations in Equation (3):

mt+1 = β1mt + (1− β1)∇Q(wt)
vt+1 = β2vt + (1− β2)∇Q(wt)2

wt+1 = wt − α
mt+1√
vt+1+ε

(3)

where mt and vt represent the moment and second moments of the gradient at time t,
respectively; and β1, β2, and ε are hyper-parameters of the model.

• Output Function: For the output layer of the neural network, the Softmax function
was chosen and it is defined as reported in Equation (4).

σ(zj) =
ezj

∑K
k=1 ezk

(4)

where zj represents the function input and K is the total number of classes. Softmax is
a mathematical function that transforms a vector of numerical values into a vector of
probabilities. Each probability in the output vector corresponds to the relative scale of
the corresponding input value.

This combination of elements within the neural network model aims to facilitate
effective classification and prediction tasks, making use of widely accepted practices in
the field of deep learning. Figure 8 shows the internal architecture of the proposed neural
network classifier.

Figure 8. Neural Network with two hidden neural layers of 25 neurons each.

We want to emphasize that the Feed-Forward neural network was chosen to reduce
the problems of the interpretability of results, which in fact remains a key issue in industrial
applications, and is in fact the weak point of AI models that rely on much more sophisticated
learning paradigms.

In fact, data from the physical layer are statistically processed using filtering and
feature extraction/selection techniques. Since the features have been analyzed and selected
a priori, the network is not left with the task of extracting features from the data, as
has been achieved with the Deep Learning approach, for example, but only to recognize
the interconnections between the class and the features. This reduces the problems of the
interpretability of the results compared to using an AI model without the data manipulation
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steps, as it is not left to the network to decide which features represent the physical data
associated with each control unit. In addition, this greatly reduces the size of the neural
network model, which can then also be integrated into embedded systems with small
computational and memory resources.

3.5. TensorFlow Lite for Embedded Integration

The primary objective of this section is to successfully implement neural network
algorithms on the S32K144 microcontroller, which possesses limited computational and
memory capabilities. To address these constraints effectively, we have employed Tensor-
Flow Lite, a specialized toolkit designed for optimizing and deploying machine learning
models on embedded and IoT devices. TensorFlow Lite offers two core tools: the TFLite
Converter and the TFLite Interpreter. The primary role of the Converter is to enhance
the model’s performance by reducing its size and improving its execution speed. This
optimization primarily hinges on a fundamental technique known as model quantization,
wherein all weight values are converted from the standard 32-bit floating-point format to
8-bit integers (post-training quantization). While this quantization process may introduce
some slight trade-offs in terms of model accuracy, it significantly reduces the model’s size,
making it more lightweight and responsive.

Once the model has undergone conversion into the TensorFlow Lite format, the Inter-
preter, which is deployed on the embedded system, can be invoked to perform inference
tasks. Notably, during the time when these tests were conducted, there was no official
TensorFlow Lite support available for the NXP S32K144 microcontroller. Consequently, it
became imperative to devise a method, as outlined in Figure 9, for importing TensorFlow
Lite libraries onto the S32K144 board. This essential step was pivotal in ensuring the seam-
less integration and functionality of the machine learning model on the microcontroller
despite the absence of native support.

Figure 9. Flow chart of TensorFlow Lite porting Library.

4. Experimental Validation

In this section, we delve into the implementation of an anomaly detection algorithm
tailored for the CAN bus, leveraging Artificial Neural Networks (ANNs). To establish a
realistic testing environment, we have engineered a circuit that emulates the structure of an
actual CAN network or sub-network. This circuit comprises five Electronic Control Units
(ECUs) alongside the Traffic Analyzer, strategically designed to simulate various aspects
of CAN communication. Among these ECUs, we have employed five distinct types, each
equipped with one of four different types of CAN communication modules. Within this
ensemble, Unit A, Unit B, and Unit C serve as our known units. These units play a pivotal
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role in the training process of the neural network, enabling it to learn and to establish
baseline patterns.

Figure 10. Experimental Setup CAN circuit.

On the other hand, we have designated Intruder 1 and Intruder 2 as our unknown
units. These units emulate potential intruders within the CAN network, mimicking the
behaviors of unauthorized or anomalous entities.

The primary objective here is to develop an anomaly detection system that can effec-
tively identify and flag these intruder units based on deviations from established normal
behavior patterns. This comprehensive setup (see Figure 10) allows us to assess the algo-
rithm’s ability to discern between known and unknown units, ultimately enhancing the
security and integrity of the CAN network. Given that Unit C and Intruder 2 are identical
units in terms of their internal configurations, it naturally follows that their waveforms
exhibit a striking degree of similarity. This similarity arises from the shared character-
istics and behaviors inherent to these two units. Consequently, their waveforms, when
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observed, closely mirror each other due to their analogous CAN bus output patterns and
operational tendencies.

In stark contrast, the waveform generated by Intruder 1 presents a notably distinct
profile in comparison to its counterparts. The distinctive nature of Intruder 1’s waveform is
primarily attributed to the unique characteristics of its CAN bus output. Notably, Intruder
1’s CAN bus output exhibits voltage levels that fluctuate within the range of 1 V to 3 V.
Importantly, this voltage range aligns perfectly with the established CAN bus protocol
standards of 1.5 V to 3.5 V. Therefore, Intruder 1’s waveform conforms to the specified
voltage parameters defined by the protocol, albeit with a distinct operational pattern that
sets it apart from the other units (see Figure 11).

Figure 11. Voltage sampling of one message per unit.

After successfully loading the trained neural network onto the S32K144 board (specifi-
cally, the Traffic Analyzer), a comprehensive test was conducted. This test encompassed the
analysis of a total of 1000 messages, with each unit being subjected to a set of 200 messages.
The primary objective of this test was to assess the effectiveness of the classification system.
In establishing a criterion for classifying units, a conservative approach was adopted. It was
determined that a threshold of 90% would serve as the minimum precautionary threshold
for class membership. Units that exhibited classification scores equal to or exceeding this
threshold would be confidently regarded as belonging to a specific class. However, in cases
where units yielded classification scores falling below the 90% threshold, they would be
considered as not definitively belonging to any particular class. This approach allowed
for a robust classification mechanism that prioritized high confidence in unit assignment,
ensuring that any classification made met a stringent threshold of reliability.

The classification of the known units has yielded correct results, effectively categoriz-
ing the messages as expected. However, it is worth noting that the neural network, when
faced with messages from the unknown units, consistently classifies them as originating
from Unit C. This outcome suggests that the neural network, which was trained on data
from the known units, is likely recognizing similarities between the unknown units and
Unit C’s waveform patterns. A proposed solution to address the challenge of classifying
the unknown units involves the creation of a distinct fourth class that encompasses all
instances associated with the unknown units.
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To facilitate this, a fictitious dataset was meticulously generated, comprising a total of
3000 observations, each consisting of 200 dominant values for each channel. This dataset
was custom-built using Matlab, employing the following equations:

Rand_dominant_CANH = Randi[2900, 4500] + N(µh, σh)
Rand_dominant_CANL = Randi[500, 2000] + N(µl , σl)

(5)

Figure 12 represents the training and validation phases of the selected neural network
classifier in the configuration for the first test, while Table 2 reports on the results obtained
regarding accuracy in classification.

Figure 12. Learning curve of accuracy (left) + Learning curve of loss (right) in the First Test.

Table 2. Classification results on 200 messages in First Test.

Number of Times Softmax Score ≥ 90%

Classified as A Classified as B Classified as C

Unit A 200 0 0

Unit B 0 200 0

Unit C 0 0 200

Intruder 1 0 0 200

Intruder 2 0 0 200

Figure 13 represents the dummy physical layer created specifically to retrain the
neural network to associate the physical layer of external devices (such as intruder 1 and
intruder 2) with an Unk class and to prevent it from being confused with one of the ECUs
on which the training was performed.

Figure 13. Example of Dominant Real Value (left) + Example of Dominant Fictitious Values (right).
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Here, the function Randi is utilized to generate uniformly distributed pseudo-random
integers within a specified range. Using these fictitious values, additional features will be
computed and subsequently integrated into the actual dataset. This process will culminate
in the creation of a final dataset, consisting of a total of 12,000 observations. This includes
the original 9000 real observations, complemented by an additional 3000 fictitious ones.
In contrast to the previous training sessions, the learning curve in this case exhibits a
distinct trend, although it ultimately converges to an accuracy value of 1. Employing the
same evaluation criteria as in the initial test, the results of a test involving 1000 messages
(with 200 messages from each unit) are presented below. Each message sent by Intruder
1 was consistently classified as originating from an Unknown unit, indicating that the
algorithm was able to effectively distinguish this intruding unit. In contrast, the majority of
messages from Intruder 2 remained unclassified, suggesting that the neural network had
difficulty assigning them to a specific class or category. Figure 14 illustrates the learning
and validation behaviors of the neural network classifier.

Figure 14. Learning curve of accuracy (left) + Learning curve of loss (right) for the Second Test.

In Table 3, the results obtained during the second test are shown, where the neural
network is able to associate anomaly detection with the "Unknown" class. It must be
highlighted that for Intruder 2, it that seems that a low rate of accuracy in classification
occurs, along with a high rate of non-classified observations (188 over a total of 200). This
is due to the threshold of 90% selected in the output to classifier. This means that the neural
network provides as an output a vector with similar estimated probability (by the softmax
layer) for the possible class. With a lower threshold, it is possible to increase the accuracy,
but also with a higher rate of false-positive estimations.

Table 3. Classification results on 200 messages in Second Test.

Number of Times Softmax Score ≥ 90%

Classified as A Classified as B Classified as C Classified as
Unk

Unit A 191 0 0 1

Unit B 0 200 0 0

Unit C 0 0 200 0

Intruder 1 0 0 0 200

Intruder 2 0 0 10 2

4.1. Anomaly Detection Strategy

Building upon the preceding findings, it is conceivable to devise an algorithm that
is capable of distinguishing between an attempted attack by an external entity, and a
compromise of one or more ECUs within the network. This algorithm, which takes as its
input the output values generated by the Softmax function, operates upon the following
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premise: if the highest score among the first three classes is 90% or greater, it categorizes
the message as originating from an Internal Unit; otherwise, it designates it as stemming
from an External Unit. Furthermore, the algorithm leverages its knowledge of the ID map
that each Unit is capable of transmitting. With this information, the algorithm gains the
capability to determine whether a unit is employing messages with its designated ID or is
employing other IDs. This additional layer of analysis enhances the algorithm’s capacity to
differentiate between legitimate internal communications and potential external intrusions.
See Table 4 for the ID configuration within the proposed validation tests.

Table 4. ID configurations for testing.

Unit ID HEX Standard
Frame

Data Length
[Bytes]

Randomized
Data [Bit] Bit Rate

A EE, FE Yes 8 64 125 kbit
s

B 101, 103 Yes 8 64 125 kbit
s

C 105, 116 Yes 8 64 125 kbit
s

The algorithm exhibits the ability to discern four distinct categories of anomalies,
thereby enhancing the overall security of the system:

• External Signal with an Internal ID: In this situation, the algorithm classifies the
incoming message as originating from an unknown unit. Remarkably, the message ID
aligns with one of those previously loaded onto the ID map. This occurrence suggests
a potential external intrusion into the system, as the message source is not recognized
as any of the legitimate internal units.

• External Signal with an External ID: When the algorithm categorizes the message as
belonging to an unknown unit, it further scrutinizes the message ID. In the event
that the message ID does not correspond to any of the IDs pre-loaded on the ID map,
this anomaly is recognized. Such a situation implies the presence of an unauthorized,
external source that is trying to communicate with the system.

• Internal Signal with a Stolen ID: If the algorithm identifies a message as belonging to
Unit A, Unit B, or Unit C, and the message ID aligns with one of the IDs available on
the ID map, an additional layer of scrutiny is applied. In the case where the source of
the message does not match the expected unit, the algorithm flags this as an anomaly.
It suggests that an internal but unauthorized unit may be attempting to impersonate a
legitimate one.

• Internal Signal with an External ID: Whenever the algorithm classifies a message as
being associated with Unit A, Unit B, or Unit C, it extends its examination to the
message ID. If the message ID fails to correspond to any of the IDs pre-loaded on the
ID map, the algorithm recognizes this as an anomaly. In such a scenario, it indicates
that a message from an internal unit is being sent with an ID that is not recognized by
the system, implying an irregularity in the communication protocol.

4.2. Attack Simulation

Utilizing the experimental framework at our disposal, we are equipped to replicate the
three distinctive forms of attacks outlined previously. Leveraging the anomaly detection
algorithm, the system adeptly identifies these attacks and promptly disseminates warning
messages on the console to apprise the system administrator of the detected threats.

Replay Attack: Within this particular scenario, Intruder 1 assumes the role of a Strong
Attacker. Following a period of regular network operations, whenever a message carrying
an ID assigned to Unit A is transmitted, the Strong Attacker initiates a response on the
bus. These responses are intentionally infused with malicious content bearing the same
ID as the legitimate messages transmitted by Unit A. The resulting test outcomes are
comprehensively illustrated in Figure 15.
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Figure 15. Detection of the Replay Attack.

Impersonation Attack: In this specific context, Intruder 1 once again adopts the
persona of a Strong Attacker. After a phase of routine network activities, Unit A becomes
the target of an attack orchestrated by a Weak Attacker. The scheme involves the Weak
Attacker temporarily disrupting the transmission of messages from Unit A by placing it in
a silent or listen-only mode. Capitalizing on this vulnerability, the Strong Attacker seizes
the opportunity to impersonate the compromised unit, transmitting harmful content under
its guise. The consequential test outcomes are meticulously represented in Figure 16.

Figure 16. Detection of the Impersonation Attack.

Injection Attack: In the context of this simulated situation, Intruder 1 operates as a
Strong Attacker, exclusively employing high-frequency messages with the specific ID of
[0x00]. The primary objective here is to flood the bus, thereby preempting all arbitration
phases and effectively monopolizing the communication medium. Consequently, this
impedes any legitimate interaction among the other units. A comprehensive depiction of
the results derived from this testing is presented in Figure 17.

Figure 17. Detection of the Injection Attack.

These simulated attacks serve as valuable test cases for evaluating the robustness and
effectiveness of the Anomaly Detection algorithm under various security threats, enabling
the system to proactively respond to potential vulnerabilities. The results obtained with
the simulated attacks are perfectly in line with the accuracy obtained during the validation
phase of the classifier model shown in the previous section.

4.3. Thermal Test for Prediction Robustness

Electronic control units are commonly put in situations that are characterized by
volatile temperature variations, often varying by large margins. These systems rely signifi-
cantly on the CAN bus for communication. When these control units are used in automotive
applications, their temperatures might vary depending on a number of circumstances, such



Sensors 2023, 23, 9231 19 of 27

as how close they are to the engine, how long they run for, and how exposed they are to
outside elements like direct sunlight. Because MOSFETs and resistances are intrinsically
sensitive to temperature changes, even small changes in temperature can have a significant
impact on the complex integrated circuits present in these devices.

There is a significant degree of danger associated with subjecting these control units
to high temperatures, since the heat generated by these conditions can significantly dis-
tort the voltage signals, jeopardizing the accuracy of previously recorded data. As such,
careful thermal testing is necessary in order to fully evaluate the possible effects of these
temperature-induced changes, particularly with regard to the effectiveness of cybersecurity
systems that depend on voltage fingerprinting methods. A deeper comprehension of the
true implications of the suggested classification approach may be obtained by attentively
analyzing the Softmax outputs in connection to temperature changes. This will allow
for the development of more intelligent and reliable security mechanisms. To reduce the
measured noise effect, values were collected every 200 temperature values and their mean
was calculated. The algorithm is shown in Figure 18.

Figure 18. Thermal test procedure deployed on RaspberryPi3B+.

Using the identical configuration as the Second test, the remaining units connected
to the bus were set to silent/listen mode. Only Unit C was active in sending messages
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during the testing process, while the control unit diligently recorded the corresponding
data (see Figure 19 for the experimental setup configuration illustration). Commencing at
approximately 24 ◦C (ambient temperature) and progressing up to around 83 ◦C (within
the Arduino operating temperature range of −40 ◦C to 85 ◦C), a series of 4 messages were
systematically transmitted over the CAN network in 5-degree increments, resulting in
a total of 48 transmissions monitored by the control unit. The recorded output values
from the neural network’s Softmax were collated and are presented in detail in Table 5,
accompanied by a visual representation in Figure 20.

The data presented in Table 5 confirm that despite the variations in temperature, there
have been no significant alterations that could potentially compromise the validity of the
previous results. Delving into the insights offered by Figure 20, it becomes apparent that
the predictive trend remains relatively stable within the temperature range spanning from
24 ◦C to 70 ◦C, with the exception of an outlier value peaking at 97.82%. There appears to
be a slight downward trend in the scores beyond 70 ◦C; however, it is worth noting that
the values consistently remain above the critical 98.4% threshold. Notably, no considerable
dips in accuracy were observed throughout the application of the prescribed methodology.

Figure 19. Final Setup for Thermal Test.

Table 5. Unit C Classification results during Thermal Test on 48 message.

Unit C

Classified as A Classified as B Classified as C Classified as
Unk

Mean score 0.395120% 0.013482% 99.328014% 0.263384%

Std Dev score 0.103029% 0.014331% 0.258574% 0.233061%

Number of times
score ≥ 75% 0 0 48 0

Number of times
score ≥ 90% 0 0 48 0
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Figure 20. Classification result as a function of temperature.

5. Conclusions and Future Work

The significant contributions of this research primarily revolve around the develop-
ment and enhancement of an embedded anomaly detection system utilizing the NXP
S32K144 platform. The methodology employed in this study is rooted in a completely
experimental approach, commencing with rudimentary CAN network setups and grad-
ually evolving to more intricate scenarios featuring five Electronic Control Units (ECUs)
and a Traffic Analyzer. A pivotal improvement over the existing methods is the adoption
of a sophisticated voltage sampling technique that is far superior to the Software Trigger
mechanism. The selection of neural network characteristics has been meticulously de-
termined through empirical methodologies. A comprehensive statistical analysis of the
features extracted from the data has provided profound insights, guiding the preference
for Min-Max normalization over Standardization.

Incorporating TensorFlow Lite onto the NXP S32K144 board has enabled the har-
nessing of cutting-edge tools in the realm of artificial intelligence, effectively unlocking
its real-time classification capabilities. To validate the methodology in more complex en-
vironments and in the face of potential attacks, a typical CAN network or sub-network
scenario was faithfully recreated. To address the challenge of classifying unknown units
using the neural network, a novel solution involving the introduction of a Fictitious dataset
was proposed. Furthermore, a series of well-documented simulated attacks, inspired by
prominent attack methodologies described in the literature, was executed. The efficacy of
these attacks was systematically thwarted by the anomaly detection algorithm, thereby
affirming its robust functionality. To extend the practical applications of this technology
within the automotive sector, the proposed method was rigorously assessed under the con-
ditions of temperature variation. The results underscore the resilience of the methodology
to temperature fluctuations, at least within the range of 25 ◦C to 83 ◦C.

Looking forward, the promising results obtained from this research open doors to
a host of potential future developments and extensions. Porting from Laboratory Tests
to Real Vehicle Implementation: The next phase following laboratory implementation in-
volves the deployment of this technology in a genuine automotive environment to facilitate
functional testing. This real-world application could significantly contribute to the field of
automotive cybersecurity. Integration with Other Fingerprinting Techniques: The proposed
methodology is amenable to integration with other fingerprinting techniques, including
time-based fingerprinting methods and various other fingerprinting approaches. Combin-
ing multiple fingerprinting techniques could enhance the overall security of automotive
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networks. Application to Other Protocols: While this research has been focused on CAN
environments, the method’s efficacy encourages its application to diverse network types
within the automotive and industrial sectors. This broadening of scope could address
security concerns in various communication protocols. Comparison with Deterministic
Algorithms: In the realm of classification, an avenue for future exploration lies in the
comparison of neural networks with deterministic algorithms, such as Decision Trees, to
gauge their relative performances. This could provide valuable insights into the strengths
and weaknesses of different approaches. Further Resilience Testing: Extending investi-
gations into the resilience of the system to a broader range of temperature variations can
provide valuable information about its practicality under various environmental condi-
tions. Additionally, exploring other potential environmental factors such as humidity
and electromagnetic interference can further enhance the system’s robustness. Real-Time
Anomaly Detection: Efforts can be directed towards achieving real-time anomaly detection
capabilities, potentially reducing response times and increasing the system’s effectiveness
in mitigating threats.

In conclusion, this research not only validates the effectiveness of the proposed method-
ology, but also outlines a promising path for future research, development, and practical
implementation in the domains of automotive and industrial cybersecurity. The potential
for enhancing network security, particularly in the context of the growing significance of
connected vehicles and industrial IoT, makes this work a valuable contribution to the field.
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