
Citation: Nugroho, A.K.; Shioda, S.;

Kim, T. Optimal Resource

Provisioning and Task Offloading for

Network-Aware and Federated Edge

Computing. Sensors 2023, 23, 9200.

https://doi.org/10.3390/s23229200

Academic Editors: Younghan Kim,

Ngoc-Thanh Dinh and Min Wei

Received: 14 October 2023

Revised: 9 November 2023

Accepted: 14 November 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimal Resource Provisioning and Task Offloading for
Network-Aware and Federated Edge Computing
Avilia Kusumaputeri Nugroho 1, Shigeo Shioda 2 and Taewoon Kim 1,*

1 School of Computer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
avilia22@pusan.ac.kr

2 Graduate School of Engineering, Chiba University, Inage-ku, Chiba 263-8522, Japan; shioda@faculty.chiba-u.jp
* Correspondence: taewoon@pusan.ac.kr

Abstract: Compared to cloud computing, mobile edge computing (MEC) is a promising solution
for delay-sensitive applications due to its proximity to end users. Because of its ability to offload
resource-intensive tasks to nearby edge servers, MEC allows a diverse range of compute- and storage-
intensive applications to operate on resource-constrained devices. The optimal utilization of MEC
can lead to enhanced responsiveness and quality of service, but it requires careful design from the
perspective of user-base station association, virtualized resource provisioning, and task distribution.
Also, considering the limited exploration of the federation concept in the existing literature, its impacts
on the allocation and management of resources still remain not widely recognized. In this paper, we
study the network and MEC resource scheduling problem, where some edge servers are federated,
limiting resource expansion within the same federations. The integration of network and MEC is
crucial, emphasizing the necessity of a joint approach. In this work, we present NAFEOS, a proposed
solution formulated as a two-stage algorithm that can effectively integrate association optimization
with vertical and horizontal scaling. The Stage-1 problem optimizes the user-base station association
and federation assignment so that the edge servers can be utilized in a balanced manner. The
following Stage-2 dynamically schedules both vertical and horizontal scaling so that the fluctuating
task-offloading demands from users are fulfilled. The extensive evaluations and comparison results
show that the proposed approach can effectively achieve optimal resource utilization.

Keywords: mobile edge computing; task offloading; optimal association; vertical scaling;
horizontal scaling

1. Introduction

In recent years, the growing number of delay-sensitive applications operating on
resource-constrained devices has presented major challenges to the efficient execution
of these applications. In particular, the emergence of the Internet of Things (IoT) has
highlighted the need for efficient and responsive computing solutions [1]. To address
these challenges, mobile edge computing (MEC) has emerged, which is regarded as a
distributed version of cloud computing. MEC has been widely studied in depth [2–5] as
a promising solution to offloading resource-intensive tasks to edge servers located in the
vicinity of the user devices [6–8]. In particular, the common goals are reducing network
latency [9], enhancing responsiveness [10], and improving quality of service (QoS) [11]. By
utilizing the rich computation and storage resources of edge servers, MEC can accelerate
the performance of applications running on user devices. In addition, it conserves the
limited resources of end-devices, thereby preserving their operational lifetime.

However, the effectiveness of MEC depends on a well-designed resource scheduling
strategy that makes optimum utilization of the resources that are related to each other. In
particular, the optimal utilization of MEC required two key aspects to be addressed: the
association of users with base stations (BS), the provisioning of virtualized resources on

Sensors 2023, 23, 9200. https://doi.org/10.3390/s23229200 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23229200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5112-4933
https://orcid.org/0000-0002-7811-5022
https://doi.org/10.3390/s23229200
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23229200?type=check_update&version=1


Sensors 2023, 23, 9200 2 of 22

edge servers (ES), and the dynamic distribution of tasks across edge servers. Achieving
an optimal balance among these factors is of significance, as it can result in reduced
response time and battery consumption at user devices. User-edge server association
optimization [12] is a fundamental aspect of MEC optimization that ensures the balanced
utilization of edge servers. For example, the balanced distribution of users across edge
servers can prevent over- or under-provisioning problems. This not only enhances the
QoS for individual users but also maximizes the efficiency of the MEC system as a whole.
Achieving such balanced user-edge server associations requires careful consideration of
factors such as workload distribution [13].

Due to its importance, various MEC optimization approaches have been explored [14–17].
However, the optimal use of MEC involves several challenges from various aspects. Many
optimization methodologies currently in use have a limited scope, focusing on individual
challenges within the MEC architecture. These optimization efforts frequently concentrate
on individual elements such as edge server resource allocation, task-offloading strategies,
and user-server assignments. Although these approaches provide valuable insights and
opportunities for performance enhancement, their limits arise from their constrained
scope. They often overlook considering comprehensive factors such as network resource
assignments, vertical/horizontal resource provisioning, and integrated task offloading.
These limitations emphasize the need for an approach that integrates all of these factors.

An optimal MEC approach should consider a wider range of factors, from the capa-
bilities of individual edge servers to the network as well as the dynamic requirements
of users and applications. In general, an edge server is located inside or connected via a
direct link to a base station [18], and thus the association between user and base station
can also determine the association between user and edge server. One key strength of
edge computing is the capability of carrying out scaling in a dynamic manner. Optimized
scaling can be performed either vertically or horizontally. The previous studies optimized
them either independently instead of considering them together as an integrated approach
to resource management. While several studies have explored the benefits of vertical
scaling (VS) [19,20], horizontal scaling (HS) strategies have also garnered attention for
their potential [21,22]. VS involves adjusting the capacity of individual edge servers by
reallocating computational resources such as CPU, memory, and storage to handle varying
workloads. HS, on the other hand, focuses on adding or removing edge servers to adapt to
changing demands and maintain optimal system performance.

Despite the study conducted on each scaling approach, there is still a need for further
research to enable both VS and HS. Expanding on this concept, our research emphasizes the
potential of enabling both VS and HS in order to achieve enhanced resource utilization and
QoS. By combining both scaling approaches, we create a dynamic environment in which not
only the capacity of individual edge servers but also the number of edge servers is adjusted
to handle varying workloads. This approach effectively utilizes the benefits of optimization,
scaling, and responsiveness. Furthermore, joint consideration is also a crucial aspect of
enhancing system efficiency. Network-side optimization ensures the efficient functioning
of user-base station associations, while MEC optimization enhances the performance of
resource allocation (both VS and HS) and task offloading. Although these aspects are
often viewed as distinct notions, their integration has the potential to significantly reduce
response times.

To further enhance the optimal MEC strategy, it should consider a wide range of
factors, including the capabilities of individual edge servers, the effects of network resource
scheduling, and dynamic user and application requirements. In addition, we consider the
single-provider system of MEC, where a single service provider operates its own edge
servers, each with different features and constraints. An organization or business can lease
one or more edge servers, which can be exclusively used by the corresponding service
subscribers. In such a scenario, a fully centralized optimization strategy is feasible for the
single provider with its own regulations and requirements.



Sensors 2023, 23, 9200 3 of 22

The concept of edge server federation represents a plausible use case, necessitating
an examination of how the introduction of federation impacts dynamics and resource
allocation. This prompts questions about resource management across federations, the
feasibility of high-speed communication between federations, and the implications for user
assignments and task offloading in a federated setup. Notably, the dynamics of resource
allocation, load balancing, and task management may differ significantly when compared
to a non-federated edge server environment.

This organizational structure of edge servers, organized into distinct federations,
serves different purposes, whether for security reasons or to accommodate various organi-
zations. The significance of this organizational structure increases in contexts with single
providers. In instances where an individual provider operates multiple federations of
edge servers, each of which caters to a distinct function, centralized optimization may be
more applicable within each distinct federation. One additional factor to point out is that
when edge servers are operated by different operators or when security is of important
concern [23], horizontal scaling, or even the migrations [24] can be allowed only within a
federation of edge servers.

Given the aforementioned considerations, our research methodology aims to provide
an integrated optimization approach that effectively incorporates edge server provisioning
by merging the principles of both VS and HS and task offloading assignment, alongside
network resource scheduling. The comprehensive methodology holds potential for finding
novel approaches to enhance performance and optimize resource utilization in a federated
edge computing environment. The contributions of this paper are summarized as follows:

• In contrast to previous optimization approaches that focused on each individual
component of the MEC architecture, we propose a comprehensive optimal approach
that optimizes a chain of components in the MEC as well as network resources.
In this study, the proposed approach optimizes BS-user association, federated-user
assignment, resource provisioning, and task offloading.

• We propose a federated edge server-based MEC architecture, where a user assigned to
a particular federation can utilize only the edge servers in the same federation. This
is practical and essential when some edge servers are operated by different service
provider, or when some edge servers are owned by a third-party organization that is
not trustworthy.

• In contrast to the previous MEC optimization approaches that focused on either VS
or HS for provisioning virtualized resources, we propose to enable both to further
enhance resource utilization and users’ QoS.

• We refer to our proposed approach as NAFEOS, which stands for Network-Aware
Federated Edge Computing Optimal Scheduling. The NAFEOS approach presented in
this study is formulated as a two-stage algorithm, considering the execution interval
and complexity. The Stage-1 problem, which runs at long intervals, includes binary
variables, resulting in relatively higher complexity. However, due to the efficient
algorithms, such as branch-and-bound and branch-and-cut, leveraged in the computer
solver we used in this study, the mixed integer (binary) linear program we propose
in this study can be computed efficiently. On the other hand, the Stage-2 problem
that iteratively optimizes both ES resources and task offloading at short intervals is
formulated as linear programming so that it can run at low complexity. The proposed
problem formulation aims to minimize battery consumption and service delay from
the users’ perspective. At the same time, it maximizes the fair load distribution among
federations by having a multi-objective optimization solution.

• We have carried out extensive evaluations and validated the effectiveness of the
proposed optimal approach. Also, we have performed a comparison study with the
common approaches. To do so, we implemented the proposed method along with
its variants.

The remainder of this paper is structured as follows: Section 2 summarizes the related
studies. The following Section 3 presents the proposed two-staged approach that optimizes



Sensors 2023, 23, 9200 4 of 22

network and edge server resources jointly. Evaluation, validation and analysis of the
proposed solution are carried out in Section 4, and Section 5 concludes this paper.

2. Related Work

This section provides a comprehensive review of MEC and resource management
literature. Prior studies have explored different aspects of MEC, often focusing on specific
resource management components. User-BS associations have been an important part
of MEC research. In line with our research, Wang et al. [25] proposed an optimization
method for the association between users and base stations in MEC. This study prioritizes
minimizing system delay and emphasizes efficient user-BS associations for enhancing
QoS. The work, however, is limited in that it does not consider the scaling of virtualized
resources, which is an essential factor in the optimal use of MEC.

In the context of user-edge server association in the context of MEC, Dai et al. [26]
proposed a computational offloading framework that integrates both compute offloading
and user-edge server association in a two-tier architecture. Tang et al. [27] introduced a
task offloading approach that enhances the effectiveness of joint optimization techniques.
The primary area of their research centers around optimizing tasks at the individual level.
Despite their noteworthy findings related to the method of task offloading, the scope of this
study was constrained to a single mobile device and a single mobile edge server. In addition,
Bi et al. [28] proposed an integrated strategy for the joint optimization of computation-
offloading decisions in MEC systems. Our method goes further by emphasizing the need
for associations to enable low-latency communication within ES federations, facilitated by
high-speed networks, all while considering federation-specific resource availability.

Edge server resource provisioning within MEC has also been studied. In [29], the
study delved into MEC resource management within the Internet of Things (IoT) context,
with a primary focus on optimizing resource efficiency and minimizing network costs. In
other studies, ref. [30] proposed a comprehensive strategy concerning computing power
allocation and efficient traffic scheduling for edge service provisioning. Furthermore,
ref. [31] introduced the concept of resource provisioning in edge computing, with a special
emphasis on applications demanding low-latency performance.

The exploration of federated edge computing has been conducted in various domains
in several previous works [32–34]. Hussain et al. [32], introduced a federated edge comput-
ing approach for disaster management in remote smart oil fields, emphasizing resource
allocation and load balancing for smart oil fields’ robustness. Chi et al. [33] proposed
DEEP-NET, a fully decentralized on-demand MEC-SC peer-offloading network that empha-
sizes QoS-aware load balancing, improved latency, and the protection of service providers’
privacy. This approach leverages a federated gradient descent-based algorithm that op-
erates in a fully decentralized manner. Karakoç et al. [34] proposed a Federated Edge
Network Utility Maximization (FEdg-NUM) architecture, centered around clients with
private utilities and communication within a peer-to-peer network of edge servers. While
the aforementioned studies investigate federated edge computing across diverse domains,
our research concentrates on network-aware resource provisioning and task offloading,
encompassing a wider spectrum of edge servers and applications. Our work offers a com-
prehensive approach to resource optimization within the context of MEC, recognizing the
significance of both MEC federating concepts and the federated edge computing paradigm.

In the optimization of MEC, the user-edge server association and the exploration of
both VS and HS strategies have been studied as well. Regarding VS and HS, a cluster
of notable research papers has been highlighted [35–38]. In [35], an innovative elastic
edge cloud resource management model is proposed, which effectively combines the
VS capability with HS. Expanding on this concept, ref. [36] proposes an adaptive auto-
scaling technique for delay-sensitive serverless services. This method employs a complex
combination of VS and HS that are intelligently tailored to the specific resource profiles
of the services. Daraje et al. [37] presented a novel hybrid resource scaling strategy that
stands out in the context of cloud computing. This method combines the capabilities



Sensors 2023, 23, 9200 5 of 22

of VS and HS in an effort to optimize resource utilization. However, it is notable that
none of these approaches address the integration of optimal user-BS/ES association and
dynamic task distribution comprehensively. Maia et al. [38] addressed the critical issue of
optimizing the location of scalable Internet of Things (IoT) services within the domain of
edge computing. Their research examines both VS and HS, highlighting the importance of
service deployment and scaling in edge computing.

Compared to the studies discussed earlier, our work introduces a novel joint optimiza-
tion framework for the chain of resources addressed above. This integrated methodology
provides the flexibility to process the user’s offloading requests at either edge servers,
the cloud, or even at the user’s device, thus enhancing the ES-cloud offloading system’s
efficiency. Our work stands out for its capacity to handle these interdependent decisions
collectively rather than separately. This work enables both VS and HS to further enhance
the system’s performance and users QoS. Considering the notion of edge server federations
raises the practicality of the proposed approach. The optimization of user-BS associa-
tion, which is the network-side resource, also plays an important role, especially in edge
computing with mobile devices, and thus it cannot be excluded from the task of MEC opti-
mization. Overall, the comprehensive optimization for MEC proposed in this work results
in optimized resource utilization and enhanced performance within the MEC ecosystem.

3. Proposed Idea

In this section, we illustrate the proposed system architecture, and then introduce the
proposed optimal MEC management scheme.

3.1. Proposed System Architecture

Figure 1 shows the overall system architecture we propose. The users (or user devices)
at the bottom layer can connect to the network via access networks. Base stations (BS) at the
access network can associate with users so that their offloading requests can be redirected
to either ES(s) or the cloud. Each BS can associate and communicate with up to a certain
number of users simultaneously, which is defined by the number of available orthogonal
channels, NCH . On top of the access network layer, ESs are deployed in federations. ESs
belonging to the same federation can efficiently communicate with each other at low
latency by being connected via a high-speed network. Such a system, for example, can be
implemented by a software-defined network [39]. There is a one-to-one mapping between
ES and BS, meaning that associating with a BS automatically determines which federation
to belong to. To put it another way, to belong to a particular federation, a user should be
associated with the BS that is connected to an ES in the federation. At the topmost layer
is the cloud data center, which has enough computing resources, whereas the others, i.e.,
user devices and ESs, are resource-limited.

Offloading can be carried out in three different ways: self-offloading, offloading to
ES(s), and offloading to the cloud. Users with enough computing resources on their devices
can process their requests by themselves. Also, the user’s request can be offloaded to one
or more ESs or the cloud. If HS is supported, a user can offload its request to multiple
ESs in the same federation. Finally, excessive amount of requests can be offloaded to the
cloud. The delay between a user and BS is very small compared to the rest of the delays we
consider in this paper. To be specific, it can be computed by dividing the BS-user distance,
e.g., a few hundreds of meters, divided by the speed of light which is normally 3 × 108.
The delay between ESs in the same federation is assumed to be short for being connected
with each other by high-speed links. However, the links between ESs and the cloud are
of large delay due to the large distance between ESs and the cloud. Users requests can be
partitioned into fractional portions, and they can be processed in a distributed manner,
possibly in different layers as well.



Sensors 2023, 23, 9200 6 of 22

Cloud Data Center

...

Users or user devices
(User Layer)

Access Networks
(Access Network Layer)

Federated Edge 
Computing
Resource Pool
(Edge Computing Layer)

Remote Resource Pool
(Cloud Layer)

Figure 1. Overall system architecture consisting of four layers.

3.2. Assumptions

In this work, we make the following assumptions. The number of federation of ES,
NG, is known in advance, along with which ES belongs to which federation. Such a relation
is abstracted by the federation indicator matrix Igrp ∈ {0, 1}NG×NS , where NS, the number
of ESs or BSs in the system, is known in advance. In the matrix, if the g-th row and s-th
column are one, ES s belongs to federation g. Users are assumed to be stationary with their
locations known. Given the locations of BSs, the accessibility matrix Iacc ∈ {0, 1}NS×NU is
constructed to indicate which user u can access (or within the transmission coverage of)
which BS s, where NU is the known number of users in the system. In the matrix, if the s-th
row and u-th column are one, user u can access BS s. A user can associate with a BS only
when the user can access the BS. It is assumed that the average amount of task offloading
requests for each user per time unit is known by using the historic logs, and denoted by
r ∈ [0, 1]NU×1. The computing resource budget available at users’ devices, ESs and the
cloud is denoted by cuser ∈ RNU

++, ces ∈ RNS
++ and ccloud, respectively, where ccloud ∈ R++ is

assumed to be a large number andR++ indicates a strongly positive real number.

3.3. Proposed Optimal MEC Management Method

In this work, we propose a joint optimization of user-BS association, ES provisioning
via VS and HS, and task distribution so that users’ requests can be processed efficiently.
In contrast to the previous works focusing on each issue separately, we argue that such a
chain of decisions should be considered at the same time to maximize the utilization of
the ES-cloud offloading system. This is because one decision in a prior step can affect the
following steps. Also, joint orchestration of VS and HS can further enhance the quality of
service (QoS) of users as well as the resource utilization of the computing units (i.e., ES
and cloud).

The proposed system consists of multiple layers as aforementioned, and there are
multiple federations of ESs that are operated by different service providers. Associating
a user with a BS leads to establishing a membership relation between the user and a
federation as well. Thus, ill-considered association can yield undesired outcomes such as a
certain federation being over-populated. Since a user can access the resource only within
the same federation, it is not a desired situation. Also, BS can associate with up to a limited
number of users, and thus an intelligent method for making an association and establishing
a membership relation is required.



Sensors 2023, 23, 9200 7 of 22

VS on ES can increase or decrease the allocated resources for the user’s request, but
due to the limited resources available on each ES, it may not suffice to fulfill the user’s
task-offloading demand. In such a case, allocating additional resources to other ES(s) is
essential, called HS. Joint consideration of VS and HS can satisfy the user’s QoS, especially
when the user’s demand is high or a certain ES is assigned to multiple users. Although the
cloud resource pool is large enough, due to the increased delay when communicating with
a remote cloud data center, it is desired to utilize as many ES resources as possible.

Considering the possible dynamic adjustment of ES resource allocation within a single
ES or multiple ESs in the same federation, it is better to maintain enough amount of
available, unused resources in each federation of ESs to be prepared for the possibility of
upcoming offloading demand increase. In this paper, an effective load-balancing scheme
among federations is proposed so that federations of ESs can process similar amounts of
tasks and to secure enough amount of available resources therein.

Also, it is desired to use fewer resources on users’ devices since they are battery-limited.
The objective of the proposed method is to achieve load balancing among federations of
ES, to maximize the lifetime of users devices by minimizing the amount of tasks processed
locally at the users’ devices, and to minimize the response time by minimizing the amount
of tasks processed at the remote cloud data center.

The NAFEOS approach consists of two stages as shown in Figure 2: Stage-1: pre-
configuration and Stage-2: real-time resource provisioning and task offloading. Stage-1
determines BS-user association and federated-user assignment. To make optimal decisions in
the stage, Stage-1 also optimizes the resource provisioning and task offloading based on the
average offloading requests from users. Once Stage-1 yields an optimal decision, the following
Stage-2 iterates to make real-time optimal decisions regarding resource provisioning and task
offloading upon receiving real-time task-offloading demand.

[Stage 1] Pre-Configuration

BS-User Association

Group-User Assignment
A particular set of ESs 

becomes available to 

each user

[Input] 

BS-User Accessibility Matrix

[Input] 

Group-ES Membership Relationship

Initial Resource Provisioning

(VS & HS)

[Input] 

Average Task Offloading Request

[Stage 2] Real-Time Resource Provisioning and Task Offloading

Resource Provisioning (VS & HS)

Task Offloading

[Input] 

Real-Time Task Offloading Request

Repeats

[Input] 

BS Association & Group 

Assignment (from Stage-1)

Figure 2. Overall flow of the NAFEOS method consisting of two stages.

The Stage-1 optimization problem in NAFEOS can be formally presented as follows.
The objective (1) is to minimize the three terms with the given weights α, β, and 1− α− β,
where α + β ≤ 1. The two non-negative design parameters do not exceed the value of 1,



Sensors 2023, 23, 9200 8 of 22

i.e., α, β ∈ [0, 1], and the three strongly positive denominators s1, s2, and s3 are used to scale
the corresponding terms within the same range [0, 1].

min
A,G,Y,

xuser ,Xes ,
xcloud ,b

α

s1
b +

β

s2
11·NU × xcloud +

1− α− β

s3
11×NU · xuser (1)

The first term in (1) minimizes b with which the offloaded load among federations
can be balanced due to the constraint (15) to be addressed shortly. To be specific, the
value of b is used to set the upper bound of the load across all federations and thus,
minimizing b yields a fair load distribution. The second term minimizes the amount
of task offloaded to the cloud (i.e., xcloud ∈ [0, 1]NU×1), where the u-th element in xcloud
corresponds to the amount of user u’s load offloaded to the cloud. The main purpose
of the second term is to reduce the response time since the large distance between the
user and the cloud yields a large network delay. The third term minimizes the amount
of self-offloading xuser ∈ [0, 1]NU×1 (i.e., processing on the device itself), where the u-th
element in xuser determines the amount of self-offloading for user u. This term plays an
important role in reducing the power consumption of the user device and prolonging its
lifetime. The 1N×1 and 11×N used in the objective function are a column and row vector
of N number ones, respectively.

By minimizing the objective function, load balancing among federations can be guar-
anteed while both the service delay and battery consumption for users are minimized. To
achieve the goal under practical considerations, we have defined the following constraints.
The BS-user association decision is binary as shown below, called (2). The (s, u)-th element
in A determines whether the BS s accepts the association request from user u or not by
having the value be 1 or 0, respectively.

A ∈ {0, 1}NS×NU (2)

In practice, the BS-user association can be made only when the user is placed within
the transmission range of a BS. The following constraint (3) places an element-wise less-
than or equal condition between A and Iacc with the � operator. The binary constant of the
(s, u)-th element in Iacc corresponds to whether the user u can receive the pilot signal from
the BS s or not by having the value of 1 or 0, respectively. Thus, the constraint (3) facilitates
the BS-user association only when both can communicate with each other.

A � Iacc (3)

In this work, we assume a single antenna device for users and thus, each user can
associate with a single BS at a time by the following constraint (4), where ' is the element-
wise equal operator.

AT × 1NS×1 ' 1NU×1 (4)

Each BS can associate with up to a particular number of users simultaneously, and
the number is limited by the number of orthogonal channels, NCH . Thus, the following
constraint (5) is used to limit the number of users that a BS can allow network access to at
a time.

A× 1NU×1 � NCH · 1NS×1 (5)

The federation-user mapping is also a binary relation as described in (6). That is,
having the value of 1 for the (g, u)-the element in G indicates the federation g has decided
to accept the user u so that the user can offload its processing load to the edge servers in
the federation.

G ∈ {0, 1}NG×NU (6)



Sensors 2023, 23, 9200 9 of 22

In addition, one federation is exclusive of the rest by the assumption in this work, each
user should become a member of a single federation by the constraint (7).

GT × 1NG×1 ' 1NU×1 (7)

A user can offload its task to an ES if the user is assigned with an isolated virtual
environment on the ES (8). The (s, u)-th element in Y corresponds to whether the edge
server s has allowed user u to offload its task or not, if the value is 1 or 0, respectively.

Y ∈ {0, 1}NS×NU (8)

In this study, we assume a containerized virtual environment such as Docker [40]
which is light-weight and widely used in MEC [24]. Highly-loaded users may use multiple
ESs for distributed task offloading, but the user can utilize only the ESs belonging to the
same federation (9).

YT � GT × Igrp (9)

The portion of task offloaded to the device itself, one or more ESs and the cloud is
determined by the corresponding variables xuser, Xes and xcloud, respectively (10).

xuser ∈ [0, 1]NU×1, xcloud ∈ [0, 1]NU×1, Xes ∈ [0, 1]NS×NU , (10)

While the cloud is assumed to have enough resources to allow any amount of task
offloading, both user devices and edge servers are of limited capacities as shown in (11)
and (12), respectively.

xuser � cuser (11)

Xes × 1NU×1 + h · Y× 1NU×1 � ces (12)

Each u-th element and s-th element in cuser and ces corresponds to the computing
resource budget of user u and edge server s, respectively. To calculate the amount of
resource in use for each BS, we also consider the overhead to run virtual containers,
represented by h.

A user can offload its task to one or more ESs if there is a container dedicated to the
user in the corresponding edge server as described in the constraint (13).

Xes � Y (13)

Each user’s QoS should be fully satisfied by the constraint (14), and it is assumed to
be always possible due to the abundant resource in the cloud.

xuser + xT
es × 1NS×1 + xcloud ' r (14)

The last constraint (15) sets the upper-bound b for the workload offloaded to federa-
tions, which is used to achieve load balancing.

(Igrp × Xes)× 1NU×1 � b · 1NG×1 (15)



Sensors 2023, 23, 9200 10 of 22

Putting it all together, we have the following Stage-1 optimization problem (called
P. 16).

(P. 16) min
A,G,Y,

xuser ,Xes ,
xcloud ,b

α

s1
b +

β

s2
11×NU × xcloud +

1− α− β

s3
11×NU × xuser

subject to (2)–(15)

Given the optimal solutions A∗, G∗ and Y∗ from the Stage-1 problem (P. 16), Stage-2
iteratively makes decisions on resource provisioning (i.e., VS and HS) and task offloading
upon receiving real-time offloading requests. The Stage-2 optimization problem (called
P. 17) is a subset of P. 16, and it is formally defined as below, where γ ∈ [0, 1] is a design
parameter, indicating the weight given to minimizing the use of the remote cloud resource.

(P. 17) min
xuser ,Xes ,

xcloud

γ

s2
11×NU × xcloud +

1− γ

s3
11×NU × xuser

s.t. (10), (11), (12), (13), (14)

The proposed problem P. 16 is non-convex due to the binary (or integer in general)
variables A and G. However, due to efficient algorithms such as branch-and-bound and
branch-and-cut [41], the given problem can be efficiently solved by computer solvers such
as CPLEX [42] and Gurobi [43]. Also, P. 16 is an off-line method that can run often, meaning
that the computation complexity is of less importance. On the other hand, P. 17 is for
a real-time, iterative algorithm that should run each time slot. Due to the linearity of
problem P. 17, its time complexity is polynomial [44] and thus, it is applicable to be used as
a real-time scheduling algorithm. In spite of the presence of binary variables (or integers, in
general) in the proposed problem formulation, one can efficiently find the global optimal
solution with the widely used computer solvers, such as Gurobi and CPLEX. For example,
to solve mixed integer programming-type problems, Gurobi which is used in this work
employs branch-and-bound and branch-and-cut methods which are widely used exact
solutions [45].

4. Evaluation

In this section, we first present the parameters assumed and used in our evaluation,
along with the layout of the BS/ES and users. Also, the various algorithms adopted for
performance comparisons are enumerated. The simulation and evaluation is carried out on
a high-performance workstation with an Intel Core i9 10940X CPU and 128 GB memory, and
the reported values in this section are the average out of ten evaluations. The evaluations
were carried out on two different network configurations, namely a grid network and
random network presented in Section 4.1 and Section 4.2, respectively.

4.1. Even Distribution of Base Stations

Figure 3 illustrates the assumed area for evaluation where 20 users (or user devices)
and 25 BSs are evenly deployed. Users are placed at uniform random, while BSs are
located at intersections on a grid. Each BS can communicate with users within 150 m radius
coverage, and there are five orthogonal channels available so that up to five users are served
simultaneously by a single BS. As shown in Figure 1, over the access network, there are
25 ESs federated into three groups and the ESs within the same federation are connected
with high-speed communication links. We assume that the three federations of ESs are
operated by different service providers, and thus HS, if supported, can occur with the ESs
in the same federation but inter-federation HS is prohibited.

In our evaluation, we have abstracted both the users’ offloading requests and the
computing capacities such that they are denoted by a unit-less number in the range of
[0, 1.0]. The rate at which the offloading request of each user is generated per unit of time is



Sensors 2023, 23, 9200 11 of 22

randomly chosen from Uniform[0.20,1.00]. The resource budget of each user and ES for each
unit time is randomly drawn from Uniform[0.05,0.20] and Uniform[0.40,0.80], respectively,
indicating the random background processing workload. The cloud is assumed to have
large enough resources to handle any amount of request. A user’s request can be processed
by the user’s device, one or more ESs in the same federation, and/or the cloud. To
provide the offloading service to the user, the ES shall create a light-weight container which
consumes h = 0.05 amount of resource. The assumed parameters for evaluation are
summarized in Table 1. The weights, α and β, are configured to 0.12 and 0.44, respectively,
and the particular values are found by a heuristic approach.

0 50 100 150 200 250 300 350 400

x (meter)

0

50

100

150

200

250

300

350

400

y 
(m

et
er

)

Figure 3. The layout of the assumed 400 m -by-400 m area where the 20 red stars and 25 black dots
are the locations of users and BSs, respectively.

Table 1. Parameters used for evaluation on a grid network.

Parameter Value

Number of users 20, distributed randomly

Number of BS/ES 25, distributed evenly

BS transmission range 150 m

Number of orthogonal channels 5

Number of federations 3

Offloading request rate Uniform[0.20,1.00] per user

Resource budget Uniform[0.05,0.20] per user
Uniform[0.40,0.80] per ES

h 0.05 (container operating overhead)

weights α = 0.12, β = 0.44

We have implemented the NAFEOS and the simulation environment on MATLAB [46].
To solve the proposed optimization problem, we have used CVX [47] and Gurobi. For
comparison, we have also implemented the following algorithms:

• NAFEOS: the optimal method proposed in this paper.
• RND (Random): random approach that makes decisions at random.
• RAG (Random Association and Grouping): same as NAFEOS, except that RAG

randomly makes association and user-federation mapping (also called grouping).
• noHS (no Horizontal Scaling): same as NAFEOS, except that HS is not supported.



Sensors 2023, 23, 9200 12 of 22

• noLB (no Load Balancing): same as NAFEOS, except that load balancing among
federations is not supported.

Figure 4 shows the amount of processing units that are handled locally at the users’
device. Except RND which randomly makes decisions, the rest of the algorithms perform
optimal provisioning and task offloading. To be specific, NAFEOS, RAG, noHS, and noLB
share a similar objective function that penalizes the use of users’ devices for processing. As
a result, RND partially lets users process their own requests locally, whereas the other algo-
rithms do not. The reason why it is penalized in this work is to save battery consumption
on the users’ devices and to prolong their lifetime.

0 2 4 6 8 10 12 14 16 18 20

User ID

0

0.1

0.2

0.3

0.4

P
ro

ce
ss

ed
 u

ni
ts

NAFEOS
RND
RAG
noHS
noLB

Figure 4. The amount of users’ requests processed locally at the users’ device on a grid network.

Figures 5 and 6 depict the average amount of processing units allocated at the ES and
cloud, respectively, for each user’s task offloading. As it can be seen from both figures, the
NAFEOS, RAG and noLB can provision the optimal amount of processing units by using HS,
and thus, there is no offloading to the cloud. Although noHS is another optimal provisioning
scheme, it does not perform HS. If a single ES is assigned to multiple users and their aggregate
request exceeds the ES’s budget, the overflowing requests will be forwarded to the cloud. The
downside of offloading to the cloud is the increased response time or end-to-end delay shown
in Figure 7. With the assumption of a 5G cellular network as the underlying infrastructure [48],
the achieved delay lends support to their relevance for various applications.

0.44

0.31

0.44
0.42

0.44

NAFEOS RND RAG noHS noLB
0

0.2

0.4

0.6

0.8

1

P
ro

ce
ss

ed
 u

ni
ts

Figure 5. The average amount of users’ requests processed at the edge server on a grid network.



Sensors 2023, 23, 9200 13 of 22

0.00

0.10

0.00

0.03

0.00

NAFEOS RND RAG noHS noLB
0

0.1

0.2

0.3

0.4

P
ro

ce
ss

ed
 u

ni
ts

Figure 6. The average amount of users’ requests processed at the remote cloud data center on a
grid network.

For our evaluation, edge-to-edge and edge-to-cloud delays are set to 1.5 ms and 15 ms,
respectively [49]. Given the distance between each user and its associated BS which can be
computed by using their locations, the propagation delay between the two can be computed
by dividing the distance by the speed of light. As it is already discussed in Section 3.1,
we assume that the BS-user delay is negligibly small compared to the rest, edge-to-edge
delay within the same federation is small, and edge-to-cloud delay is the largest in this
study. Since the transmission range of a BS is up to 150 m, dividing the worst-case user-BS
distance by the speed of light (i.e., 3 × 108 m/s) yields 50 µs, which is much smaller than
the edge-to-edge delay. To be specific, the response time is computed as follows. For
each time slot, for the proposed NAFEOS and other approaches that are considered for
comparison, solve the corresponding algorithm to make decisions on self-offloading, ES
offloading, and cloud offloading. Once the decision is carried out, the response time can
be computed. Let dBS, de2e and de2c be the one-way delay for BS-user, edge-to-edge, and
edge-to-cloud. Then, for the following cases, the response time which excludes the time
taken to process the offloaded task is computed as below.

• self-offloading yields zero response time
• offloading to ES without HS yields 2dBS
• offloading to ES with HS yields 2(dBS + de2e)
• offloading to the cloud yields 2(dBS + de2c)
• offloading to ES without HS and to the cloud yields 2(dBS + de2c)
• offloading to ES with HS and to the cloud yields 2(dBS + de2e + de2c).

It is worth mentioning that the reported response time in this section is per-user
average value, meaning that the summation of all response times is divided by the number
of users reported in this section.

By using the above delay configurations, we can compute the average per-user re-
sponse time (i.e., twice the end-to-end delay) as shown in Figure 7.

As it can be seen from the figure, the three optimal methods, i.e., NAFEOS, RAG,
and noLB, outperformed the rest. The main reason for such low response time is because
they do not offload to the cloud, which is causing the largest delay. In addition, due to
the balanced load among federations, it is less likely that a certain ES is highly overloaded
for the NAFEOS scheme. As a result, HS, which is causing an additional delay for the
transmission among ES, is also minimized. Thus, the NAFEOS scheme achieved the lowest
response time, although the improvement compared to RAG and noLB is insignificant. Both
RND and noHS offload users’ requests to the remote cloud which increased the response



Sensors 2023, 23, 9200 14 of 22

time significantly. Among the two, RND achieved slightly better performance because it
randomly lets users process their own tasks which is causing zero network delay.

1.65

7.11

1.80

7.50

1.80

NAFEOS RND RAG noHS noLB
0

1

2

3

4

5

6

7

8

9

10

R
es

po
ns

e 
tim

e 
(m

s)

Figure 7. The average per-user offloading service response time ignoring the task processing time on
a grid network.

The following figures, Figures 8–10, show the load-balancing performance among the
three federations. The three optimal schemes, i.e., NAFEOS, RAG, and noLB, offload the
entire task to ESs, and thus they achieve the largest offloaded units as shown in Figure 9
on average. However, due to the ill-considered association/federating and missing load-
balancing features in RAG and noLB, respectively, their fairness performances are degraded
as shown in Figure 10. To measure the load-balancing performance among federations, we
have used the widely used Jain’s fairness index [50] which measures the fairness as follows:

J (x1, x2, · · · , xn) =
(∑n

i=1 xi)
2

n ·∑n
i=1 x2

i
.

Although noHS achieved almost perfect fairness, due to the inability to perform HS,
it has offloaded a certain amount of task to the cloud, yielding lower performance than
NAFEOS as shown in both Figures 8 and 9. Due to the random deployment of users, RND
was able to achieve high fairness performance, but still it is outperformed by the NAFEOS.

1 2 3

Federation ID

1

2

3

4

5

P
ro

ce
ss

ed
 u

ni
ts

NAFEOS
RND
RAG
noHS
noLB

Figure 8. The average amount of processed units at each federation on a grid network.



Sensors 2023, 23, 9200 15 of 22

3.68

2.59

3.68
3.47

3.68

NAFEOS RND RAG noHS noLB
0

1

2

3

4

5

P
ro

ce
ss

ed
 u

ni
ts

Figure 9. The average amount of processed units per federation on a grid network.

1.00

0.92 0.92

1.00
0.93

NAFEOS RND RAG noHS noLB
0

0.2

0.4

0.6

0.8

1

Ja
in

's
 fa

irn
es

 in
de

x

Figure 10. The performance of the fair distribution of the processed units among federations on a
grid network.

4.2. Random Distribution of Base Stations with Higher Task Generation Rate

An additional evaluation has been carried out on a randomly located BS (see Figure 11)
with a higher task generation rate. Table 2 summarizes only the parameters that are
different from the previous ones in Table 1, and the weight parameters are heuristically
chosen as before.



Sensors 2023, 23, 9200 16 of 22

0 50 100 150 200 250 300 350 400

x (meter)

0

50

100

150

200

250

300

350

400

y 
(m

et
er

)

Figure 11. The layout of the assumed 400 m-by-400 m area where the 20 red stars and 25 black dots
are the locations of users and BSs, respectively, that are randomly distributed.

Table 2. Changed parameters for evaluation on a random network.

Parameter Value

Number of BS/ES 25, randomly distributed

Offloading request rate Uni f orm[0.60, 1.00] per user

weights α = 0.22, β = 0.48

Figure 12 shows the amount of task processed by the device itself. Except for noLB, all
approaches let users process a small amount of load by themselves. This is quite different
from the results from the evenly distributed BSs scenario with a moderate task generation
rate in Figure 4. When each user is surrounded by a number of ESs and the amount of load
to process is moderate, users do not offload tasks to themselves to minimize their battery
consumption as shown in Figure 4. However, on the assumed network in this section
where ESs are randomly deployed and the load generation rate is high, some users may
not secure enough resources on ESs, and thus to reduce the service delay, devices process a
small mount of tasks by themselves. On the other hand, noLB does not have restrictions on
the even distribution of the load among federations and thus, it utilizes as much resource
on ES as possible, resulting in no self-offloading on average.

0.10

0.07
0.08

0.10

0.00

NAFEOS RND RAG noHS noLB
0

0.1

0.2

0.3

0.4

P
ro

ce
ss

ed
 u

ni
ts

Figure 12. The amount of users’ requests processed locally at the users’ device on a random network.



Sensors 2023, 23, 9200 17 of 22

Figures 13 and 14 show the amount of tasks offloaded to the ES and cloud, respectively.
Except RND which randomly offloads the load, the rest of the approaches utilize a lot of
resources from ES and a few from the cloud. The main reason for this is that utilizing ES
yields a shorter delay. However, due to the limited resources on the ES, a small portion
of the load is processed on the cloud anyway. The proposed NAFEOS offloads the least
amount of load to the cloud, which effectively reduces the response time as shown in
Figure 15. One interesting result here is that although RND offloads more to the cloud
compared to noHS, its response time is much less than noHS. After analysis, what we
found is as follows. In RND, a small number of users offloaded a lot of load to the cloud.
On the other hand, noHS lets many users offload a small amount of task to the cloud. The
noHS is not allowed to perform horizontal scaling. Thus, once the assigned ES is operating
at its full capacity, users redirect the remaining load to the cloud.

0.52

0.25

0.51
0.47

0.57

NAFEOS RND RAG noHS noLB
0

0.2

0.4

0.6

0.8

1

P
ro

ce
ss

ed
 u

ni
ts

Figure 13. The average amount of users’ request processed at edge server on a random network.

0.07

0.43

0.09
0.12

0.09

NAFEOS RND RAG noHS noLB
0

0.1

0.2

0.3

0.4

0.5

P
ro

ce
ss

ed
 u

ni
ts

Figure 14. The average amount of users’ request processed at the remote cloud data center on a
random network.



Sensors 2023, 23, 9200 18 of 22

11.10

19.89

13.80

30.00

13.05

NAFEOS RND RAG noHS noLB
0

10

20

30

40

R
es

po
ns

e 
tim

e 
(m

s)

Figure 15. The average per-user offloading service response time ignoring the task processing time
on a random network.

Figures 16–18 show the load balancing-related performance among federations. From
both Figures 16 and 18, it is clear that the proposed NAFEOS achieves the highest load-
balancing performance. Although noHS has achieved comparable fairness performance
to NAFEOS, the amount of load offloaded to ESs is less than that of NAFEOS as shown
in Figure 17. That is, the proposed NAFEOS can not only achieve high load-balancing
performance, but also utilize as many resources on ES as possible which is an effective
approach to reduce both the service delay and the battery consumption at the user device.
Although noLB maximizes the use of ES resources, due to the lack of the load-balancing
feature, its fairness performance is lower than that of NAFEOS.

1 2 3

Federation ID

0

2

4

6

8

P
ro

ce
ss

ed
 u

ni
ts

NAFEOS
RND
RAG
noHS
noLB

Figure 16. The average amount of processed units at each federation on a random network.



Sensors 2023, 23, 9200 19 of 22

4.30

2.09

4.26
3.95

4.77

NAFEOS RND RAG noHS noLB
0

2

4

6

P
ro

ce
ss

ed
 u

ni
ts

Figure 17. The average amount of processed units per federation on a random network.

0.98

0.90 0.92
0.98

0.95

NAFEOS RND RAG noHS noLB
0

0.2

0.4

0.6

0.8

1

Ja
in

's
 fa

irn
es

 in
de

x

Figure 18. The performance of the fair distribution of the processed units among federations on a
random network.

5. Conclusions

In this paper, we have introduced NAFEOS, an approach for optimal resource schedul-
ing and task distribution in edge computing. In the NAFEOS system architecture, edge
servers are federated, forming exclusive sets of available edge servers. A user’s association
with a base station determines which edge server and federation the user can access. Addi-
tionally, task offloading for users can be facilitated through horizontal and vertical scaling
to meet the users’ Quality of Service (QoS) requirements.

NAFEOS implements a two-stage approach, where the first Stage-1 solves the long-
term decisions on the association between base station and user and the federation as-
signment between edge server federation and user along with initial provisioning of edge
server resources. The following Stage-2 algorithm is repeatedly invoked on short time
scales (or time slots) to make optimal decisions on edge server resource provisions by
means of vertical and horizontal scaling. Then, it distributes the users’ offloading requests
to different layers.

The performance of NAFEOS, as well as several comparison algorithms, was system-
atically evaluated in two distinct network scenarios. The first scenario involved an even
distribution of base stations (BS), while the second scenario involved a random distribution
of BS with a higher task generation rate. In a grid network characterized by uniform distri-
bution of BS and users, NAFEOS demonstrates outstanding performance in processing user
requests at the ES. NAFEOS achieves a processing rate of 0.44 processing units, outperform-
ing RND, RAG, noHS, and noLB. NAFEOS efficiently allocates processing units to the cloud,



Sensors 2023, 23, 9200 20 of 22

thus reducing the demand for offloading and minimizing cloud utilization. It demonstrates
optimal provisioning with a significantly lower per-user offloading service response time of
1.65 ms. NAFEOS shows its outstanding efficiency by achieving a processing unit count of
3.68 per federation. NAFEOS’ outstanding load balancing and fairness among federations,
confirmed by Jain’s fairness index, establish NAFEOS as the optimal choice. In a random
network with a higher task generation rate, NAFEOS shows outstanding results in task
processing across different components. Specifically, it achieves a processing capacity of
0.10 units at users’ devices, 0.52 units at the edge server, and effectively minimizes cloud
offloading with a processing capacity of 0.07 units. The observed results show a lower
average per-user offloading service response, with a value of 11.10 ms compared to other
algorithms. NAFEOS also shows outstanding load-balancing capabilities, outperforming
other algorithms with an average of 0.98 processed units per federation. The evaluation
results show that NAFEOS is an effective approach for enhancing the efficiency and overall
performance of IoT networks through association and federation, horizontal and vertical
scaling, and workload balancing among federations.

NAFEOS has the potential to enhance network efficiency, extend user device lifetimes,
and reduce response times in various low-powered Internet of Things applications such
as remote monitoring of assets, smart surveillance systems, predictive maintenance in
manufacturing, content caching and monitoring, and smart city/home. In particular, in the
real-world applications operated mainly by low-power devices with network resource lim-
its, the proposed NAFEOS is expected to provide the best efficiency gain. While the specific
benefits may vary, the underlying principles of resource optimization remain consistent.
In future work, we plan to carry out an empirical evaluation and integrate the federated
learning into NAFEOS, further enhancing its ability to process user requests efficiently.

Author Contributions: Conceptualization, S.S. and T.K.; methodology, A.K.N. and T.K.; software,
A.K.N. and T.K.; validation, S.S. and T.K.; formal analysis, S.S. and T.K.; investigation, A.K.N.; resources,
T.K.; data curation, A.K.N.; writing—original draft preparation, A.K.N. and T.K.; writing—review and
editing, S.S. and T.K.; visualization, A.K.N.; supervision, T.K.; project administration, T.K.; funding
acquisition, T.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2021R1F1A1059109), and a New Faculty Research
Grant of Pusan National University, 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Y.; Ma, X.; Zhang, J.; Hossain, M.S.; Muhammad, G.; Amin, S.U. Edge Intelligence in the Cognitive Internet of Things:

Improving Sensitivity and Interactivity. IEEE Netw. 2019, 33, 58–64. [CrossRef]
2. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE

Commun. Surv. Tutorials 2017, 19, 2322–2358. [CrossRef]
3. Choi, P.; Kwak, J. A Survey on Mobile Edge Computing for Deep Learning. In Proceedings of the International Conference on

Information Networking (ICOIN), Bangkok, Thailand, 11–14 January 2023; pp. 652–655.
4. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2017, 5, 450–465.

[CrossRef]
5. Shakarami, A.; Ghobaei-Arani, M.; Shahidinejad, A. A survey on the computation offloading approaches in mobile edge

computing: A machine learning-based perspective. Comput. Netw. 2020, 182, 107496. [CrossRef]
6. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutorials

2017, 19, 1628–1656. [CrossRef]
7. Jeong, H.J.; Lee, H.J.; Shin, K.Y.; Yoo, Y.H.; Moon, S.M. PerDNN: Offloading deep neural network computations to pervasive

edge servers. In Proceedings of the IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore,
29 November–1 December 2020; pp. 1055–1066.

http://doi.org/10.1109/MNET.2019.1800344
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1109/COMST.2017.2682318


Sensors 2023, 23, 9200 21 of 22

8. Chen, M.; Hao, Y. Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network. IEEE J. Sel. Areas
Commun. 2018, 36, 587–597. [CrossRef]

9. Liu, J.; Zhang, Q. Offloading Schemes in Mobile Edge Computing for Ultra-Reliable Low Latency Communications. IEEE Access
2018, 6, 12825–12837. [CrossRef]

10. Jiang, C.; Cheng, X.; Gao, H.; Zhou, X.; Wan, J. Toward Computation Offloading in Edge Computing: A Survey. IEEE Access 2019,
7, 131543–131558. [CrossRef]

11. Li, Q.; Wang, S.; Zhou, A.; Ma, X.; Yang, F.; Liu, A.X. QoS Driven Task Offloading with Statistical Guarantee in Mobile Edge
Computing. IEEE Trans. Mob. Comput. 2022, 21, 278–290. [CrossRef]

12. Sardellitti, S.; Merluzzi, M.; Barbarossa, S. Optimal Association of Mobile Users to Multi-Access Edge Computing Resources. In
Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA,
20–24 May 2018; pp. 1–6. [CrossRef]

13. Zhang, P.; Zhang, A.; Xu, G. Optimized task distribution based on task requirements and time delay in edge computing
environments. Eng. Appl. Artif. Intell. 2020, 94, 103774. [CrossRef]

14. Xu, Y.; Zhang, T.; Liu, Y.; Yang, D.; Xiao, L.; Tao, M. Cellular-Connected Multi-UAV MEC Networks: An Online Stochastic
Optimization Approach. IEEE Trans. Commun. 2022, 70, 6630–6647. [CrossRef]

15. Haibeh, L.A.; Yagoub, M.C.E.; Jarray, A. A Survey on Mobile Edge Computing Infrastructure: Design, Resource Management,
and Optimization Approaches. IEEE Access 2022, 10, 27591–27610. [CrossRef]

16. Yang, J.; Shah, A.A.; Pezaros, D. A Survey of Energy Optimization Approaches for Computational Task Offloading and Resource
Allocation in MEC Networks. Electronics 2023, 12, 3548. [CrossRef]

17. Chu, W.; Jia, X.; Yu, Z.; Lui, J.C.; Lin, Y. Joint Service Caching, Resource Allocation and Task Offloading for MEC-based Networks:
A Multi-Layer Optimization Approach. IEEE Trans. Mob. Comput. 2023, 1–17. [CrossRef]

18. Kim, T.; Lin, J.W.; Hsieh, C.T. Delay and QoS aware low complex optimal service provisioning for edge computing. IEEE Trans.
Veh. Technol. 2023, 72, 1169–1183. [CrossRef]

19. Yahya, W.; Oki, E.; Lin, Y.D.; Lai, Y.C. Scaling and offloading optimization in pre-CORD and post-CORD multi-access edge
computing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4503–4516. [CrossRef]

20. Wang, N.; Matthaiou, M.; Nikolopoulos, D.S.; Varghese, B. DYVERSE: Dynamic vertical scaling in multi-tenant edge environments.
Future Gener. Comput. Syst. 2020, 108, 598–612. [CrossRef]

21. da Silva, T.P.; Neto, A.F.R.; Batista, T.V.; Lopes, F.A.; Delicato, F.C.; Pires, P.F. Horizontal auto-scaling in edge computing
environment using online machine learning. In Proceedings of the IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber
Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), AB, Canada, 25–28 October 2021, pp. 161–168.

22. Cañete, A.; Djemame, K.; Amor, M.; Fuentes, L.; Aljulayfi, A. A proactive energy-aware auto-scaling solution for edge-based
infrastructures. In Proceedings of the IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC),
Vancouver, WA, USA, 6–9 December 2022; pp. 240–247.

23. Zhang, L.; Zou, Y.; Wang, W.; Jin, Z.; Su, Y.; Chen, H. Resource allocation and trust computing for blockchain-enabled edge
computing system. Comput. Secur. 2021, 105, 102249. [CrossRef]

24. Kim, T.; Al-Tarazi, M.; Lin, J.W.; Choi, W. Optimal container migration for mobile edge computing: Algorithm, system design
and implementation. IEEE Access 2021, 9, 158074–158090. [CrossRef]

25. Wang, H.; Wang, Y.; Sun, R.; Su, R.; Liu, B. Joint user association and power allocation for minimizing multi-bitrate video
transmission delay in mobile-edge computing networks. In Proceedings of the 12th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS-2018), Sydney, NSW, Australia, 3–5 July 2019; pp. 467–478.

26. Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint computation offloading and user association in multi-task mobile edge computing.
IEEE Trans. Veh. Technol. 2018, 67, 12313–12325. [CrossRef]

27. Tang, X.; Wen, Z.; Chen, J.; Li, Y.; Li, W. Joint optimization task offloading strategy for mobile edge computing. In Proceedings
of the IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing,
China, 17–19 December 2021; Volume 2, pp. 515–518.

28. Bi, S.; Huang, L.; Zhang, Y.J.A. Joint optimization of service caching placement and computation offloading in mobile edge
computing systems. IEEE Trans. Wirel. Commun. 2020, 19, 4947–4963. [CrossRef]

29. Kherraf, N.; Alameddine, H.A.; Sharafeddine, S.; Assi, C.M.; Ghrayeb, A. Optimized provisioning of edge computing resources
with heterogeneous workload in IoT networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 459–474. [CrossRef]

30. Xiang, Z.; Deng, S.; Jiang, F.; Gao, H.; Tehari, J.; Yin, J. Computing power allocation and traffic scheduling for edge service
provisioning. In Proceedings of the IEEE International Conference on Web Services (ICWS), Beijing, China, 19–23 October 2020;
pp. 394–403.

31. Abouaomar, A.; Cherkaoui, S.; Mlika, Z.; Kobbane, A. Resource provisioning in edge computing for latency-sensitive applications.
IEEE Internet Things J. 2021, 8, 11088–11099. [CrossRef]

32. Hussain, R.F.; Salehi, M.A.; Kovalenko, A.; Feng, Y.; Semiari, O. Federated edge computing for disaster management in
remote smart oil fields. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 929–936.

http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/ACCESS.2018.2800032
http://dx.doi.org/10.1109/ACCESS.2019.2938660
http://dx.doi.org/10.1109/TMC.2020.3004225
http://dx.doi.org/10.1109/ICCW.2018.8403594
http://dx.doi.org/10.1016/j.engappai.2020.103774
http://dx.doi.org/10.1109/TCOMM.2022.3199016
http://dx.doi.org/10.1109/ACCESS.2022.3152787
http://dx.doi.org/10.3390/electronics12173548
http://dx.doi.org/10.1109/TMC.2023.3268048
http://dx.doi.org/10.1109/TVT.2022.3206087
http://dx.doi.org/10.1109/TNSM.2021.3101862
http://dx.doi.org/10.1016/j.future.2020.02.043
http://dx.doi.org/10.1016/j.cose.2021.102249
http://dx.doi.org/10.1109/ACCESS.2021.3131643
http://dx.doi.org/10.1109/TVT.2018.2876804
http://dx.doi.org/10.1109/TWC.2020.2988386
http://dx.doi.org/10.1109/TNSM.2019.2894955
http://dx.doi.org/10.1109/JIOT.2021.3052082


Sensors 2023, 23, 9200 22 of 22

33. Chi, H.R.; Radwan, A. Fully-Decentralized Fairness-Aware Federated MEC Small-Cell Peer-Offloading for Enterprise Manage-
ment Networks. IEEE Trans. Ind. Informatics 2022, 19, 644–652. [CrossRef]

34. Karakoç, N.; Scaglione, A.; Reisslein, M.; Wu, R. Federated edge network utility maximization for a multi-server system:
Algorithm and convergence. IEEE/Acm Trans. Netw. 2022, 30, 2002–2017. [CrossRef]

35. Li, C.; Tang, J.; Luo, Y. Elastic edge cloud resource management based on horizontal and vertical scaling. J. Supercomput. 2020,
76, 7707–7732. [CrossRef]

36. Zhang, Z.; Wang, T.; Li, A.; Zhang, W. Adaptive auto-scaling of delay-sensitive serverless services with reinforcement learning.
In Proceedings of the IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA,
USA, 27 June–1 July 2022; pp. 866–871.

37. Daraje, M.; Shaikh, J. Hybrid resource scaling for dynamic workload in cloud computing. In Proceedings of the IEEE International
Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, India, 3–4 December 2021; pp. 1–6.

38. Maia, A.M.; Ghamri-Doudane, Y.; Vieira, D.; de Castro, M.F. Optimized Placement of Scalable IoT Services in Edge Computing.
In Proceedings of the IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Arlington, VA, USA, 8–12
April 2019; pp. 189–197.

39. Li, C.; Qianqian, C.; Luo, Y. Low-latency edge cooperation caching based on base station cooperation in SDN based MEC. Expert
Syst. Appl. 2022, 191, 116252. [CrossRef]

40. Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2.
41. Mitchell, J.E. Branch-and-cut algorithms for combinatorial optimization problems. Handb. Appl. Optim. 2002, 1, 65–77.
42. Cplex, IBM ILOG. V12. 1: User’s Manual for CPLEX. Int. Bus. Mach. Corp. 2009, 46, 157.
43. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; Gurobi Optimization, LLC: Beaverton, OR, USA, 2023.
44. Karmarkar, N. A new polynomial-time algorithm for linear programming. In Proceedings of the Sixteenth Annual ACM

Symposium on Theory of Computing, Washington, DC, USA, 30 April–2 May 1984; pp. 302–311.
45. Morrison, D.R.; Jacobson, S.H.; Sauppe, J.J.; Sewell, E.C. Branch-and-bound algorithms: A survey of recent advances in searching,

branching, and pruning. Discret. Optim. 2016, 19, 79–102. [CrossRef]
46. MATLAB. Version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010.
47. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1, 2014.
48. Kelechi, A.H.; Alsharif, M.H.; Ramly, A.M.; Abdullah, N.F.; Nordin, R. The four-C framework for high capacity ultra-low latency

in 5G networks: A review. Energies 2019, 12, 3449. [CrossRef]
49. Guo, M.; Li, L.; Guan, Q. Energy-efficient and delay-guaranteed workload allocation in IoT-edge-cloud computing systems. IEEE

Access 2019, 7, 78685–78697. [CrossRef]
50. Jain, R.K.; Chiu, D.M.W.; Hawe, W.R. A Quantitative Measure of Fairness and Discrimination; Eastern Research Laboratory, Digital

Equipment Corporation: Hudson, MA, USA, 1984; Volume 21.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2022.3193900
http://dx.doi.org/10.1109/TNET.2022.3156530
http://dx.doi.org/10.1007/s11227-020-03192-3
http://dx.doi.org/10.1016/j.eswa.2021.116252
http://dx.doi.org/10.1016/j.disopt.2016.01.005
http://dx.doi.org/10.3390/en12183449
http://dx.doi.org/10.1109/ACCESS.2019.2922992

	Introduction
	Related Work
	Proposed Idea
	Proposed System Architecture
	Assumptions
	Proposed Optimal MEC Management Method

	Evaluation
	Even Distribution of Base Stations
	Random Distribution of Base Stations with Higher Task Generation Rate

	Conclusions
	References

