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Abstract: Amid the ongoing emphasis on reducing manufacturing costs and enhancing productivity,
one of the crucial objectives when manufacturing is to maintain process tools in optimal operating
conditions. With advancements in sensing technologies, large amounts of data are collected during
manufacturing processes, and the challenge today is to utilize these massive data efficiently. Some
of these data are used for fault detection and classification (FDC) to evaluate the general condition
of production machinery. The distinctive characteristics of semiconductor manufacturing, such as
interdependent parameters, fluctuating behaviors over time, and frequently changing operating
conditions, pose a major challenge in identifying defective wafers during the manufacturing process.
To address this challenge, a multivariate fault detection method based on a 1D ResNet algorithm
is introduced in this study. The aim is to identify anomalous wafers by analyzing the raw time-
series data collected from multiple sensors throughout the semiconductor manufacturing process.
To achieve this objective, a set of features is chosen from specified tools in the process chain to
characterize the status of the wafers. Tests on the available data confirm that the gradient vanishing
problem faced by very deep networks starts to occur with the plain 1D Convolutional Neural Network
(CNN)-based method when the size of the network is deeper than 11 layers. To address this, a 1D
Residual Network (ResNet)-based method is used. The experimental results show that the proposed
method works more effectively and accurately compared to techniques using a plain 1D CNN and
can thus be used for detecting abnormal wafers in the semiconductor manufacturing industry.

Keywords: fault detection; raw sensor data; multivariate time series; semiconductor manufacturing;
deep learning

1. Introduction

Semiconductor manufacturing is a batch multi-step process, where silicon wafers
undergo a sequence of complex and lengthy processing operations involving a large
number of recipes and equipment types, during which electronic circuits are gradually
crafted to create functional integrated circuits. Products are organized into batches of
25 silicon wafers throughout equipment production. Finalized wafers are obtained after
several months of extensive processing cycles, representing hundreds of operations. The
semiconductor manufacturing process is nonlinear and can be disrupted by various factors,
such as equipment aging, cleaning, and repairs; the state of the wafers and wafer transfer;
and preprocess chambers and chamber warm-up. As a result, there is process variability
within a wafer (intrawafer variability), between wafers (interwafer variability), within a
batch (intrabatch variability), and between different batches (interbatch variability). The
equipment’s data, which are automatically collected by numerous sensors located on
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the process equipment, provide direct information about the process conditions, such as
temperature, pressure, gas flow, power, capacitance, etc. This results in a vast amount of
sensor data that are routinely collected and stored on appropriate media.

Modern manufacturing industries use cutting-edge big data technologies and innova-
tive machine learning techniques to reduce manufacturing costs and improve production
quality by extracting insightful knowledge from the collected data to enhance process
automation, predictive analyses, and effective equipment monitoring [1]. As for equipment
monitoring, its main purpose is to identify abnormalities and faults in manufacturing
process operations. In manufacturing industries, equipment monitoring can be segmented
into four main parts: fault detection, fault identification and diagnosis, estimation of fault
magnitudes, and product quality monitoring and control [2]. The methods used to im-
plement this monitoring are divided into three main categories: qualitative model-based,
quantitative model-based, and data-driven methods [3]. In order to use model-based
monitoring methods, the structure and behavior of the monitored system and all of its com-
ponents must be thoroughly known and understood. Model-based monitoring methods are
very reliable, but they suffer from numerous flaws, as the detailed analytical descriptions
needed for their implementation are either unavailable for complex industrial processes
or greatly time-consuming to obtain due to the need for extensive human intervention.
Unlike model-based methods, data-driven methods do not require any a priori knowledge
about the system. The models are constructed by relying solely on available process data,
through which the characteristics of the system are extracted.

To guarantee consistent, continuous, and reproducible production quality, the sensor
data collected from hundreds of equipment variables are utilized for equipment monitoring
purposes, such as fault detection, fault diagnosis, prognosis, equipment health manage-
ment, predictive maintenance, and virtual metrology. The early detection and precise
classification of faulty wafers that result from abnormal processing are crucial for control-
ling operations, minimizing yield losses, and preventing defective wafers from progressing
to the subsequent stages for each equipment. This paper, in particular, emphasizes the use
of sensor data for fault detection and classification (FDC) in the semiconductor industry.

As time goes on, the strong technological push provides improved data storage and
data analysis capabilities, resulting in the collected sensor data being significantly larger
as the number of data samples and dimensionality jointly increase. With this increase in
sensor data availability, the collected data disclose many subtleties, such as incompleteness,
high dimensionality, infrequent labeling, and severely unbalanced samples. This paper
focuses on high dimensionality and severely unbalanced data.

Firstly, the intricate nonlinear interactions between the signals (multiple intervariable
correlations) in the high-dimensional sensor data make the detection of abnormal mea-
surements exceedingly challenging. For data-driven tasks, it is crucial to extract solely the
pertinent information, especially when dealing with multidimensional data [4]. Various
feature extraction and dimensionality reduction methods have been developed to extract
relevant features by performing nonlinear mappings of input data into an embedded
representation [5]. The learned embedded representation contains useful features, which
can be used to perform fault detection with statistical control charts or machine learning
methods, resulting in improved reliability. To detect faults through feature extraction
and dimensionality reduction, several unsupervised machine learning methods have been
proposed based on factor analysis embedding, locally linear embedding, and singular value
decomposition (SVD) embedding.

Secondly, industrial faults rarely occur, resulting in severely unbalanced data samples,
where faulty samples are scarce. The rare occurrence of faults makes it difficult to constitute
a dataset sufficiently balanced for effective supervised machine learning. While numerous
feature extraction and classification approaches for fault detection and analysis have been
presented, the fault classification accuracy remains unsatisfactory due to the severely unbal-
anced data samples [6]. This imposes a great limitation on the usage of supervised learning
methods for fault detection. The scarcity of faulty samples has led to the widespread use



Sensors 2023, 23, 9099 3 of 19

of self-supervised learning methods based on Principal Component Analysis (PCA) [7],
Independent Component Analysis (ICA) [8], and Partial Least Squares (PLS) [9], which can
be combined with supervised learning methods such as support vector machine (SVM) [10]
and k-Nearest Neighbors (k-NN) [11] for fault identification.

The high volume of data poses a challenge for machine learning methods that require
extensive data preprocessing, leading to performance limitations [12]. To address this
challenge in the semiconductor industry, deep learning algorithms that can handle large
volumes of data without extensive preprocessing have been explored for fault detection.
Additionally, deep learning algorithms can adapt and learn from new data, making them
suitable for dynamic environments, where data patterns may change over time. Deep
learning approaches have performed very well across a wide range of applications, effec-
tively transforming high-dimensional information into new embedded representations
with robust and meaningful characteristics. Self-supervised deep learning methods, such
as stacked [13], denoising [14], convolutional [15–18], and recurrent autoencoders [19,20],
have been used to enable this efficient translation of input data to embedded characteristics.
Deep learning methods achieve equally good fault detection performance when working
on unbalanced datasets with supervised learning methods based on Convolutional Neural
Networks (CNN) [21–23]. In their study, Hsu et al. [22] notably used data augmentation
with a sliding window to generate numerous subsequences from multiple time series,
which helped avoid overfitting on the unbalanced datasets.

With the increase in dataset sizes for complex data characteristics, such as those found
in multivariate time series, deeper models are needed. Deep learning models provide
more accurate results as the number of layers increases. In order to achieve the most
accurate models on very large datasets, the depth of the models must be continuously
increased to cope with the increase in dataset sizes. However, despite being the primary
method with state-of-the-art performance, deep learning techniques face the issue of van-
ishing/exploding gradients when the network becomes very deep. As a result, shallow
counterparts may outperform deep networks [24,25]. He et al. [24] proposed residual
networks (ResNet) to efficiently overcome vanishing gradients. To perform bearing fault
detection, Qian et al. [26] used a ResNet classifier with model-based data augmentation
to cope with the requirement of large amounts of data. This paper addresses the gradient
vanishing problem in a plain 1D CNN-based fault detection method trained with a substan-
tial amount of multivariate time series data from a semiconductor manufacturing process.
To overcome this observed issue with vanishing gradients, this paper introduces a novel
ResNet architecture for fault detection on multidimensional time series. The proposed
architecture uses 1D convolutions, which capture both the temporal dynamics and spatial
correlations in the multivariate time-series data. The approach’s effectiveness is demon-
strated by analyzing two datasets and comparing them to the state-of-the-art methods.
This study is an extended analysis of a work previously presented at a conference [27].
providing new and interesting insights into gradient analysis, detailed data, and fault-type
description, as well as discussing detection performance for each fault type.

The remainder of this paper is organized as follows. Section 2 introduces the repre-
sentative deep learning methods used in fault detection. Section 3 exposes the gradient
vanishing problem and describes the proposed ResNet model. Section 4 presents the experi-
mental setup, and Section 5 discusses the detection performance on real and simulated data
from a semiconductor manufacturer. Finally, Section 6 concludes the paper and discusses
future studies.

2. Deep Learning Methods for Fault Detection

This section introduces the nature of the sensor data and briefly presents the neural
network approaches used for the experimental analysis. The gradient vanishing problem
on deep CNNs is formalized, and the theory behind residual connections is explained.
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2.1. Multivariate Time Series

A multivariate time series, also known as multidimensional time series, is a sequence
of vectors that involves multiple variables recorded over a period of time, with each
vector representing the state of a monitored variable at a specific time point. In other
words, it is a collection of time series, where each time series corresponds to a different
feature or dimension. A multivariate time series S with T time steps and M variables is
represented as S = [S1, S2, . . . , ST ], where Sk = (s1,k, s2,k, . . . , sM,k) is an M-dimensional
vector that represents the values of the M variables at time k. In contrast to a univariate
time series, which involves only a single variable, a multivariate time series can capture the
relationships and interactions between multiple variables.

In the semiconductor industry, equipment sensor data are collected at a given fre-
quency, and this can vary from one equipment to another. Sensor data variables, also
referred to as status variable identification (SVID), can be collected every 1 s, 0.5 s, 0.2 s,
and so on, and this value is fixed for specific equipment and never changes. Semiconductor
manufacturing is a batch-processing industry, and the equipment sensor data are collected
as three-dimensional data. They constitute a multivariate time series, which can be repre-
sented in a 3D matrix form, i.e., wafer number, SVID, and processing time, as shown in
Figure 1.

For each SVID, all the wafers are recorded for different durations due to variations in
the processing time for different recipes, as well as the time-varying behaviors inherent in
semiconductor manufacturing. This leads to a non-stationary dynamic in the multivariate
time series. Consequently, all the durations need to be synchronized and preprocessed to
a fixed length prior to fault detection. Given the various operating conditions, there are
differences in the statistical characteristics of the collected time series between one wafer
and another, and one batch and another.

Figure 1. Multidimensional sensor data representation. A labeled 3D data matrix for N wafers, M
SVIDs, and with varying process times ni per wafer.

2.2. Supervised Deep Learning for Fault Detection

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) that is
capable of processing sequential data such as time-series data by preserving information
over a longer period of time compared to traditional RNNs, which suffer from the vanishing
gradient problem. LSTM [28] is introduced as a solution to the vanishing gradient problem
in RNNs. Instead of a single hidden state, LSTM uses a cell state and three gates (input
gate, forget gate, and output gate) to control the flow of information. The cell state acts as a
memory unit that can store information over longer periods of time. The gates regulate
how much information is allowed to flow into or out of the cell state at each time step,
allowing the LSTM to selectively forget or remember information from the past. These
gating mechanisms allow LSTM to selectively remember or forget information over long
periods of time, making it well suited for modeling time-series data.
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LSTM is well suited for tasks such as time series classification and anomaly detection
because it can learn complex temporal patterns and capture long-term dependencies and
multivariate correlations in the data. For anomaly detection, the LSTM model is then
trained using normal system data to learn the normal behavior of the system. Once the
model is trained, it is used to detect anomalies in the system data. Anomalies are detected
by comparing the output of the LSTM model for a given input with the expected output
based on the model training data and computing a corresponding anomaly score. LSTM
can be trained using backpropagation over time [29], which allows it to learn from past
data and make predictions about future data. In [30], the authors proposed LSTM-AD,
a self-supervised anomaly detection method based on stacked LSTMs. By leveraging
the power of stacked LSTMs, LSTM-AD captures complex temporal dependencies in
the normal time-series data. This enables it to effectively learn and predict expected
behavior, making it robust against variations and anomalies in the analyzed time series.
The utilization of prediction errors and thresholds allows LSTM-AD to accurately identify
and flag any deviations from the learned normal patterns, providing a reliable anomaly
detection mechanism. The same main author later proposed EncDec-AD in [19], an LSTM-
based encoder–decoder approach for multi-sensor time-series anomaly detection. EncDec-
AD reconstructs time series in reverse, uses the reconstruction error to compute anomaly
scores, and sets a decision boundary threshold using the mean and standard deviation.
This threshold helps classify the time-series data as either normal or anomalous. The
encoder–decoder architecture of EncDec-AD is derived from a particular type of neural
network: autoencoder.

Autoencoders (AEs) are a type of neural network used for unsupervised feature
learning [13]. They can be used for a variety of tasks, such as data compression, image
denoising, and anomaly detection. By rebuilding the input at the output, AEs approximate
the identity function by reconstructing the input data as accurately as possible. They
can capture complex patterns and relationships from many data types. AEs handle high-
dimensional data efficiently, making them suitable for multivariate time-series analysis.
An autoencoder consists of two main components: an encoder and a decoder. The encoder
maps the input data to a lower-dimensional representation, whereas the decoder maps
the lower-dimensional representation back to the original input. During training, the
autoencoder is optimized to minimize the reconstruction error, which is the difference
between the input and the output of the decoder. The denoising autoencoder (DAE) is a
variant of AEs that is specifically designed to remove noise from input data. It works by
training the AE to reconstruct clean versions of corrupted input data, thereby learning to
extract meaningful features and patterns from noisy data, making it more resilient to noise
and improving its generalization capabilities. The DAE’s robustness to input noise makes
it valuable in applications where noise is prevalent.

Time-series classification using autoencoders involves training an autoencoder on a set
of time-series data and then using the learned representation for classification. The encoder
of the autoencoder can be thought of as a feature extractor, which maps the time-series
data to a lower-dimensional feature space. The extracted features can then be used as input
to a classifier, such as a support vector machine (SVM) or a random forest, to perform
classification. Anomaly detection using autoencoders involves training an autoencoder
on a set of normal time-series data and then using the learned representation to detect
anomalies in new time-series data. Anomalies are detected by comparing the reconstruction
error of the autoencoder for a given time-series data point with a threshold value. If the
reconstruction error is above the threshold, the data point is considered to be an anomaly.
In [15], the authors proposed using convolutional sparse autoencoders (CSAE-AD) and
the corresponding convolutional denoising sparse autoencoders (CDSAE-AD) to create a
self-supervised FDC approach. With the use of convolutional kernels and the addition of a
sparsity penalty [31] based on the Kullback–Leibler divergence [32] in the cost function,
convolutional sparse autoencoders differ considerably from basic autoencoders. CSAE-AD
allows the model to learn hierarchical features from the input data and encourages the
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activation of only a few neurons, resulting in more efficient and robust representations.
CDSAE-AD, the denoising component, further enhances performance by training the
model to reconstruct clean data from noisy inputs, improving its ability to handle real-
world data with noise. Later, the authors of [14] introduced an FDC approach based on
stacked denoising autoencoders to extract noise-resistant features and accurately classify
semiconductor data.

However, like any machine learning technique, their performance is highly dependent
on the quality of the data and the specific problem being solved. Self-supervised learning
methods based on LSTMs or AEs for fault detection on semiconductor time-series data
perform worse than supervised learning methods, as shown in [33]. In [33], CNN-based
fault detection methods exhibited the best performances.

Convolutional Neural Networks (CNNs) are a type of deep learning model commonly
used in computer vision applications, but they can also be applied to time-series data.
CNNs [34] are composed of multiple layers, including convolutional layers, pooling layers,
and fully connected layers. Convolutional layers are the core building blocks of CNNs and
consist of multiple filters that slide over the input data to extract features. The pooling lay-
ers downsample the output of the convolutional layers, reducing the dimensionality of the
data. Finally, the fully connected layers are used to classify the input data. CNNs have been
shown to be effective for fault detection in time-series data. The approach involves using
the 1D convolutional layer to learn relevant features from the time-series data. The convo-
lutional layer slides a kernel over the input data to extract local features, which can then be
combined to form global features that are used for classification. Lee et al. [21] introduced
FDC-CNN, a supervised anomaly detection approach that demonstrated good classification
performance in fault detection on a Chemical Vapor Deposition (CVD) process dataset,
which consisted of multivariate time series. FDC-CNN utilizes convolutional kernels to
sweep the time axis of the two-dimensional input and extract both the temporal and spatial
relationships between variables during feature extraction. Subsequently, Kim et al. [35]
presented a modified version of FDC-CNN, which incorporates a self-attention mech-
anism into a CNN to improve the fault detection accuracy on an etch-process dataset.
The self-attention mechanism [36] assigns attention weights via a probability distribu-
tion to different time steps, enabling the detection method to disregard irrelevant parts
and concentrate on the relevant parts of a sequence, thus enhancing its ability to detect
subtle anomalies.

Deep neural networks are used to enhance performance on big datasets rather than
on shallow ones. Although the CNN-based methods proposed by [21,35] achieved some
great results on our small datasets, they faced the vanishing gradient problem when the
networks became very deep. The vanishing gradient problem is a well-known issue that
can occur when training deep neural networks, including CNNs and RNNs. The vanishing
gradient problem occurs when the gradients used to update the weights of a neural network
during training become very small, making it difficult for the network to learn. This can
happen in deep neural networks with many layers, where the gradients must pass through
multiple layers during backpropagation. The gradients can become small, as they are
multiplied by the weight matrices in each layer, leading to a problem where the early layers
of the network learn much more slowly compared to the later layers. In time-series fault
detection with CNNs, the vanishing gradient problem can occur because the input data
are high-dimensional and have complex temporal dependencies. The CNN model must
learn to extract relevant features from the data, and these features can be spread across
multiple layers of the network. If the gradients become very small as they pass through
the layers, the early layers of the network may not be able to learn the relevant features,
leading to poor performance. In our case, as seen in Figure 2, there was a gradual decrease
in the training and test errors as the number of layers in the CNN-based fault detection
model increased from two to nine layers. From 11 layers and beyond, the training and
test errors increased as the number of layers increased, resulting in a drop in the detection
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performance as the number of layers in the network increased. This highlights the necessity
of proposing a method capable of addressing the vanishing gradient problem.

Figure 2. Training errors (left) and test errors (right) of plain CNNs with 2, 5, 7, 9, 11, and 13 layers on
a multivariate time-series dataset. The training and test errors gradually decreased as the networks
deepened but started to increase from the 11-layer network, confirming the vanishing gradient
problem on deeper networks.

2.3. Residual Connections in Deep Neural Networks

He et al. [24] brought attention to the problem of performance degradation observed
when CNNs deepen. As the network depth increases, the network performance begins
to saturate and finally degrades. This phenomenon is caused by the vanishing gradient
of deep neural networks rather than overfitting [25]. This can make it difficult for the
network to learn from the training data, as the updates to the parameters based on the
gradient can become insignificant. Thus, slow convergence or even complete failure to
converge can be observed during the training of the network. Several network designs,
including ResNet [24], Highway Network [37], and DenseNet [38], have been proposed to
address this issue. All these networks share the same design principle, commonly referred
to as shortcut, skip, or residual connections. Shortcut connections are a technique used in
deep neural networks to accurately address the vanishing gradient problem. They allow
the gradient to be directly propagated from one layer to another, bypassing intermediate
layers that may cause the gradient to become small. This helps to alleviate the vanishing
gradient problem and allows the network to learn more efficiently, even when it contains
many layers.

In the ResNet architecture, the shortcut connections are mainly used in two ways: they
can either perform identity mapping, such as in the identity block in Figure 3a, or execute a
linear projection, as in the convolution block in Figure 3b. The output of the identity blocks
is combined with the output of the stacked layers, which does not add any extra parameters
or computational complexity to the network. Consequently, they have the same number of
parameters, depth, and width, making them simple to compare to the corresponding plain
networks. For an input x, their output y is defined as:

y = σ(F (x, {Wi}) + x) (1)

where F (x, {Wi}) is the residual mapping to be learned and σ is the ReLU activation
function. The function F (x, {Wi}) denotes several convolutional, normalization, and



Sensors 2023, 23, 9099 8 of 19

activation layers, where element-wise addition is executed on two feature maps, channel
by channel. In convolution blocks, the shortcut connections conduct a linear projection
to align the dimensions between the input x and the residual mapping F (x, {Wi}). This
linear projection is achieved by using a 1x1 convolutional layer with appropriate filters.
By doing so, the dimensions of the input and the residual mapping are made compatible,
allowing for element-wise addition. This technique helps preserve important information
while enabling the network to learn more complex representations. The output of this
block is:

y = σ(F (x, {Wi}) + Wsx) (2)

where Ws is a square matrix performing the linear projection of x. The linear projection is
employed when a modification in dimension arises in the stacked layers of a block. The
structure of the residual blocks is adaptable, as depicted in Figure 3, where the blocks
contain two convolutional layers. However, it is possible to have additional layers and
diverse configurations.

(a) Identity block (b) Convolution block

Figure 3. The two residual block structures (with shortcut connection) behind the ResNet architecture
proposed in [24].

The shortcut connection allows the gradient to flow directly from the output of the
residual block to the input, bypassing the convolutional layers. This helps prevent the
gradient from vanishing as it propagates through the network, making it easier to train
deeper models. By adding the input to the output, the network is able to learn residual
functions that represent the difference between the input and the output. This makes it
easier for the network to learn the underlying function being modeled, especially when the
function has many complex features.

Shortcut connections have been shown to be effective in a variety of deep neural
network architectures [39]. Their ability to address the vanishing gradient problem and
improve training efficiency has made them an essential tool for building deep neural net-
works. They have helped advance the state-of-the-art in tasks such as image classification,
object detection, natural language processing, and semantic segmentation.

3. Proposed Method for Fault Detection

In the semiconductor industry, ResNet architectures have recently been used for
wafer defect detection and classification [40,41]. They aim to sort defective chips by
analyzing images of wafer surfaces. In the literature, no works have addressed fault
detection on multivariate time series using residual networks. This section discusses a fault
detection method based on a ResNet architecture that uses 1D convolutions to process raw
multivariate time series from semiconductor manufacturing equipment.
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In this paper, we implement standard CNNs and CNNs with shortcut connections
to convey the advantages of adding residual connections to improve the feature learning
capability of deep convolutional networks on time series. Also, a ResNet-type architecture
is suggested for fault detection. ResNet, an enhanced version of the standard convolutional
network, is utilized to minimize training difficulty by efficiently using shortcut connec-
tions to prevent the gradient from vanishing as it propagates through the deep network.
The ResNet architecture consists of a succession of residual blocks for feature extraction,
followed by fully connected layers for classification.

In standard CNNs, the receptive field is a square matrix of weights that links the input
layer to the convolutional layer. With a size smaller than the input data, the receptive
field moves across its horizontal and vertical axes with a predetermined stride to perform
convolutions. For an input x of size M× K, the output of a convolution operation with no
padding is stored in a node and can be expressed as follows:

yij = σ

(
F

∑
m=1

F

∑
n=1

wm,nx(m+iS),(n+jS) + b

)
, for 0 ≤ i ≤ M− F

S
, and 0 ≤ j ≤ K− F

S
, (3)

where F represents the size of the square receptive field; S is the stride; x(m+iS)(n+jS) is
the input element at position (m+iS, n+ jS); wm,n and b are the weights at position (m, n)
and the bias, respectively; and σ is a nonlinear activation function, typically a rectified
linear unit (ReLU). The receptive field or filter used to create a feature map contains a
single-weight matrix, which means all the nodes in a feature map share the same weights.
This allows the receptive field to search for a common characteristic (such as a single
intervariable correlation in multivariate sensor signals) across the entire input data [21].

However, the conventional square receptive field of CNNs is not ideal for extracting
intervariable and temporal correlations among all the SVIDs, which is crucial for fault
detection in multivariate time-series data. To address this, the proposed architecture utilizes
a rectangular receptive field that moves only along the time axis. One-dimensional (1D)
convolution layers are tailored to implement this feature, operating along a single axis. For
an input wafer x of size M× K, which represents M SVIDs and K time steps, the output of
the first convolution operation with no padding, immediately after the input layer for a
node, is given by:

yi = σ

(
F

∑
m=1

M

∑
n=1

wm,nx(m+i×S),(n) + b

)
, for 0 ≤ i ≤ K− F

S
, (4)

where F and S are the row size and stride length of the receptive field, respectively. The
proposed approach for fault detection combines a feature extractor based on a ResNet for
feature learning with a fully connected layer. The ResNet-based architecture proposed in
this study includes both identity blocks (Res-block a) and convolution blocks (Res-block b)
to enhance the feature extraction process, as shown in Figure 4.

The entire architecture, as illustrated in Figure 4, has some specificities. The batch
normalization layer is utilized to reduce the computational complexity of the training
process. The spatial dropout layer [42] is implemented to regularize the network weights
and prevent overfitting. Residual blocks are employed to mitigate the degradation problem
and extract distinctive features from the dataset, with two types of blocks: identity and
convolution. The convolution layers in the blocks follow two design rules: (i) when the
feature map size is the same, the layers have the same number of filters, and (ii) when
the feature map size is halved, the number of filters per layer is doubled. The halving or
downsampling is accomplished using convolution layers with a stride of 2. The pooling
layer is used to reduce the dimension of the intermediary algebraic elements, which are
then flattened to obtain the 1D dimension required by the fully connected layers.

The fully connected layers, also known as dense layers, form a multi-layer perceptron,
which takes a one-dimensional array obtained from the output of the feature extractor.
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The fully connected layers are responsible for learning the complex relationships between
the features extracted by the previous layers and generating the final output probabilities
for each class. In this fault detection approach, the fully connected layers perform binary
classification to determine if an input sample is normal or faulty.

Figure 4. ResNet-based feature extraction. Res-blocks x-a are the identity blocks shown in Figure 3a,
and Res-blocks x-b are the convolution blocks shown in Figure 3b.

The complexity of a control system is similar to that of a controlled system. To alleviate
the complexity of the ResNet model, the number of sensors employed at each stage of a
process is chosen by experts on the basis of domain knowledge. Reducing the number and
quality of sensors thus helps mitigate the complexity of the monitoring algorithm. Another
way of reducing the complexity of the monitoring algorithm is by using raw sensor data.
Raw sensor data have no signal processing or filtering applied to them before ingestion by
the ResNet, as it is not essential for its operations. Hence, signal processing can be totally
skipped with no impact on the performance of the ResNet.

When using a considerably complex algorithm like ResNet for monitoring a multi-
variate multi-stage process, special effort has to be made during the design and training
processes to ensure proper working of the algorithm owing to its complexity. The complex-
ity of the ResNet lies in the structure of the residual blocks and the depth of the overall
model. He et al. [24] proposed a set of simple rules for the design of efficient residual blocks,
as described above. The suitable depth needed depends on the size of the training dataset
and is determined through empirical experimentation. One model is designed, trained, and
implemented according to the production recipe of a given equipment. The design changes
between two models for two production recipes occur mainly in the modulation of the
input layer so as to accommodate the length of the time series and the number of sensors.

4. Experimental Setup

This section reports a comprehensive empirical study for fault detection in multivariate
time series. First, the datasets used for experimental evaluation are introduced. Then, the
experimental setup and architecture details of the networks are described. Finally, the
metrics are defined to analyze and discern the results obtained. The results of the proposed
method are compared to the most recent findings in the literature for fault detection in the
semiconductor industry.

4.1. Data Preparation

This paper examines the effectiveness of the proposed model using two datasets
provided by STMicroelectronics Rousset 8′ ′ fab. To simplify the analysis, we focus on
one equipment and one recipe for each dataset. The raw data consist of time series with
three-dimensional information (wafer, variables, and time) but are represented as a two-
dimensional matrix with processing time and SVID axes only. Sensor data are collected
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every second for both datasets. Equipment faults are rare in semiconductor manufacturing,
and the number of faulty samples available for a given production recipe is very low
compared to the number of normal samples. This leads to a situation of imbalanced data,
as there are more normal samples than faulty samples in training and testing datasets. The
ideal composition for supervised classification is an equal number of samples for each
class. Encountering unbalanced datasets is a real challenge and adds complexity to the
fault detection methods.

The first dataset was obtained from a process simulator developed by STMicroelec-
tronics that mimics the dynamics of real variables, such as the gas flow, pressure, and
temperature of an etch tool. For a single recipe lasting an average of 150 s, 11 variables
are monitored for a total of 7000 wafers, including 5000 normal samples and 2000 faulty
samples. This results in a ratio of 28.6% faulty data, which is considered good given the
rarity of faulty data in the semiconductor industry. STMicroelectronics has identified five
recurrent fault types in its manufacturing processes. The first dataset comprises five distinct
fault types, each with an equal distribution of 400 samples. For each fault type, faults
are introduced in one process step, and they occur on at least two different variables but
not concurrently. The step in which the fault occurs is randomly selected for each fault
type, ensuring that faults do not occur systematically in the same step. Figure 5 portrays
these five common fault types that occur during wafer manufacturing. Fault 1 repre-
sents a breakage point, creating a deviant cycle with an amplitude range ranging between
30 and 50% of the time-series maximum value for at least 10 time steps. Fault 2 represents
a temporary change in value with a return to a regular level after several time steps. For
fault 2, the amplitude ranges between 10 and 30% of the time-series maximum value for
at least 8 time steps. Faults 3 and 4 are analogous to additive noise and sinusoidal distur-
bances, respectively, acting as innovational outliers that induce a trend change. Fault 3
has an amplitude ranging from 1 to 10% and occurs for at least 5 time steps. For fault 4,
the amplitude ranges from 1 to 5% with damping and phase shift factors and occurs for
at least 8 time steps. Fault 5 represents a peripheral point, which is an independent data
point that is notably outlying, resulting from a sudden rise in value (a peak), with an
amplitude between 40 and 60% of the time-series maximum value. The primary objective
is to identify all types of faults, and the current study does not examine the classification of
the detected faults.

Figure 5. Description of the 5 common fault types (in red). These anomalies transpire across
different variables and can be either atomic or aggregate in nature. Atomic anomalies involve
abnormal values for a single variable, whereas aggregate anomalies arise from groups of variables
deviating collectively.

The second dataset is from a plasma etching tool. The production recipe consists of
a series of nine steps and lasts 130 s on average. Due to operating conditions, the time
series does not have the same length from one wafer to another. The input data need to
have a fixed length to be processed by neural networks. In order to have a fixed length
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for the dataset, the times series are all padded to a fixed length of 140 s. Among all the
collected SVIDs, domain engineers selected a set of 25 for fault detection and classification.
For one month of production, this represents 516 wafers, with 423 normal samples and
93 faulty samples. The ratio of faulty wafers is 18.0%, showing a class imbalance. This
second dataset has only one fault type, the temporary change.

4.2. Neural Network Configurations

Two versions of the ResNet are proposed as fault detection methods: a ResNet with
average pooling (ResNet-1) and a ResNet with spatial pyramid pooling [43] (ResNet-2).
Two different pooling methods are used here for performance optimization. For compari-
son purposes, six neural network models are considered as benchmarks: two CNN-based,
two LSTM-based, and two autoencoder-based, with different sequence encoding meth-
ods. These architectures have achieved consistent results when used for fault detection in
the semiconductor industry [14,15,21,35]. The baseline methods used are stacked autoen-
coders (SAE-1), convolutional autoencoders (SAE-2), standard CNN (CNN-1), CNN with
self-attention (CNN-2), stacked LSTM (LSTM-1), and LSTM with self-attention (LSTM-2).
CNN-2 and LSTM-2 correspond, respectively, to CNN and LSTM architectures with a
self-attention layer replacing the final pooling layer. SAE-1 corresponds to a stacked
autoencoder, which is composed of two symmetrical artificial neural networks in a bottle-
neck form. SAE-2 corresponds to convolutional autoencoders composed of a symmetrical
convolutional encoder and deconvolutional decoder.

To optimize the models, various configurations were evaluated for each of the pre-
viously presented models, and only the best parameters were retained to produce the
final results. The neural network architectures proposed for the experimental setting were
implemented using the widely acclaimed Tensorflow software, version 2.10.

The best ResNet-1 architecture comprises one convolutional layer (with 64 filters, a
kernel size of 3, and a stride of 1), one spatial dropout layer (with a rate of 10%), four
residual blocks (two identity blocks with 64 filters, followed by one convolution block and
one identity block with 128 filters), one average pooling layer (the pool size being fixed
to 2), one dense layer (with 100 units), and one dropout layer (with a rate of 10%). For
ResNet-2, the architecture is the same as that of ResNet-1 with the average pooling layer
replaced with a spatial pyramid pooling layer (with 32, 16, 8, 1 bins). Spatial pyramid
pooling [43] maintains the spatial information in the local spatial bins. The number of
bins and their size are fixed, thus generating a fixed-length representation regardless of
input size.

SAE-1 is a fully connected layer-based model, comprising an encoder and a decoder
network composed of dense layers, with the decoder being the mirrored version of the
encoder. The encoder has three hidden layers with 22, 15, and 10 nodes. SAE-2 is a
convolutional-based model, comprising an encoder, a decoder, and one dense layer (with
100 units) for classification. The decoder is a mirrored version of the encoder with deconvo-
lutions. The encoder has three hidden layers with 44, 30, and 20 filters. The ReLU function
is used as the activation function. CNN-1 is configured as follows: 11 convolutional layers
with 64, 64, 64, 64, 64, 128, 128, 128, 128, 256, and 256 filters coupled with batch normal-
ization; ReLU activation and spatial dropout (rate: 10%) layers; one dense layer (with
100 units); and one dropout layer (rate: 10%). For CNN-2, self-attention mechanism-based
Luong-style attention is used. For the LSTM architecture, two layers with 128 LSTM cells
each are used. In addition, one dropout layer (the rate being 10%) and one dense layer
(with 100 units) are used for classification. For LSTM-2, Luong-style attention is applied. In
terms of the activation function, the underlying nonlinearity in the data is enforced through
the sigmoid function for the LSTM-based models.

The neural network configurations are summarized in Table 1.
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Table 1. Summary of the neural network configurations of the various methods used for fault
detection on the simulated dataset.

Hyperparameter ResNet-1 ResNet-2 CNN-1 CNN-2 LSTM-1 LSTM-2 SAE-1 SAE-2

Model specificity Residual
blocks

Residual
blocks Plain blocks Self-attention

CNN
Stacked
LSTM

Self-attention
LSTM

Stacked
autoencoders

Conv
autoencoders

Number of feature
extraction layers 11 11 11 2 2 2 6 6

Activation function ReLU ReLU ReLU ReLU Sigmoïd Sigmoïd ReLU ReLU
Number of

classification layers 2 2 2 2 2 2 1 2

Pooling before
classification

Average
pooling

Spatial
pyramid
pooling

Average
pooling No pooling No pooling No pooling No pooling No pooling

Batch size 32 32 32 32 16 16 32 32

4.3. Other Configurations

• Data partitioning: The dataset is split into training and test sets with a ratio of 80–20%.
This process is performed through a stratified fivefold cross-validation partitioning in
order to avoid biased results. In terms of implementation, the partitioning is carried
out using Scikit-learn.

• Weight initialization: The initial weights are defined using Glorot uniform distribution.
No layer-weight constraints are set on the weight matrices for the learning process.

• Weight optimization: The Adam optimizer is used for the training, with the learning
rate fixed at 0.0005 for all models. After numerous optimization tests, the batch sizes
are, respectively, fixed at 32 for the ResNet-based, CNN-based, and autoencoder-based
models and at 16 for the LSTM-based models. For all of the models, the number
of epochs is fixed at 300 with early stopping, and the cost function is the binary
cross-entropy.

4.4. Evaluation Metrics

The evaluation metrics are the F-scores for model efficiency assessment and the
computational complexity. The F-score is a function of the Precision and the Recall. In
this specific framework, the Precision (see (5)) is the ratio of actual faults among the total
detected faults and the Recall, as detailed in (6), corresponds to the ratio of the actual faults
with respect to the correct predictions.

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

Given (5) and (6), the F-score is expressed in (7). Fweighted, as expressed in (8), is used as
the main score, which is a weighted sum of F0 and F1 that takes into account the imbalanced
dataset. It follows:

Fβ =
(1 + β2)Precision.Recall

β2Precision + Recall
, (7)

Fweighted =
F1AP + F0AN

AP + AN
, (8)

where TP, FP, FN , AP, and AN represent true positive, false positive, false negative, actual
positive, and actual negative, respectively.

The efficiency of a given model is an increasing function of the score, i.e., the model
is considered very precise when the score is high (close to 1, which is the maximum
upper bound).



Sensors 2023, 23, 9099 14 of 19

Remark: It is worth highlighting that accuracy, which is the most intuitive way to
evaluate classification models, is not a convenient efficiency measure for an imbalanced
dataset [44]. This is why the Fweighted score is proposed as the evaluation metric.

5. Results and Discussion

This section presents and discusses the results obtained on both a simulated and a real
dataset from semiconductor manufacturing.

5.1. Gradient Analysis

In Figure 6, the training and validation errors during the training of shallow and
deeper networks for both plain and ResNet architectures are compared. In Figure 6a,
the gradual decrease in the training error from the 7-layer to the 11-layer plain network
and the sudden degradation of the 13-layer plain network, which had higher training
errors throughout the training process, can be observed. The same cannot be said for the
validation error of the plain networks, as shown in Figure 6b. It is hypothesized that the
deep plain networks may have encountered optimization difficulties and thus exponentially
low convergence rates, which affected how well the training error was reduced. On the
other hand, it can be seen that despite the increase in depth, the residual networks exhibited
equal training errors from 7- to 13-layer networks, indicating high convergence rates. This
implies that the degradation problem was adequately handled. There were gains in the
detection capability from the increased depth until the 13-layer network, where degradation
can be observed in both plain and ResNet architectures. This suggests that even for residual
networks, there is a maximal depth beyond which performance starts to degrade. Table 2
shows the detection performance achieved for layer depths varying from 7 to 13 layers
for plain and ResNet architectures. It can be seen that when comparing networks with
equal depth, residual networks always demonstrated better capabilities than their plain
counterparts. Subsequently, the best plain and ResNet architecture (11 layers) was retained
for comparison with other deep learning-based fault detection methods. For the dataset
used, training was carried out on 7 to 13 layers because networks with fewer than 7 layers
are not relevant in a ResNet architecture, and all networks with more than 13 layers suffer
from the vanishing gradient problem.

Table 2. Fault detection performance of residual vs. plain networks with the same layer depth on the
simulated dataset.

Method Layers F0 F1 Fweighted

ResNet-7 7 0.9507 0.8607 0.9250
Plain-7 7 0.9371 0.8058 0.8996

ResNet-9 9 0.9589 0.8837 0.9374
Plain-9 9 0.9414 0.8187 0.9063

ResNet-11 11 0.9599 0.8865 0.9389
Plain-11 11 0.9425 0.8315 0.9108

ResNet-13 13 0.9518 0.8567 0.9246
Plain-13 13 0.9367 0.8097 0.9004
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(a) Training error—residual vs. plain networks

(b) Validation error—residual vs. plain networks

Figure 6. Training and validation on the simulated dataset presented in Section 4. In these plots, the
residual networks have no extra parameters compared to their plain counterparts.

5.2. Results Analysis

Tables 3 and 4 present the results of the proposed method and the aforementioned deep
learning-based fault detection methods on the simulated and real datasets, respectively. The
best results for the fault detection models, obtained with optimized hyperparameter values
(best values for the learning rate, batch size, number of epochs, and dropout obtained by
testing several configurations), are indicated in bold.

For both datasets in Tables 3 and 4, the proposed ResNet-based approaches outper-
formed the other baseline methods by a significant margin and exhibited the best per-
formance with the highest Fweighted scores (0.9389 and 0.9708). The LSTM-based methods
achieved the worst scores and significantly underperformed compared to the other meth-
ods. Both models achieved null values for F1 and Fweighted due to the inability of the models
to converge on both datasets. The standard CNN-based method (CNN-1) exhibited the
second-best performance on the simulated dataset, closely followed by the convolutional
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autoencoder (SAE-2), and both methods outperformed the fully connected-based stacked
autoencoder (SAE-1) model and the attention CNN (CNN-2), which achieved the worst
results among the converging methods. Nonetheless, on the real dataset, the convolutional
autoencoder exhibited the second-best performance with only a slightly better Fweighted
score (<1%) compared to the standard CNN (CNN-1). On the real dataset, the standard
CNN (CNN-1) and the convolutional autoencoder (SAE-2) performed better than the atten-
tion CNN (CNN-2) and the fully connected-based stacked autoencoder (SAE-1) by a rather
large margin (>10%). In addition, the margin was very tight on the simulated dataset
(<1%). For all models, the F0-score was always better than the F1-score by a significant
margin, which provides insights into the detection capacities of the models.

Table 3. Fault detection performance on the simulated dataset.

Method F0 F1 Fweighted

ResNet-1 0.9599 0.8865 0.9389
ResNet-2 0.9600 0.8855 0.9387
CNN-1 0.9425 0.8315 0.9108
CNN-2 0.9229 0.7370 0.8698
LSTM-1 0.8333 - -
LSTM-2 0.8333 - -
SAE-1 0.9276 0.7715 0.8830
SAE-2 0.9412 0.8260 0.9083

Table 4. Fault detection performance on the real dataset.

Method F0 F1 Fweighted

ResNet-1 0.9825 0.9189 0.9708
ResNet-2 0.9651 0.8333 0.9410
CNN-1 0.9659 0.8125 0.9379
CNN-2 0.9239 0.4167 0.8312
LSTM-1 0.8995 - -
LSTM-2 0.8995 - -
SAE-1 0.9153 0.5161 0.8423
SAE-2 0.9714 0.8485 0.9490

The F0-score measures the ability of the models to correctly identify normal samples,
whereas the F1-score evaluates their ability to identify faults. The results demonstrate
that all models were generally effective in identifying normal samples, with F0-scores
consistently above 0.8. The proposed model achieved the highest scores of 0.9600 and
0.9825 on the simulated and real datasets, respectively. Even though it is important to
correctly identify normal samples, fault identification is the critical factor, and the F1-score is
a more informative performance metric. The LSTM-based models failed to encode lengthy
sequences over time, resulting in null scores for F1 on both datasets.

With our task being fault identification, we focus on the F1-score. For all models, the
F1-score was lower than the F0-score, with the proposed model achieving the best F1-scores
of 0.8865 and 0.9189 on the simulated and real datasets, respectively. This suggests that the
models struggled more to identify faults than normal samples and the degree of difficulty
varied among the models, as indicated by the difference between the two scores. This
difference was significant (>10%) for all models, except for the proposed ResNet models,
highlighting their superiority and establishing them as a reliable FDC method. All models
struggled to identify faults because of the unbalanced dataset used for training the models,
with fewer faulty samples than normal ones.

Table 5 presents the results of the best ResNet method (ResNet-1) and the best CNN-
based fault detection method (CNN-1) for each fault type on the simulated dataset. The
results here focus on the F1-score only to determine how well the methods identified the
different fault types as faults. In Table 3, it can be seen that the overall F1-scores were
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0.8315 for CNN-1 and 0.8865 for ResNet-1, which do not provide information on how these
methods performed in detecting each fault type. The results in Table 5 show that the best
proposed ResNet-1 performed better than the best CNN-based method for each fault type,
with some remarkable performance gaps. For faults 3 and 4, it can be seen that CNN-1
performed poorly compared to the other fault types. Faults 3 and 4, which are illustrated in
Figure 5, refer to noise and sinusoidal disturbances, respectively. For fault 3, when looking
at the noise distribution (Gaussian normal distribution centered on 0), a large number of
samples were close to zero most of the time. Moreover, the amplitudes of the noise faults
were quite small (see Section 4.1), which made them more difficult to detect because they
appeared as recurrent industrial disturbances rather than faults. With the data being raw
time series, differentiating fault types 3 and 4 from simple industrial noise disturbances
was more difficult for the two models. This was even more true for fault type 3, where even
the proposed ResNet-1 struggled, although it exhibited better performances compared
to the plain CNN-1. Regarding the nature of the noise disturbances, despite being less
pronounced compared to those of the other four fault types, the detection results obtained
using the proposed ResNet-1 were quite good. One of the reasons for implementing deeper
networks, as in the proposed ResNet-1, is to craft a method capable of effectively detecting
all fault types.

Table 5. F1-scores for fault detection performance for each fault on the simulated dataset.

Method Fault 1 Fault 2 Fault 3 Fault 4 Fault 5

ResNet-1 0.9873 0.9610 0.6885 0.9160 0.9873
CNN-1 0.9200 0.8072 0.5664 0.5789 0.9682

6. Conclusions

This paper proposes a ResNet-based fault detection method for semiconductor process
monitoring using multivariate sensor signals. The proposed model redesigns the first
convolutional layer to consider the structural characteristics of raw multidimensional
sensor data and extract meaningful correlation and temporal information. The use of
residual blocks with shortcut connections improves training and mitigates the degradation
problem of deep neural networks, resulting in better fault detection performance. The
proposed model is evaluated using both simulated and real data from the semiconductor
industry, outperforming state-of-the-art and baseline models for fault detection. All five
fault types addressed in this study are successfully detected, with the proposed method
achieving the best detection performance for each. This study also demonstrates that
residual networks outperform their plain counterparts with equal layer depths. The small
size of the real dataset used for training and testing does not significantly impact the
generalizability of the conclusions.

Future work will focus on adapting the model to work with variable-length sensor
data and providing insights for fault diagnosis. Research will also be conducted to enable
the model to detect faults in multiple recipes with a single model and classify detected faults
based on their nature, proposing relevant elements for equipment root-cause diagnosis.

Author Contributions: Conceptualization, M.O. and G.G.; methodology, P.T.; validation, P.T.,
G.G. and J.-F.C.; writing—original draft preparation, P.T.; writing—review and editing, P.T. and
G.G.; supervision, M.O. and J.-F.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the STMicroelectronics company and MadeIn4 European
project under grant agreement no. 826589.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2023, 23, 9099 18 of 19

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from STMicroelectronics and are not available.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Patel, P.; Ali, M.; Sheth, A. From Raw Data to Smart Manufacturing: AI and Semantic Web of Things for Industry 4.0. IEEE Intell.

Syst. 2018, 33, 79–86. [CrossRef]
2. Yin, S.; Ding, S.X.; Haghani, A.; Hao, H.; Zhang, P. A comparison study of basic data-driven fault diagnosis and process

monitoring methods on the benchmark Tennessee Eastman process. J. Process Control 2012, 22, 1567–1581. [CrossRef]
3. Venkatasubramanian, V.; Rengaswamy, R.; Yin, K.; Kavuri, S.N. A review of process fault detection and diagnosis: Part I:

Quantitative model-based methods. Comput. Chem. Eng. 2003, 27, 293–3115. [CrossRef]
4. Hinrichs, A.; Prochno, J.; Ullrich, M. The curse of dimensionality for numerical integration on general domains. J. Complex. 2019,

50, 25–42. [CrossRef]
5. Längkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling.

Pattern Recognit. Lett. 2014, 42, 11–24. [CrossRef]
6. Ali, A.; Shamsuddin, S.M.; Ralescu, A.L. Classification with class imbalance problem. Int. J. Adv. Soft Comput. Appl. 2013, 5,

176–204.
7. Thieullen, A.; Ouladsine, M.; Pinaton, J. Application of PCA for efficient multivariate FDC of semiconductor manufacturing

equipment. In Proceedings of the ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference, Saratoga Springs, NY,
USA, 14–16 May 2013; pp. 332–337. [CrossRef]

8. Le, Q.; Karpenko, A.; Ngiam, J.; Ng, A. ICA with reconstruction cost for efficient overcomplete feature learning. Adv. Neural Inf.
Process. Syst. 2011, 24, 1017–1025.

9. He, X.; Wang, Z.; Liu, Y.; Zhou, D.H. Least-squares fault detection and diagnosis for networked sensing systems using a direct
state estimation approach. IEEE Trans. Ind. Informat. 2013, 9, 1670–1679. [CrossRef]

10. Park, J.; Kwon, I.; Kim, S.S.; Baek, J.G. Spline regression based feature extraction for semiconductor process fault detection using
support vector machine. Expert Syst. Appl. 2011, 38, 5711–5718. [CrossRef]

11. He, Q.P.; Wang, J. Principal Component based K-Nearest Neighbor Rule for Semiconductor Process Fault Detection. In
Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 1606–1611.

12. Goldstein, M.; Uchida, S. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data.
PLoS ONE 2016, 11, e0152173. [CrossRef]

13. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
[CrossRef]

14. Lee, H.; Kim, Y.; Kim, C.O. A deep learning model for robust wafer fault monitoring with sensor measurement noise. IEEE Trans.
Semi. Manuf. 2017, 30, 23–31. [CrossRef]

15. Chen, K.; Hu, J.; He, J. Detection and Classification of Transmission Line Faults Based on Unsupervised Feature Learning and
Convolutional Sparse Autoencoder. IEEE Trans. Smart Grid 2016, 9, 1748–1758. [CrossRef]

16. Maggipinto, M.; Beghi, A.; Susto, G.A. A deep convolutional autoencoder-based approach for anomaly detection with industrial,
non-images, 2-dimensional data: A semiconductor manufacturing case study. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1477–1490.
[CrossRef]

17. Tedesco, S.; Susto, G.A.; Gentner, N.; Kyek, A.; Yang, Y. A scalable deep learning-based approach for anomaly detection in
semiconductor manufacturing. In Proceedings of the 2021 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 12–15
December 2021; pp 1–12.

18. Gorman, M.; Ding, X.; Maguire, L.; Coyle, D. Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruc-
tion Errors From 1-D Convolutional AutoEncoders. IEEE Trans. Semicond. Manuf. 2022, 36, 147–150. [CrossRef]

19. Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. LSTM-based Encoder-Decoder for Multi-sensor
Anomaly Detection. In Proceedings of the ICML 2016, New York, NY, USA, 19–24 June 2016.

20. Hosseinpour, F.; Ahmed, I.; Baraldi, P.; Behzad, M.; Zio, E.; Lewitschnig, H. An unsupervised method for anomaly detection
in multiystage production systems based on LSTM autoencoders. In Proceedings of the 32nd European Safety and Reliability
Conference (ESREL 2022), Dublin, Ireland, 28 August–1 September 2022.

21. Lee, K.B.; Cheon, S.; Kim, C.O. A convolutional neural network for fault classification and diagnosis in semiconductor
manufacturing processes. IEEE Trans. Semicond. Manuf. 2017, 30, 35–142. [CrossRef]

22. Hsu, C.Y.; Liu, W.C. Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in
semiconductor manufacturing. J. Intell. Manuf. 2021, 32, 823–836. [CrossRef]

23. Chien, C.F.; Hung, W.T.; Liao, E.T.Y. Redefining monitoring rules for intelligent fault detection and classification via CNN transfer
learning for smart manufacturing. IEEE Trans. Semicond. Manuf. 2022, 35, 158–165. [CrossRef]

http://doi.org/10.1109/MIS.2018.043741325
[
http://dx.doi.org/10.1016/j.jprocont.2012.06.009
[
http://dx.doi.org/10.1016/S0098-1354(02)00160-6
http://dx.doi.org/10.1016/j.jco.2018.08.003
http://dx.doi.org/10.1016/j.patrec.2014.01.008
http://dx.doi.org/10.1109/ASMC.2013.6552755
http://dx.doi.org/10.1109/TII.2013.2251891
[
http://dx.doi.org/10.1016/j.eswa.2010.10.062
http://dx.doi.org/10.1371/journal.pone.0152173
http://dx.doi.org/10.1126/science.1127647
[
http://dx.doi.org/10.1109/TSM.2016.2628865
http://dx.doi.org/10.1109/TSG.2016.2598881
http://dx.doi.org/10.1109/TASE.2022.3141186
http://dx.doi.org/10.1109/TSM.2022.3216032
[
http://dx.doi.org/10.1109/TSM.2017.2676245
http://dx.doi.org/10.1007/s10845-020-01591-0
http://dx.doi.org/10.1109/TSM.2022.3164904


Sensors 2023, 23, 9099 19 of 19

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [CrossRef]

25. Zaeemzadeh, A.; Rahnavard, N.; Shah, M. Norm-preservation: Why residual networks can become extremely deep? IEEE Trans.
Pattern Anal. Mach. Intell. 2020, 43, 3980–3990. [CrossRef]

26. Qian, L.; Pan, Q.; Lv, Y.; Zhao, X. Fault detection of bearing by resnet classifier with model-based data augmentation. Machines
2022, 10, 521. [CrossRef]

27. Tchatchoua, P.; Graton, G.; Ouladsine, M.; Muller, J.; Traoré, A.; Juge, M. 1D ResNet for Fault Detection and Classification on
Sensor Data in Semiconductor Manufacturing. In Proceedings of the 2022 International Conference on Control, Automation and
Diagnosis (ICCAD), Lisbon, Portugal, 13–15 July 2022; pp. 1–6. [CrossRef]

28. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
29. Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [CrossRef]
30. Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long Short Term Memory Networks for Anomaly Detection in Time Series. Eur.

Symp. Artif. Neural Netw. 2015, 2015, 89.
31. Ng, A. Sparse autoencoder. CS294A Lect. Notes 2011, 72, 1–19.
32. Le, Q.V.; Ngiam, J.; Coates, A.; Lahiri, A.; Prochnow, B.; Ng, A.Y. On optimization methods for deep learning. In Proceedings of

the ICML 2011, Bellevue, WA, USA, 28 June–2 July 2011; pp. 265–272.
33. Tchatchoua, P.; Graton, G.; Ouladsine, M.; Juge, M. A comparative evaluation of deep learning anomaly detection techniques

on semiconductor multivariate time series data. In Proceedings of the 2021 IEEE 17th International Conference on Automation
Science and Engineering (CASE), Lyon, France, 23–27 August 2021; pp. 1613–1620.

34. Browne, M.; Ghidary, S. Convolutional Neural Networks for Image Processing: An Application in Robot Vision. In AI 2003:
Advances in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2003.

35. Kim, E.; Cho, S.; Lee, B.; Cho, M. Fault detection and diagnosis using self-attentive convolutional neural networks for variable
length sensor data in semiconductor manufacturing. IEEE Trans. Semi. Manuf. 2019, 32, 2917521. [CrossRef]

36. Lin, Z.; Feng, M.; Santos, C.N.D.; Yu, M.; Xiang, B.; Zhou, B.; Bengio, Y. A structured self-attentive sentence embedding. In
Proceedings of the 5th International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

37. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Training very deep networks. In Proceedings of the 29th Annual Conference on
Neural Information Processing Systems 2015, Montreal, QC, Canada, 7–12 December 2015; pp. 2377–2385.

38. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

39. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

40. Remya, K.; Sajith, V. Machine Learning Approach for Mixed type Wafer Defect Pattern Recognition by ResNet Architecture. In
Proceedings of the 2023 International Conference on Control, Communication and Computing (ICCC), Thiruvananthapuram,
India, 19–21 May 2023; pp. 1–6.

41. Fu, H.; Zhou, Z.; Zeng, Z.; Sang, T.; Zhu, Y.; Zheng, X. Surface Defect Detection Based on ResNet Classification Net-
work with GAN Optimized. In Proceedings of the 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scal-
able Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (Smart-
World/UIC/ScalCom/DigitalTwin/PriComp/Meta), Haikou, China, 15–18 December 2022; pp. 1568–1575.

42. Labach, A.; Salehinejad, H.; Valaee, S. Survey of dropout methods for deep neural networks. arXiv 2019, arXiv:1904.13310.
43. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]
44. Jeni, L.; Cohn, J.; De la Torre, F. Facing imbalanced data recommendations for the use of performance metrics. In Proceedings

of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2–5
September 2013. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109 /CVPR.2016.90
http://dx.doi.org/10.1109/TPAMI.2020.2990339
http://dx.doi.org/10.3390/machines10070521
http://dx.doi.org/10.1109/ICCAD55197.2022.9853997
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1109/TSM.2019.2917521
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1109/ACII.2013.47

	Introduction
	Deep Learning Methods for Fault Detection
	Multivariate Time Series
	Supervised Deep Learning for Fault Detection
	Residual Connections in Deep Neural Networks

	Proposed Method for Fault Detection
	Experimental Setup
	Data Preparation 
	Neural Network Configurations
	Other Configurations 
	Evaluation Metrics

	Results and Discussion
	Gradient Analysis
	Results Analysis

	Conclusions
	References

