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Abstract: Monitoring dynamic balance during gait is critical for fall prevention in the elderly. The
current study aimed to develop recurrent neural network models for extracting balance variables
from a single inertial measurement unit (IMU) placed on the sacrum during walking. Thirteen
healthy young and thirteen healthy older adults wore the IMU during walking and the ground
truth of the inclination angles (IA) of the center of pressure to the center of mass vector and their
rates of changes (RCIA) were measured simultaneously. The IA, RCIA, and IMU data were used to
train four models (uni-LSTM, bi-LSTM, uni-GRU, and bi-GRU), with 10% of the data reserved to
evaluate the model errors in terms of the root-mean-squared errors (RMSEs) and percentage relative
RMSEs (rRMSEs). Independent t-tests were used for between-group comparisons. The sensitivity,
specificity, and Pearson’s r for the effect sizes between the model-predicted data and experimental
ground truth were also obtained. The bi-GRU with the weighted MSE model was found to have the
highest prediction accuracy, computational efficiency, and the best ability in identifying statistical
between-group differences when compared with the ground truth, which would be the best choice
for the prolonged real-life monitoring of gait balance for fall risk management in the elderly.

Keywords: balance control; recurrent neural network; inertial measurement unit; gait

1. Introduction

Falls are a major cause of fatal injuries in the older population worldwide [1,2]. About
one in three adults over 65 experience a fall yearly, increasing to one in two for those
over 80 [2–7]. The impact of falls can be severe, causing fractures, head injuries, and
other complications that can lead to hospitalization, disability, and even death [8–13]. The
experience of falls can also cause fear of falling, social isolation, and decreased physical
activity, resulting in a decline in overall health and well-being [14–16]. Monitoring dynamic
balance during activities is critical for fall prevention in the elderly [17,18].

Dynamic balance during locomotion has been quantified by the relative motions
of the body’s center of mass (COM) and the center of pressure (COP) [19,20]. During
static standing, one is considered in balance when the horizontal projection of the COM is
maintained close enough to the COP within the base of support (BOS). In contrast, during
walking, the projected COM can be outside the BOS and moved away from the COP without
losing balance [21], as long as the COM is kept under control at an appropriate velocity
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in relation to the COP. The COM–COP vector forms an inclination angle (IA) with the
vertical, and together with the rate of change of IA (RCIA), have been used to quantify the
COM–COP separation and their relative velocity [19,20,22–24]. These variables, particularly
the frontal plane components, can be used to distinguish unbalanced patients from healthy
controls during locomotion [19,25] with a high test–retest reliability [26]. Currently, the
IA and RCIA variables involve measuring the COM and COP during walking using 3D
motion capture and force plate systems in a gait laboratory. To monitor dynamic balance
using IA and RCIA in elderly individuals or those at risk of falling in daily living, it is
necessary to establish a method that can continuously measure the COM, COP, or IA and
RCIA directly outside the laboratory. The measurement of dynamic balance during gait
provides great potential for fall prevention in the elderly [19,24,27,28].

The use of wearable technology in fall detection has shown promising results in
recent years [27–30]. While wearable technology has shown promise in fall detection,
the head time is too short for early warning and fall prevention. However, wearable
technology can be effective in the early detection of imbalance, giving enough head time
for fall prevention strategies in older adults. Inertial measurement units (IMUs) have
become a popular tool for monitoring human motion due to their small size, low cost,
portability, ease of use, and ability to capture data in real-world settings in both clinical and
community settings. They have been used in human–machine interface applications such
as gesture recognition and computer interactions [31–34], and assistive exoskeleton device
control [35–39]. IMUs have also been widely used to monitor various aspects of gait,
including step length, step time, gait speed, and gait symmetry [40–43]. The IMU’s ability
to capture continuous data over long periods is important for monitoring changes in gait
and balance parameters over time [44–46]. Theoretically and in general practice, an IMU
on each body segment would be needed for the measurement of the motions of all body
segments for estimating the whole-body balance variables [22,47,48]. Multiple IMUs that
can measure accelerations and angular velocities in all three planes of motion enable the
calculation of a wide range of gait parameters and have the potential for measuring IA
and RCIA, which is important for assessing fall risk and monitoring recovery after injury.
However, a balance monitoring system using multiple IMUs mounted on multiple body
segments is cumbersome and undesirable for daily monitoring in the domestic environment.
Moreover, since the body’s COM and COP are determined by the motions of all the body
segments, the relationship between the single IMU and IA/RCIA can be highly non-linear
and time-varying. Predicting the dynamic balance variables using a single IMU can thus be
challenging, as the complicated nonlinear dynamic nature of the input–output relationship
may affect the accuracy of predictions [49–51].

Machine learning (ML) techniques have great potential in modelling the nonlinear
and time-varying relationship between the single IMU and IA/RCIA for daily balance
monitoring. In contrast to traditional artificial neural networks (ANN), recurrent neural
network (RNN) models, a type of deep learning-based architecture, have been designed
to handle temporal dependencies between input and output sequences, which is a com-
mon challenge in the processing tasks of human motion data [52–54]. These methods
have been used for estimating lower-limb joint kinematics with a single IMU placed on
a particular body segment such as the pelvis or foot [54–56]. These studies suggest that
the overall motion of a multi-segment linkage system (the pelvis–leg apparatus) during
a repeated motor task such as walking may be predicted by RNN methods using data
from one of the segments (the pelvis). Two types of RNN algorithms are available for
such purposes, namely the long short-term memory (LSTM) model and gated recurrent
unit (GRU) model [57,58]. The LSTM is effective in capturing long-term dependencies
but comes with higher computational complexity, while GRU offers a simpler architecture
that is computationally efficient and suitable for tasks where medium-range dependencies
suffice [59].

RNN methods with a single IMU for the prolonged monitoring of the IA/RCIA
changes during walking in real-life situations should have the capability of modelling the
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nonlinear and time-varying relationships between the two types of data to give accurate
predictions. The current ML-based IMU literature widely used the root-mean-square error
(RMSE) to evaluate the prediction accuracy of the estimated gait variables, but it remains
unclear whether the reported prediction accuracy achieved is enough for identifying
statistical differences in the between-group comparison for the clinical applications. To our
best knowledge, no studies have systematically tested the feasibility and compared the
performances of the two main types of RNN methods for extracting balance variables from
data of a single IMU in the literature.

The current study aimed to develop a new approach based on ML techniques, namely,
long short-term memory (LSTM) and gated recurrent unit (GRU) models, for extracting IA
and RCIA variables from a single waist-worn IMU and to evaluate the accuracy against the
data obtained using 3D motion analysis systems and compare this with the performance
among the models by evaluating the statistical differences between the young and old
groups of healthy subjects during walking.

2. Data Collection and Pre-Processing
2.1. Subjects

Approval to carry out the current study was obtained from the Research Ethics Com-
mittee of National Taiwan University Hospital (IRB Permit No. 202101023RIND). All
experimental methodologies and procedures adhered to the Ethical Principles for Medical
Research Involving Human Subjects [60]. Thirteen healthy male older adults (old group;
age: 72.75 ± 6.68 yr; body mass: 64.69 ± 6.61 kg; height: 165.23 ± 3.90 cm) and 13 gender-
and BMI-matched healthy young adults (young group; age: 25.46 ± 2.37 yr; body mass:
74.31 ± 9.55 kg; height: 175.15 ± 3.11 cm) participated in the current study with written
informed consent. The participants were all with normal or corrected vision and free
from any neuromusculoskeletal injuries or impairments. An a priori power analysis was
performed based on pilot results of IA and RCIA using GPOWER [61] to estimate the
sample size needed for the current study. It was determined that a projected sample size
of twelve subjects for each group would be needed for a two-group independent sample
t-test between healthy older and young adults with a power of 0.8 and a large effect size
(Cohen’s d = 1.2) at a significance level of 0.05. Thus, 13 subjects for each group were
considered adequate.

2.2. Gait Experiments

In a university hospital gait laboratory, each participant wore thirty-nine infrared retro-
reflective markers attached to specific anatomical landmarks and an IMU (Xsens, Enschede,
The Netherlands) on the waist [62,63] (Figure 1). The IMU was attached to the surface
of the sacrum at the mid-point of the two PSIS’s such that the positive x-axis of the IMU
embedded coordinate system was directed anteriorly and the positive y-axis superiorly
(Figures 1 and 2). Both the markers and IMU were attached using hypoallergenic double-
sided adhesive tapes (Minnesota Mining & Manufacturing Co., Saint Paul, MN, USA), and
secured by two Hypafix dressing retention tapes (BSN Medical Limited, Hull, UK).

Each participant walked at their preferred speed and stepped on four force plates
(50.8 cm × 46.2 cm, OR-6-7-1000, AMTI, Watertown, MA, USA) flushed in the middle of
a 10 m walkway. The ground reaction forces (GRF) were measured at 1200 Hz and the
three-dimensional (3D) trajectories of the markers were measured at 200 Hz using a motion
analysis system consisting of 8 high-resolution infra-red cameras (Vicon MX T-40, Vicon,
Oxford, UK). The linear accelerations and angular velocities of the pelvis were measured at
100 Hz using the waist-worn IMU (Figure 2). The toe-off (TO) and heel-strike (HS) events
were determined from the force plate data [64]. Each participant would complete at least
20 successful trials containing complete data of the entire gait cycle.
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Figure 1. The marker set in (A) anterior and (B) posterior view. The marker positions are anterior 
superior iliac spines (RASI and LASI), posterior superior iliac spines (RPSI and LPSI), greater 
trochanters (RTRO and LTRO), mid-thighs (RTHI and LTHI), medial and lateral epicondyles 
(RMFC, RLFC, LMFC and LLFC), heads of fibulae (RSHA and LSHA), tibial tuberosities (RTT and 
LTT), medial and lateral malleoli (RMMA, RLMA, LMMA and LLMA), navicular tuberosities 
(RFOO and LFOO), fifth metatarsal bases (RTOE and LTOE), big toes (RBTO and LBTO) and heels 
(RHEE and LHEE), and condylar processes of the mandibles (RHead and LHead), acromion 
processes (RSAP and LSAP), the seventh cervical vertebra (C7), medial and lateral humeral 
epicondyles (RUM, RRM, LUM and LRM), and ulnar styloids (RUS and LUS) [62,63]. 

 
Figure 2. (A) Experimental photo showing a typical subject with a waist-worn IMU stepping on 
force plates during level walking. The IMU with an embedded coordinate system is also shown in 
the inlet. The COM–COP vector forms the inclination angles (IA) with the vertical: (B) sagittal IA (α) 
and (C) frontal IA (β). Mean curves of the IA and their rates of change (RCIA) are also shown. HS: 
heel-strike; TO: toe-off; CHS: contralateral heel-strike; CTO: contralateral toe-off. 

Each participant walked at their preferred speed and stepped on four force plates 
(50.8 cm × 46.2 cm, OR-6-7-1000, AMTI, Watertown, MA, USA) flushed in the middle of a 

Figure 1. The marker set in (A) anterior and (B) posterior view. The marker positions are ante-
rior superior iliac spines (RASI and LASI), posterior superior iliac spines (RPSI and LPSI), greater
trochanters (RTRO and LTRO), mid-thighs (RTHI and LTHI), medial and lateral epicondyles (RMFC,
RLFC, LMFC and LLFC), heads of fibulae (RSHA and LSHA), tibial tuberosities (RTT and LTT),
medial and lateral malleoli (RMMA, RLMA, LMMA and LLMA), navicular tuberosities (RFOO and
LFOO), fifth metatarsal bases (RTOE and LTOE), big toes (RBTO and LBTO) and heels (RHEE and
LHEE), and condylar processes of the mandibles (RHead and LHead), acromion processes (RSAP
and LSAP), the seventh cervical vertebra (C7), medial and lateral humeral epicondyles (RUM, RRM,
LUM and LRM), and ulnar styloids (RUS and LUS) [62,63].
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Figure 2. (A) Experimental photo showing a typical subject with a waist-worn IMU stepping on force
plates during level walking. The IMU with an embedded coordinate system is also shown in the
inlet. The COM–COP vector forms the inclination angles (IA) with the vertical: (B) sagittal IA (α)
and (C) frontal IA (β). Mean curves of the IA and their rates of change (RCIA) are also shown. HS:
heel-strike; TO: toe-off; CHS: contralateral heel-strike; CTO: contralateral toe-off.
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2.3. Calculation of COM–COP IA and RCIA

For calculating the COM motion, the body was modelled as a multi-body system
consisting of 13 rigid body segments, each embedded with a Cartesian coordinate system
with the positive x-axis directed anteriorly and the positive y-axis superiorly [65]. A vali-
dated optimization-based technique was utilized to determine each body segment’s mass
and COM location from the measured marker and force plate data [66]. Skin movement
artefacts of the markers were minimized using a global optimization method with joint
constraints [67]. With a 13-body segment model, the body’s COM was then calculated as
the mass-weighted sum of the segmental COM position vectors [22]. The COP positions
were calculated from the force plate data using standard formulae [68]. The sagittal and
frontal inclination angles (IA) of the COM–COP vector were calculated as follows:
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X is the direction of
progression. A sagittal IA is positive if the body’s COM is anterior to the COP. On the other
hand, a frontal IA is positive if the body’s COM is away from the COP and towards the
contralateral limb (Figure 2). To obtain the corresponding RCIA, the IA trajectories were
smoothed and differentiated using the GCVSPL package [69].

2.4. IMU Data Processing

For each trial, the three-dimensional angular velocity and linear acceleration referenced
to the pelvic coordination system were obtained by the 3-axis gyroscope and the 3-axis
accelerometer in the IMU, respectively. The raw data obtained from the IMU were smoothed
utilizing a fourth-order Butterworth low-pass filter with a cutoff frequency of 15 Hz [70,71].

3. Recurrent Neural Network (RNN) Modelling
3.1. Training Data Preparation

The input vector comprised six time series of IMU signals, three linear acceleration
components (anterior/posterior, medial/lateral, and proximal/distal) from the accelerom-
eters and three angular velocity components from the gyroscopes. The outputs of the
models were a time series of the sagittal and frontal IA. The input and output layers were
time-normalized to a 100% gait cycle using the gait event data from the IMU and the force
plates, respectively. Each of the six signal columns in the input matrix and the two columns
in the output matrix were linearly scaled between −1 and 1. The training dataset consisted
of a total of 520 trials. To ensure the proper evaluation and validation of the models, the
dataset was divided into three subsets: training, validation, and testing. The split was
performed with a ratio of 80% for training, 10% for validation, and 10% for testing.

3.2. Machine Learning Models

The current study implemented and evaluated four types of RNN models depending
on the cell type and data flow direction used. Two types of RNN cells were considered,
namely the long short-term memory (LSTM) and the gated recurrent unit (GRU) cells.
Therefore, the models evaluated were the uni-directional LSTM (uni-LSTM), bi-directional
LSTM (bi-LSTM), uni-directional GRU (uni-GRU), and bi-directional GRU (bi-GRU) models
(Figure 3).
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Figure 3. Flowchart of extracting dynamic balance variables from data of a single inertial measure-
ment unit (IMU) with four recurrent neural network models, namely uni-LSTM, bi-LSTM, uni-GRU,
and bi-GRU (yellow box). The input data for the models were three-dimensional angular velocities
and linear accelerations recorded from the IMU (blue box). The desired outputs of the models
were balance variables, namely the IAs and RCIAs in both sagittal and frontal planes (green box).
The sensor data and balance variables were normalized to the gait cycle. Each model utilized the
normalized IMU data as input and made accurate predictions for the desired IAs and subsequently
calculated RCIAs by differentiation of IAs once.

3.2.1. RNN Cell Types: LSTM vs. GRU

Traditional RNN cells, known as vanilla RNN cells, are a type of neural network unit
characterized by their looping mechanism, which maintains a hidden state that captures
temporal dependencies, enabling information to persist and be processed over time [72].
The LSTM cell is a type of RNN cell designed with three additional gates: the input gate,
the forget gate, and the output gate (Figure 4A) [73]. Within each LSTM cell, the input gate
regulates the input values, the forget gate extracts the critical information from the past;
and the output gate dictates the cell’s output value. The precise form of the update can be
formulated mathematically as equations indexed by the time-step t according to Olah [74]:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(4)

it = σ(Wi·[ht−1, xt] + bi) (5)

ot = σ(Wo·[ht−1, xt] + bo) (6)

ct = ft ◦ ct−1 + it ◦ tanh(Wc·[ht−1, xt] + bc) (7)

ht = ot ◦ tanh(ct) (8)

yt = ht (9)

where xt is the input of the RNN cell; yt is the output of the RNN cell; ht and ct are the
current hidden state and current cell state; ft, it and ot are the outputs of the input, forget,
and output gates; W f ,i,o,c and b f ,i,o,c are the network’s parameters; ◦ denotes the Hadamard
product [75]; and the sigmoid function (σ) and the hyperbolic tangent function (tanh) are
also applied element-wise. In sequential input processing, the LSTM network iterates
through cells, preserving a dynamic hidden state for each input element. This hidden state
acts as a memory, enabling the network to identify complex dependencies and patterns in
the input sequence.

On the other hand, the Gated Recurrent Unit (GRU) is an RNN cell with two additional
gates: the reset and update gates (Figure 4B) [76]. The reset gate modulates the retention
of the previous hidden state, while the update gate dictates the degree of the new input’s
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influence on the hidden state update. The details inside the GRU cell can be described
mathematically as equations indexed by the time-step t according to Olah [74]:

ut = σ(Wu·[ht−1, xt] + bu) (10)

rt = σ(Wr·[ht−1, xt] + br) (11)

ht = (1 − ut) ◦ ht−1 + ut ◦ tanh(Wh·[rt ◦ ht−1, xt] + bh) (12)

yt = ht (13)

where ut and rt are the output of the update and reset gate; and Wu,r,h and bu,r,h are the
network’s parameters. The memory cells in GRU do not have any control over how content
from the previous step is extracted, whereas the LSTM does through its forget gate. That is,
GRU is similar to LSTM in that it controls the output values of the layer, but it does not
have any control over the incorporation of new information into the memory cells. The
potential key advantage of GRU over LSTM is that it needs less training time while still
being able to capture temporal dependencies for brief periods of time.
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Figure 4. Internal structures of two recurrent neural network (RNN) cells, namely the (A) long
short-term memory (LSTM) network and the (B) gated recurrent unit (GRU) [73,76]. LSTM employs
a forget gate (red box) to selectively eliminate irrelevant information from the current inputs (xt) and
previous hidden state (ht−1). An input gate (blue box) is utilized to update the previous cell state
(ct−1) to the current cell state (ct), while an output gate (green box) generates the current hidden state
(ht) and outputs (yt). GRU simplifies LSTM by reducing the number of gates. GRU integrates a reset
gate (purple box) to discard irrelevant information from the previous hidden state (ht−1), yielding a
modified hidden state. An update gate (yellow box) is used to combine the modified hidden state
with the hidden state (ht−1) and current inputs (xt) into the current hidden state (ht) and outputs (yt).
These structural designs enable RNNs to capture and handle long-term dependencies in time series
analysis effectively.

3.2.2. The Architecture of RNN Models

The basic architecture of the current RNN models used in the current study has an
input layer, and two RNN (LSTM or GRU) layers: a dense layer and an output layer.
The input layer receives six input sequences corresponding to the six-component IMU
data (three linear accelerations and three gyroscopic data) over a gait cycle. Each time
step of the input sequence corresponds to 1% of the gait cycle. The RNN layers were
the core component of the model, responsible for extracting and processing sequential
information, the first layer with 256 RNN cells and the second with 64 RNN cells. The
LSTM or GRU models were defined depending on the type of RNN cells used in the ANN
layers. Following the RNN layers, one fully connected dense layer of 202 neurons was used
to capture the higher-level features from the outputs of the RNN layers and map them to
the desired output space. The output layer of the RNN model consisted of 202 neurons
representing the sagittal and frontal IA.
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3.2.3. Flow of Information: Uni-Directional vs. Bi-Directional

The influence of the data flow directions of the RNN layers on the proposed model’s
ability to capture the dependencies of future and past data and the accuracy of predictions
was studied by comparing the performance of the bi-directional models to that of typical
uni-directional RNN models. The weights and biases of the bi-directional models were
trained using both forward and backward propagation, with the training data flowing
alternatively in both directions [77], an improvement over uni-directional RNN models
with only forward propagation for logic building (Figure 5).
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sequentially, updating hidden states based on previous states. The bi-directional layer enhances
this by processing sequences in both directions, combining forward and backwards hidden states.
Uni-directional layers capture past information, while bi-directional layers capture dependencies
from both past and future contexts.

3.3. Loss Functions and Model Training

Two types of loss functions were used for training the proposed models by minimizing
the differences between the experimentally measured IA and/or RCIA and model predicted
ones ( ÎA and R̂CIA). The first loss function was the mean squared error (MSE) of the
predicted IA (standard MSE), defined as follows:

Standard MSE =
1
N

N

∑
i=1

(
ÎAi − IAi

)2
(14)

where N (=101) is the time steps of a gait cycle. Another loss function further combined the
effects of the RCIA and IA errors, in the form of the weighted sum of the MSEs of the ÎA
and R̂CIA (weighted MSE), as follows.

Weighted MSE =
1
N

N

∑
i=1

[(
ÎAi − IAi

)2
+ λ

(
R̂CIAi − RCIAi

)2
]

(15)

where λ is the weighting factor; N (=101) is the time steps of a gait cycle; and the model
predicted RCIA (R̂CIA) was estimated from consecutive IAs using the finite difference
method [78]. The value of λ was determined empirically. By systematically changing the
λ values, a lambda of 5 gave higher accuracy in IA and RCIA than other λ values. The
proposed models were implemented and trained in Python 3.10 using PyTorch with the RTX
3060Ti GPU [79]. The optimizer employed was the Adaptive Moment Estimation (Adam)
stochastic gradient descent method, known for its efficient convergence performance [80].
A learning rate of 0.0001 was used and the exponential decay rate for the first moment
estimate (β1) and for the second moment estimate (β2) were assigned to 0.9 and 0.999,
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respectively. The maximum number of training epochs was set to 100, with a batch size
of 32.

3.4. Validation Metrics

To evaluate the performance of the proposed models in extracting IA and RCIA values
from the single IMU, a comparison was made between the model-obtained values and the
ground truth from the 3D motion analysis system in terms of their root-mean-square error
(RMSE) and relative RMSE (rRMSE) values.

3.5. Statistical Analysis

The performance between the loss functions (standard MSE vs. weighted MSE) was
statistically evaluated by comparing the differences in the RMSEs and rRMSEs of IA and
RCIA for all the subjects using a paired t-test. A two-way repeated measures analysis of
variance (ANOVA) was conducted to study the cell types (LSTM vs. GRU) and flow of
information (uni-direction vs. bi-Direction) factors on the RMSEs and rRMSEs between the
proposed models trained by weighted MSE. The testing running time between the proposed
models was also analyzed using the same statistical methods. All the calculated variables
were determined to be normally distributed by a Shapiro–Wilk test. The homogeneity of
the variance across the groups was confirmed by Levene’s test.

Apart from the accuracy assessment, the models were also evaluated for their ability
to identify statistical differences in the IAs and RCIAs between the young and older
groups. Independent t-tests were used to identify the between-group effects on the model
predicted IA and RCIA. The between-group effect sizes were also calculated [81]. The
sensitivity, specificity and Pearson’s r for the effect sizes between model-predicted data
and experimental ground truth were used to quantify the test validity of each proposed
model [82,83]. A significance level of 0.05 was set for all tests. All statistical analyses were
conducted using SPSS version 20 (SPSS Inc., Chicago, IL, USA).

4. Results
4.1. Prediction Accuracy

Compared to the models trained by standard MSE, the models trained by weighted
MSE were found to significantly reduce the RMSEs and rRMSEs for sagittal and frontal
RCIAs (Figures 6 and 7). The GRU-based models showed significantly reduced RMSEs and
rRMSEs for all the balance variables compared to the LSTM-based models
(Figures 6 and 7). No significant flow of information effect was found in the RMSEs
and rRMSEs for any predicted balance variables (p > 0.05). Among the models, the bi-GRU
model showed significantly the lowest error in all predicted balance variables (p < 0.05),
with a mean (standard deviation) of the RMSEs of 0.61◦ (0.24◦) and 0.46◦ (0.21◦) for sagittal
and frontal IA, and 13.13◦/s (5.69◦/s), and 6.38◦/s (1.98◦/s) for sagittal and frontal RCIAs,
respectively (Figure 6). The corresponding mean rRMSEs were below 3.82% (1.53%), 5.33%
(3.76%), 5.32% (2.17%), and 4.01% (2.08%), respectively (Figure 7).

4.2. Performance in Between-Group Comparison

Based on the experimental measurements, compared to the young adults, the older
adults showed significantly decreased sagittal and frontal RCIAs at the contralateral TO
and a decreased time-averaged sagittal IA during the swing, while there were no significant
differences in other variables (Tables 1–3). With reference to the statistical between-group
comparisons based on the experimental ground truth, the bi-GRU model was the best
among the tested models in terms of the statistical results, giving the same between-group
results as the ground truth (Table 4). On the other hand, the uni-GRU model showed false
positives in the ranges of the sagittal IA during terminal double limb support (DLS), frontal
IA during single limb support (SLS) and swing, and the sagittal RCIA during initial DLS,
as well as the false positives in the time-averaged frontal RCIA during SLS and sagittal IA
at HS, contralateral TO, and HS (Table 4).
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Figure 7. Effects of loss functions (standard MSE vs. weighted MSE), cell types (LSTM vs. GRU), and
flow of information (uni-direction vs. bi-Direction) on the rRMSE (relative RMSE) of the sagittal and
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Table 1. Means (standard deviations) of the experimentally measured sagittal and frontal inclination
angles (IAs) and rates of changes of inclination angles (RCIAs) at key gait events in the older
and young groups, and the effect sizes and p-values for the between-group comparisons using
independent t-tests.

Variable
Number

Gait
Event

Groups
Effect Size p-Value

Old Young

Sagittal IA (◦)
1 HS 7.61 (2.06) 7.96 (1.57) 0.19 0.64
2 CTO −6.92 (1.39) −7.24 (1.02) 0.26 0.53
3 CHS 6.49 (1.31) 6.10 (1.29) 0.30 0.47
4 TO −7.69 (1.04) −7.16 (0.62) 0.61 0.15

Frontal IA (◦)
5 HS 4.89 (1.36) 4.37 (1.04) 0.43 0.31
6 CTO −3.43 (1.13) −3.48 (0.80) 0.05 0.91
7 CHS −4.18 (1.37) −3.96 (1.09) 0.18 0.67
8 TO 3.62 (1.17) 3.43 (0.82) 0.19 0.65

Sagittal RCIA (◦/s)
9 HS 39.45 (16.34) 45.29 (9.34) 0.44 0.29
10 CTO −37.93 (26.53) 0.24 (21.58) 1.58 <0.01 *
11 CHS −149.58 (48.03) −131.63 (28.05) 0.46 0.28
12 TO −34.63 (25.08) −7.38 (53.08) 0.66 0.12

Frontal RCIA (◦/s)
13 HS 7.80 (5.64) 5.28 (2.82) 0.56 0.18
14 CTO −31.78 (15.38) −14.42 (8.68) 1.39 <0.01 *
15 CHS 74.18 (25.33) 69.94 (19.68) 0.19 0.65
16 TO 28.35 (15.04) 18.47 (20.31) 0.55 0.19

p-values are for comparisons between older and young groups using independent t-tests. *: Significant group
effect (p < 0.05); HS: heel-strike; CTO: contralateral toe-off; CHS: contralateral heel-strike; TO: toe-off.

Table 2. Means (standard deviations) of the time-averaged values of the experimentally measured
sagittal and frontal inclination angles (IAs) and rates of changes of inclination angles (RCIAs) during
gait sub-phases in the older and young groups, and the effect sizes and p-values for the between-group
comparisons using independent t-tests.

Variable
Number

Sub-
Phase

Groups
Effect Size p-Value

Old Young

Sagittal IA (◦)
17 iDLS −0.34 (0.79) −0.79 (0.81) 0.55 0.19
18 SLS 0.22 (0.77) 0.00 (0.42) 0.37 0.37
19 tDLS −0.25 (1.02) −0.41 (1.15) 0.14 0.73
20 SW −0.29 (0.68) 0.26 (0.49) 0.93 0.03 *

Frontal IA (◦)
21 iDLS 0.57 (0.55) 0.40 (0.54) 0.31 0.46
22 SLS −3.86 (0.98) −3.69 (0.91) 0.18 0.66
23 tDLS −0.53 (0.64) −0.38 (0.75) 0.21 0.61
24 SW 3.88 (1.08) 3.58 (0.91) 0.30 0.47

Sagittal RCIA (◦/s)
25 iDLS −93.95 (25.76) −89.52 (19.07) 0.20 0.64
26 SLS 29.46 (6.26) 32.48 (3.59) 0.59 0.16
27 tDLS −102.65 (33.67) −96.08 (19.46) 0.24 0.56
28 SW 32.37 (6.18) 34.67 (4.41) 0.43 0.31

Frontal RCIA (◦/s)
29 iDLS −53.78 (13.87) −51.54 (10.62) 0.18 0.66
30 SLS −2.84 (1.94) −2.07 (1.52) 0.44 0.29
31 tDLS 54.36 (20.17) 52.60 (12.68) 0.10 0.80
32 SW 3.21 (1.48) 2.46 (1.15) 0.56 0.18

p-values are for comparisons between older and young groups using independent t-tests. *: Significant group
effect (p < 0.05); iDLS: initial double-limb support; SLS: single-limb support; tDLS: terminal double-limb support;
SW: swing phase.
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Table 3. Means (standard deviations) of the ranges of the experimentally measured sagittal and
frontal inclination angles (IAs) and rates of changes of inclination angles (RCIAs) during gait sub-
phases in the older and young groups, and the effect sizes and p-values for the between-group
comparisons using independent t-test.

Variable
Number Sub-Phase

Groups
Effect Size p-Value

Old Young

Sagittal IA (◦)
33 iDLS 11.85 (2.15) 12.38 (1.50) 0.28 0.49
34 SLS 15.09 (1.74) 14.35 (1.14) 0.50 0.23
35 tDLS 13.55 (1.40) 13.01 (1.53) 0.37 0.38
36 SW 15.05 (2.00) 14.73 (1.64) 0.17 0.68

Frontal IA (◦)
37 iDLS 7.00 (1.85) 7.18 (1.41) 0.11 0.79
38 SLS 1.74 (0.78) 1.44 (0.57) 0.44 0.30
39 tDLS 7.36 (2.17) 7.10 (1.46) 0.14 0.74
40 SW 1.55 (0.62) 1.17 (0.38) 0.75 0.08

Sagittal RCIA (◦/s)
41 iDLS 138.09 (56.37) 168.94 (53.67) 0.56 0.18
42 SLS 111.38 (38.46) 89.13 (24.63) 0.69 0.11
43 tDLS 149.33 (47.45) 170.72 (53.22) 0.42 0.31
44 SW 84.74 (28.59) 66.06 (52.59) 0.44 0.29

Frontal RCIA (◦/s)
45 iDLS 64.58 (32.42) 68.85 (22.43) 0.15 0.71
46 SLS 57.39 (22.94) 41.13 (15.14) 0.84 0.06
47 tDLS 62.86 (27.57) 68.35 (20.98) 0.22 0.59
48 SW 35.36 (15.61) 25.72 (19.75) 0.54 0.20

p-values are for comparisons between older and young groups using independent t-tests. iDLS: initial double-limb
support; SLS: single-limb support; tDLS: terminal double-limb support; SW: swing phase.

Table 4. False negatives, false positives, accuracy, sensitivity, specificity, and Pearson’s r for effect
sizes for the four machine learning models in the statistical comparisons between the older and young
groups when compared with the statistical results of the experimentally measured data. The variable
numbers for the three statistically different variables (out of the 48 tested) were 10, 14, and 20.

Model False
Negative

False
Positive Sensitivity (%) Specificity (%) Accuracy (%) Pearson’s r for

Effect Sizes

Bi-GRU 3/3 (10, 14, 20) 4/45 (4, 35, 43, 47) 0.00 91.11 85.42 0.28

Uni-GRU 0/3 (−) 8/45 (2, 3, 4, 30, 35,
38, 40, 41) 100.00 82.22 83.33 0.47

Bi-LSTM 2/3 (14, 20) 0/45 (−) 33.33 100.00 95.83 0.48
Uni-LSTM 0/3 (−) 0/45 (−) 100.00 100.00 100.00 0.65

Numbers in the parentheses are variable numbers.

Table 5. Total number of parameters for the four machine learning models (i.e., uni-LSTM, uni-GRU,
bi-LSTM, and bi-GRU).

Cell Type
Flow of Information

Uni-Direction Bi-Direction

LSTM 3.17 × 106 8.43 × 106

GRU 2.38 × 106 6.32 × 106

Compared to the experimental statistical results, the bi-LSTM model showed false
negatives in the frontal RCIA at the contralateral TO and time-averaged sagittal IA during
the swing (Table 4). Similar false negative errors were also found in the uni-LSTM model,
with an additional false negative in the sagittal RCIAs at the contralateral TO and additional
false negatives in the ranges of the sagittal IA, sagittal and frontal RCIAs, as well as an
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additional false negative in the sagittal IA at TO (Table 4). For the between-group effect
sizes, the bi-GRU model also showed a strong correlation with the experimental ground
truth while the other models showed weak to moderate correlations (Table 4).

4.3. Number of Parameters and Computational Efficiency

The total number of parameters in the uni-LSTM, bi-LSTM, uni-GRU, and bi-GRU
models were 3.17 × 106, 8.43 × 106, 2.38 × 106, and 6.32 × 106, respectively (Table 5).
The models with GRU or uni-directional layers were found to significantly improve the
computational efficiency as compared to those with LSTM or bi-directional layers (Table 6).
No significant loss function effect was found in computational efficiency (Table 6).

Table 6. Effects of loss functions (standard MSE vs. weighted MSE), cell types (LSTM vs. GRU), and
flow of information (uni-direction vs. bi-direction) on the means (standard deviations) of the testing
running time of the sagittal and frontal inclination angles (IAs) and rates of changes of IAs (RCIAs)
for the four machine learning models (i.e., uni-LSTM, uni-GRU, bi-LSTM and bi-GRU). Statistical
results using t-test and 2-way ANOVA are also given.

Loss Function
Machine Learning Model p-Value

Uni-LSTM Uni-GRU Bi-LSTM Bi-GRU PL PC, PD

Running Time (sec)
Standard MSE 0.10 (0.01) 0.07 (0.01) 0.20 (0.01) 0.16 (0.02) 0.72, 0.09, <0.01 *,
Weighted MSE 0.10 (0.01) 0.08 (0.01) 0.21 (0.02) 0.16 (0.01) 0.09, 0.55 <0.01 *

PL: p-values for loss function factor (i.e., uni-LSTM, uni-GRU, bi-LSTM and bi-GRU); PC: p-values for cell type
factor; PD: p-values for flow of information factor; *: significant main effect (p < 0.05).

5. Discussion

The current study aimed to develop a new approach based on machine learning
techniques for accurately extracting balance variables during gait using single waist-worn
six-component IMU data and to evaluate the effects of the loss function (standard MSE vs.
weighted MSE), cell type (LSTM vs. GRU), and flow of information (uni- vs. bi-direction)
on the predicting accuracy and the ability to identify statistical differences between young
and older people. Compared to the models trained by the standard MSE, the models
trained by the weighted MSE were found to significantly reduce the RMSEs and rRMSEs
for the sagittal and frontal RCIAs (Figures 6 and 7). For all the balance variables, the
models with GRU were found to significantly reduce the prediction errors as compared
to those with the LSTM, while no significant flow of information effect was found in the
prediction errors (Figures 6 and 7). Among all the proposed models, the bi-GRU model
was found to have the best performance in the statistical analyses of the effects between
the young and old groups for all the balance variables during gait (Table 4). Generally, the
GRU models showed significantly better computational efficiency than the LSTM models,
and the models with uni-directional layers were computationally better than those with
bi-directional layers (Table 6). Considering both the prediction accuracy and computational
efficiency, the bi-GRU model with the weighted MSE would be the best choice for extracting
dynamic balance variables from a single waist-worn IMU for long-term real-life monitoring
of gait balance in the elderly.

The proposed loss function, weighted MSE, which combined both the IA and RCIA
terms for training the RNN models, significantly improved the prediction accuracy for
the IAs and RCIAs in the sagittal and frontal planes. By definition, the models with the
standard MSE loss function were trained by minimizing the average differences over a
gait cycle between the predicted and experimentally measured IA without necessarily
following the finer details of the RCIA patterns, giving less accurate predictions for the
first-order information (RCIA). Previous machine learning studies on joint angles using
standard MSE loss function have also found greater errors in the first-order data than
the joint angles [84–86]. With the proposed weighted MSE loss function, the addition of
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the finite-difference term for RCIA in the formulation appeared to effectively reduce the
prediction errors in the first-order information (i.e., RCIA) using the traditional MSE loss
function. All the proposed RNN models gave a reasonably high accuracy for both the
IA and RCIA variables in the sagittal and frontal planes. A similar approach based on
the weighted sum of the mean absolute errors was used for predicting the joint angles
and velocities as well as other types of temporal-dependent data [87]. The current results
suggest that the tested RNN models with the standard MSE loss function failed to extract
accurate IA and RCIA data during gait from a waist-worn IMU. The proposed weighted
MSE loss function with a finite-difference term of the RCIA enabled the RNN models to
capture both the IA and RCIA data accurately.

Compared to the LSTM-based model, the GRU-based models showed better prediction
accuracy and computing efficiency in extracting the balance variables from the single waist-
worn IMU during level walking, whether for uni- or bi-directional flow of information.
In contrast to LSTMs, the reduced complexity of GRUs (simpler structure and fewer
parameters) is helpful for preventing overfitting and allows the model to generalize well
to unseen testing data [88,89]. It is also helpful for generating outputs faster than LSTMs
while achieving a comparable accuracy [59]. In the current literature, the RMSE and
rRMSE are often used to evaluate the prediction accuracy of gait variables for AI-based
models [90–94]. However, there is no consensus on a guideline to test whether the accuracy
achieved is enough for clinical applications, such as distinguishing patients from healthy
or between old and young. In the current study, we evaluated the clinical applicability of
the tested models in terms of their ability to identify statistical similarities or differences in
the dynamic balance variables between young and older people during gait.

The current study adopted a novel approach to evaluate the clinical performance
and applicability of the proposed models through the analysis of the model-predicted
between-group effects on the sensitivity, specificity, and Pearson’s r for the effect sizes and
comparison with the experimental ground truth. Compared with the experimental ground
truth, the bi-GRU model was the best among the tested models in terms of the statistical
results, giving the same between-group results as the ground truth. In contrast, the models
with LSTM cells showed a decreased sensitivity. It is noted that the bi-GRU also showed
a better specificity than uni-GRU (bi-GRU: 100%; uni-GRU: 82.22%) while both models
showed a similar prediction accuracy (RMSE and rRMSE) for all the balance variables. The
current results suggested that bi-GRU would be the best choice for prolonged gait balance
monitoring using a single waist-worn IMU for clinical applications. It is also suggested that
apart from the accuracy assessment, the assessment of the IMU with a machine learning
model should include an evaluation of the ability to identify between-group statistical
similarities or differences in the dynamic balance variables during gait if such a device is to
be used in fall prevention or reduction in fall risks in daily lives [95,96].

The current study was limited to gait data from healthy young and older subjects. The
further development of the current device and model may include data from patients with
compromised balance. The implementation of real-time monitoring systems based on a
single IMU with bi-GRU will be needed for the prolonged monitoring of gait balance in
the elderly for fall prevention and reduction in fall risk. While the current study proposed
RNN methods in IA/RCIA predictions using a single IMU, which is both accurate and
convenient for daily monitoring purposes, further studies on a few combinations of multiple
IMUs may be helpful to provide guidelines for user selections based on the requirement
of accuracy and practicability. On the other hand, more recent studies have found that
an attention-based model, such as transformers, exhibits an extremely high prediction
accuracy in forecasting time series information [97–99]. Further studies will be needed to
test whether attention-based models would have better performance than the models in
the current study.
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6. Conclusions

The current study developed LSTM and GRU models for extracting balance variables
during gait using data from a single waist-worn six-component IMU and evaluated the
prediction accuracy and the ability to identify statistical differences between young and
older people. For all the balance variables, the models with GRU had significantly smaller
prediction errors than those with LSTM, while the direction of information flow did not
affect the prediction errors. However, when including the performance in the statistical
analyses of the effects between young and old groups, the bi-GRU with weighted MSE
model was found to be the best among the tested models with a high prediction accuracy,
computational efficiency, and best ability in identifying statistical differences between
young and older people when compared with the ground truth. Considering both the
prediction accuracy and computational efficiency, the bi-GRU model with weighted MSE
would be the best choice for extracting dynamic balance variables from a single waist-worn
IMU for the prolonged real-life monitoring of gait balance in the elderly.
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