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Abstract: In the target-controlled infusion (TCI) of propofol and remifentanil intravenous anesthesia,
accurate prediction of the depth of anesthesia (DOA) is very challenging. Patients with different
physiological characteristics have inconsistent pharmacodynamic responses during different stages
of anesthesia. For example, in TCI, older adults transition smoothly from the induction period to
the maintenance period, while younger adults are more prone to anesthetic awareness, resulting
in different DOA data distributions among patients. To address these problems, a deep learning
framework that incorporates domain adaptation and knowledge distillation and uses propofol
and remifentanil doses at historical moments to continuously predict the bispectral index (BIS) is
proposed in this paper. Specifically, a modified adaptive recurrent neural network (AdaRNN) is
adopted to address data distribution differences among patients. Moreover, a knowledge distillation
pipeline is developed to train the prediction network by enabling it to learn intermediate feature
representations of the teacher network. The experimental results show that our method exhibits
better performance than existing approaches during all anesthetic phases in the TCI of propofol and
remifentanil intravenous anesthesia. In particular, our method outperforms some state-of-the-art
methods in terms of root mean square error and mean absolute error by 1 and 0.8, respectively, in the
internal dataset as well as in the publicly available dataset.

Keywords: depth of anesthesia; domain adaptation; knowledge distillation; target-controlled infusion

1. Introduction

In recent works, clinical pharmacology research has focused on identifying best prac-
tices for ensuring patient safety by maximizing anticipated drug effects while reducing
drug-induced side effects. This tradeoff is particularly important when developing anes-
thetic delivery patterns [1]. Specifically, the main targets are concentrated on the following
three variables: analgesia (pain relief), hypnosis (based on loss of memory and conscious-
ness), and muscle relaxation (quiescence). Therefore, it is crucial to provide appropriate
doses of different drugs during this process to ensure optimal intervention conditions while
preventing unnecessary and dangerous consequences.

In clinical practice, total intravenous anesthesia (TIVA) is primarily used for drug delivery.
To control the depth of anesthesia (DOA), target-controlled infusion (TCI) of propofol for
TIVA is one of the most widely used techniques in anesthesia and sedation. To accurately
administer medication, the DOA must be continuously measured to assess the patient’s level
of anesthesia and reduce drug-induced side effects. In anesthesia operations, the bispectral
index (BIS) is the preferred metric for clinicians to monitor the DOA of patients. The BIS is a
noninvasive system that calculates electroencephalography values ranging from 0 (no brain
activity) to 100 (fully awake patients) as dimensionless numbers [2,3].

To achieve precise drug administration, various models that relate the rate of drug
infusion to the DOA in humans have been proposed in recent decades. The traditional ap-
proach to target-controlled infusion is based on a pharmacokinetic and pharmacodynamic
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model (PK-PD) that uses propofol doses to predict propofol effect-site concentration (Ce) as
an alternative to the DOA [4,5]. Although the traditional model is simple to implement, the
PK-PD model fails to use the BIS as the measured metric, which is the most commonly used
metric in clinical practice. More importantly, the BIS does not always agree with the model-
driven Ce of propofol, especially during the anesthesia induction and recovery period [6].
With the development of machine learning, some studies [1,7–11] have attempted to model
the DOA and the dose of propofol by using different machine learning methods. However,
these models only consider the history of propofol infusion, while entirely ignoring the
synergistic effect of the concomitant infusion of remifentanil on anesthesia.

In recent works, Lee et al. proposed a deep learning model for investigating the
influence of the infusion histories of propofol and remifentanil and patient physiological
characteristics on the DOA [12]. In addition, Sara Afshar et al. developed a combinatorial
deep learning structure that predicts the depth of anesthesia according to electroencephalog-
raphy (EEG) signals, demonstrating good prediction performance [13–15]. However, EEG
signals are susceptible to inotropic and cardiac interference and sensitive to electromagnetic
interference [16]. In this situation, the infusion histories of propofol and remifentanil are
widely adopted to predict the DOA in clinical practice. It is well known that the statistical
properties of time series change over time, thereby causing distributions to change over
time. This phenomenon is known as the distribution shift problem in the field of machine
learning. Our task is a time series prediction task; thus, the distribution shift problem
caused by differences in the physiological characteristics of patients cannot be ignored. But,
previous works fail to consider this issue. Moreover, the existing model proposed in [12]
has poor performance in the induction and recovery periods, as shown in Figure 1.

Figure 1. Visualization of the results of the baseline method [12]. The baseline method performs
poorly during the induction and recovery periods. In addition, the baseline model predicts that the
patient’s BIS is approximately 40 during the maintenance period. However, some patients have BIS
values of approximately 50 or 30 during the maintenance period.

To address the above two limitations, this paper proposes a new deep learning frame-
work for DOA prediction according to drug infusion history. The key idea of the proposed
approach is to use domain adaptation to address the issue that the data distribution varies
across patients. Furthermore, knowledge distillation is adopted to learn the intermediate
feature map of the teacher model by using the prediction model, which is obtained by
the historical moment BIS as the extra feature. Specifically, an adaptive recurrent neural
network (AdaRNN) [17] is applied to our task for solving the problem of data distribution
differences by characterizing and matching the temporal distributions. In contrast to the
traditional AdaRNN model, which uses boosting-based importance evaluations to obtain
the importance vector, a neural-network-based method is used to generate the importance
vector. This method can learn much useful information about the output RNN hidden
states, thereby generating an enhanced importance vector. In addition, a new knowledge
distillation framework is developed in our work, which uses feature-based distillation in
the recurrent neural network and bottleneck networks to transfer rich temporal information
and accurate efficacy information to the prediction network, respectively.
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The main contributions of this work can be summarized as follows:

1. A new deep learning framework for DOA prediction according to drug infusion history is
proposed to overcome the shortcomings of the existing DOA prediction methods.

2. A modified AdaRNN algorithm is developed in our framework for DOA predic-
tion to address the issue of distribution shifts in the physiological characteristics of
different patients.

3. A feature-based knowledge distillation framework is proposed for time series pre-
diction, which allows the prediction model to obtain more useful information. This
framework enables the intermediate features of the model to accurately represent
the DOA, thereby ensuring reliable and stable output results. To the best of our
knowledge, this is the first time that knowledge distillation has been implemented to
predict the DOA.

4. Extensive experimental results show that our method has better performance than the
existing DOA prediction methods on a publicly available dataset during all periods,
including the induction, maintenance, and recovery periods.

The remainder of this paper is organized as follows. In Section 2, we review some
related works. The proposed method is introduced in Section 3. The experimental results
are discussed in Section 4. Finally, Section 5 presents the conclusions.

2. Related Works
2.1. Total Intravenous Anesthesia

The traditional TIVA method is the PK-PD model [4,5], which uses propofol doses
to predict the effect-site concentration of propofol. Gonzalez-Cava et al. [18] proposed a
PK-PD model that considers only propofol kinetics and is thus insufficient for accurately
performing the DOA. Jose M. Gonzalez-Cava et al. [19] developed an identification algo-
rithm based on optimization techniques and the traditional PK-PD model to determine the
hypnotic level of patients under propofol–remifentanil anesthesia. In recent years, rapid
advancements in machine learning and artificial intelligence have led to the development
of new anesthesia prediction models. Esteban Jove et al. [7] developed a hybrid model
with clustering and regression techniques that use EMG signals and propofol infusion rates
to predict BIS signals. Regina Padmanabhan et al. [1] applied reinforcement learning to
develop a closed-loop anesthesia controller that uses the bispectral index as the control
variable while considering the mean arterial pressure (MAP). These two parameters were
used to control propofol infusion rates to regulate the BIS and MAP values to the desired
range. Juan A. Méndez et al. [8] proposed an adaptive model based on fuzzy logic and a
genetic algorithm that aimed to provide more accurate anesthesia prediction. Sahar Javaher
Haghighi et al. [9] defined a DOA index and proposed a denoising method for extracting
the 40 Hz auditory steady-state response period, using adaptive multilevel wavelet denois-
ing to calculate the proposed DOA index. It is worth noting that this algorithm does not
use any medical or physiological information to define the DOA index. Therefore, this
DOA index may not be well suited to patients with different physiological characteristics.
Ahmad Shalbaf et al. [10] determined the best EEG features and fed these features into
an adaptive neuro-fuzzy inference system with linguistic hedges to classify the patient
DOA stage. However, previous work was performed in limited experimental settings
using small numbers of study participants; thus, these works cannot realistically reflect
the effects of drugs on the DOA or the variety of physiological characteristics of patient
conditions. Lee et al. [12] proposed a deep learning model that used the infusion histories
of propofol and remifentanil and patient characteristics. This deep learning model was
trained on 231 subjects who received TIVA during surgery. In contrast to previous work,
Sara Afshar et al. [13] combined convolutional neural networks (CNNs), long short-term
memory (LSTM) networks, and an attention mechanism to develop a new framework for
predicting the DOA according to EEG signals. However, in clinical surgery, anesthesiolo-
gists are more likely to control the DOA based on the effects of the drug.
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2.2. Domain Adaptation

When the distributions of the training, validation, and test sets are markedly different,
domain adaptation (DA) or domain generalization (DG) is usually used to reduce these
distribution differences. Yu et al. [20] proposed a method that used a generative adversarial
network (GAN) to learn transferable features and reduce distribution differences between
two domains. Wang et al. [21] proposed that dynamic distribution adaptation can quantita-
tively estimate the relative importance of each distribution and prevent feature distortion
with manifold feature learning. Li et al. [22] used maximum mean discrepancy (MMD) reg-
ularization, which reduces the distributions of different domains and matches the aligned
distributions to arbitrary prior distributions through adversarial feature learning. Most
DA and DG techniques apply CNNs rather than recurrent neural networks (RNNs) to
classification tasks. Thus, when there are distribution differences or temporal covariate
shifts in time series data, existing DA and DG methods may not be applicable. Recently,
Chaehwa Yoo et al. proposed a strategy for the unsupervised DA training of sleep phase
networks to overcome the domain differences between the source and target domains
in more realistic situations by generating domain invariant features, and Du et al. [17]
applied a novel domain adaptation approach to time series forecasting, applying tem-
poral distribution characterization (TDC) to measure the distribution information in the
time series and temporal distribution matching (TDM) to match the distributions between
different periods.

2.3. Knowledge Distillation

Deep neural networks are adept at learning multilayer feature representations with
increasing levels of abstraction. Bengio et al. [23] proposed representation learning for
multilayer features. Romero et al. [24] first introduced intermediate representations in
Fitnets, which aimed to provide the output of intermediate teacher networks to improve
the training of the student model. Inspired by this approach, Gao et al. [25] distilled the
feature maps of different levels of the teacher and student networks. Hong et al. [26]
trained teacher networks using heterogeneous tasks and applied knowledge distillation
to the intermediate layer representations to ensure consistency between the intermediate
feature representations of the reconstruction processes of the student and teacher networks.
Zhang et al. [27] distilled features in each level of the teacher and student networks,
thereby allowing the student network to learn privileged information from the teacher
network. Zhang et al.’s model [27] was applied to time series prediction, demonstrating
the effectiveness of knowledge distillation in time series prediction tasks.

3. Methodology

Different from the previous DOA prediction technique, our proposed method uses
domain adaptation and knowledge distillation techniques to further improve the DOA
prediction accuracy. Specifically, for domain adaptation, a modified AdaRNN is utilized to
enhance the generalizability of the proposed model. For the knowledge distillation, the
teacher network aims to provide intermediate feature representations of the BIS, while the
student network aims to predict the BIS more precisely by transforming the intermediate
features in the teacher’s intermediate feature domain. Figure 2 shows an overview of our
proposed framework, which consists of a teacher model and a student model. The teacher
model has an additional input to learn an excellent representation of the BIS and transfer
the BIS representation via knowledge distillation. Moreover, the distribution shift problem
caused by the various physiological characteristics of different patients is also solved by
modifying AdaRNN to improve the robustness and generalizability of the proposed DOA
prediction model.
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Figure 2. An overview of our deep learning framework for DOA prediction. The teacher model
has an extra input (i.e., the BIS history), which allows the teacher model to learn a more accurate
representation of the DOA and transfer the DOA representation to the student model through various
kinds of layers by knowledge distillation. The AdaRNN model includes temporal distribution
characterization (TDC) and temporal distribution matching (TDM), which are used to determine the
K-segment intervals with the largest distribution differences and reduce cross-domain distribution
differences according to the drug infusion history, thereby improving the generalizability of the
model. GRU denotes the gated recurrent unit, and FC denotes the fully connected network.

3.1. AdaRNN

AdaRNN is mainly adopted to solve the temporal covariate shift (TCS) problem.
AdaRNN can characterize the temporal distributions and capture the long-term time
dependencies in time series. In general, AdaRNN includes temporal distribution character-
ization (TDC) and temporal distribution matching (TDM). In order to take advantage of
AdaRNN for our task, the TDM approach in AdaRNN is modified to efficiently adapt the
proposed network. Figure 3 illustrates an overview of the TDC approach, which divides
the data into regions with the largest distribution differences, thereby ensuring that the
model is trained starting from the worst case. Figure 4 depicts an overview of the TDM
method, which reduces cross-domain distribution differences in the model to enhance the
generalizability of the model.

Figure 3. An overview of the temporal distribution characterization (TDC) approach, which divides
the drug infusion history data into K intervals and obtains the largest distribution difference between
every two intervals.
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Figure 4. Overview of the temporal distribution matching, which reduces cross-domain shifts in the
K intervals according to the GRU output.

3.1.1. Temporal Distribution Characterization

According to the maximum entropy (ME) principle [28], it is reasonable to have as
diverse a distribution as possible for each period to maximize the entropy of the total
distribution, without any prior assumptions about how to divide the time series data. This
approach allows for more general and flexible modeling of future data. In addition, the use
of shared knowledge in the time series data can be maximized by identifying periods that
are least similar to each other. Thus, the problem can be expressed as follows:

max
0<K≤K0

max
n1,··· ,nk

1
K ∑

1≤i 6=j≤K
d
(

Di, Dj
)

s.t. ∀i, ∆1 < |Di| < ∆2; ∑
i

Di = n
(1)

where d(·, ·) is a distance metric, ∆1 and ∆2 are predefined parameters, K0 is a hyperparam-
eter, and Di denotes the i-th time series segment.

The goal of the optimization problem (1) is to maximize the difference in the distri-
bution in each period by determining K. If the model learns from the worst-case scenario,
it has better generalizability to the unseen test data. This assumption has been verified
in theoretical analyses of the time series models [29,30], showing that diversity is crucial
in time series modeling. The time series partitioning of the optimization problem in (1)
is a computationally intractable problem that may not have a closed solution. However,
the optimization problem in (1) can be solved by using dynamic programming (DP) [31]
with a suitable distance metric. Considering the issues of scalability and efficiency for
the large-scale data, similar to previous methods, a greedy algorithm is adopted for the
AdaRNN in our work to solve the optimization problem in (1). To show the flow of TDC
more clearly, the pseudo-code is summarized in Algorithm 1.
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Algorithm 1: Temporal distribution characterization
Input: Drugs infusion history data T, number of the maximum difference periods

K, total intervals K0, drug infusion history data total length N.
Output: K time series segment

1 Dividing the historical data into K0 segments equally, all endpoints can be
expressed as [Tn0, Tn1 . . . Tni . . . TnK0 ] where Tni =

i∗N
K0

2 Initialize the selection set and candidate set,
selected← [Tn0, TnK0 ], candidate← [Tn1, Tn2 . . . , TnK0−1]

3 while length(selected)− 2 < K− 1 do
4 Initialize the list of distribution differences between each interval endpoint and

the other endpoints. di f f erence_list← [ ]
5 for can in candidate do
6 append(selected, can)
7 sort(selected)
8 distance← 0
9 for i in [1, length(selected)− 1] do

10 for j in [i, length(selected)− 1] do
11 Di ∈ [Tni−1, Tni)
12 Dj ∈ [Tni, Tni+1)

13 di f f erence← di f f erence + d(Di, Dj)

14 end
15 end
16 append(di f f erence_list, di f f erence)
17 remove(selected, can)
18 end
19 Get the endpoint index of the interval with the largest distribution difference.

can_index ← index(max(di f f erence_list))
20 Add the obtained interval endpoints to the selection set.

append(selected, candidate[can_index])
21 Remove the obtained interval endpoints from the candidate set.

remove(candidate, candidate[can_index])
22 end

3.1.2. Temporal Distribution Matching

Once the TDC approach determines the time periods to be learned, the temporal
distribution matching approach is required, which learns the public knowledge shared
across each time period by matching the distributions of different time periods. Thus, the
learned model M has better generalizability on the test data than other methods that only
rely on the local or statistical information.

The TDM prediction loss Lpred can be calculated as follows:

Lpred(θ) =
1
K

K

∑
j=1

1∣∣Dj
∣∣ |Dj|

∑
i=1

l
(

yj
i , Mt

(
xj

i ; θ
))

(2)

where
(

xj
i , yj

i

)
denotes the i-th labeled segment in period Di, l(, ) is a loss function, e.g., the

mean square error (MSE) loss, θ denotes the learnable model parameters, and Mt denotes
the teacher model.

In contrast, the minimization of Formula (2) can learn only the predictive knowledge
for each period and cannot reduce distribution differences between each period to exploit
common knowledge. A primitive approach is to use some distribution measure of distance
as a regularization term for each period pair Di and Dj. Based on previous domain
adaptation research [32,33] in which distribution matching is typically performed on high-
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level representations, Du et al. [17] applied a distribution matching regularization term to
the final output of the RNN model.

Since each hidden state only contains the part of the distribution information of an
input sequence, Du et al. [17] adopted the distribution regularization term in each hidden
state of the RNN model to capture the temporal dependency of each hidden state. Then,
they introduced the importance vector α, which aims to learn the relative importance of
each hidden state, with each hidden state weighted with a normalized α.

Given a period pair (Di, Dj), the temporal distribution matching loss can be formu-
lated as:

Ltdm
(

Di, Dj; θ
)
=

V

∑
t=1

αt
i,jd

(
ht

i , ht
j; θ

)
(3)

where αt
i,j denotes the distribution importance between periods Di and Dj in state t, and V

denotes the V hidden states of the RNN.
By integrating (2) and (3), the final temporal distribution matching loss can be formu-

lated as

L(θ, α) = Lpred + λ
2

K(K− 1)

i 6=j

∑
i,j

Ltdm
(

Di, Dj; θ, α
)

(4)

where λ is a balance hyperparameter.

3.1.3. Neural-Network-Based Importance Evaluation

Du et al. [17] used a boosting-based importance evaluation algorithm to learn α.
However, in our experiments, we observe that the boosting-based method is difficult to
improve the experimental results. In contrast, a naive method that obtains α through a
fully connected network usually results in good results. The boosting-based method is
not suitable for our task since α and θ are highly relevant in the early training phase and
the hidden state representations are learned according to the model parameter θ. Thus, α
must be determined according to θ. Therefore, a neural network is used in our proposed
framework to comprehensively explore the importance of each hidden state. Specifically,
the importance of the RNN output hidden states is initialized as the mean value of the
RNN output hidden states. The initialization can be expressed as αi,j = {1/V}V . Then, we
use a fully connected network with weight Wi,j that takes (Hi, Hj) as input and outputs α.

This process can be formulated as αi,j = g
(

Wi,j �
[
Hi, Hj

]T
)

, where g denotes an activation
and normalization function and � stands for the elementwise product.

3.2. Knowledge Distillation

Since response-based knowledge is mainly used in classification tasks and our task is
a regression task, we use a knowledge distillation framework based on feature represen-
tations to enable the student network to learn better intermediate feature representations
from the more informative teacher network. Previous work on feature-based knowledge
distillation [25–27] has shown that teacher knowledge is typically propagated through high
and low levels. Thus, in our method, the knowledge is applied to propagate through the
final outputs of the RNN and bottleneck network to learn the temporal relationships in
the teacher RNN and the feature map representations of the teacher bottleneck network,
respectively.

Firstly, we introduce the historical moment BIS data (i.e., BIS data before the obser-
vation moment) in the teacher network to learn the DOA representation. The student
network uses the propofol and remifentanil infusion histories as the inputs. Secondly, to
propagate the knowledge from the teacher network to the student network more effectively,
the hidden states of the output of the student RNN are used to mimic the hidden states
of the output of the teacher RNN in order to improve the prediction performance of the
student network. Moreover, the feature map of the bottleneck of the student network
is adopted in our framework to mimic the feature map of the bottleneck of the teacher
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network. In this situation, the similarity between the predictions of the student and teacher
networks will be increased.

3.2.1. Knowledge Distillation via RNN

Since the teacher network introduces the historical moment BIS data, the output
hidden states of the teacher RNN contain more richer temporal information about the
DOA, thus allowing the model to predict the BIS change trends more accurately. Therefore,
the output hidden states of the student RNN is utilized in our proposed framework to
imitate the output hidden states of the teacher RNN. In contrast to the TDM regularization
term, we imitate the feature representations of the output hidden states of the teacher
RNN to learn the temporal relationships of the teacher RNN for improving the prediction
performance of the student network. Therefore, the feature imitation loss is introduced.
Specifically, we use a gated recurrent unit (GRU) as the basic unit of the RNN module.
Assume that Tgru(z) is the feature representation of the teacher GRU trained on z, which
denotes the input data to the teacher network and includes historical BIS data, and Sgru(x)
denotes the feature representation of the student GRU trained on x, which includes the
propofol and remifentanil infusion histories. Lg(θ) can be formulated as follows:

Lg(θ) = ||Tgru(z; θ)− Sgru(x; θ)||2 (5)

3.2.2. Knowledge Distillation via Bottleneck

For the RNN output feature, only the effects of the propofol and remifentanil on
the BIS are considered. However, according to the experimental results in [34], the drug
elimination rates of the remifentanil and propofol were different among people with
different physiological characteristics (e.g., older people with the same duration of surgery
had higher drug elimination rates). In contrast to the temporal information contained in
RNNs, the bottlenecks add the static physiological information (e.g., height, weight, sex,
and age) into the RNN output to fully learn the anesthetic effects of both propofol and
remifentanil drugs on people with different physiological characteristics. Moreover, the
teacher network uses the historical BIS data features, which can accurately represent the
effects of static physiological information and dynamic drug information on the BIS. Thus,
the feature representations of the student bottleneck output is utilized to mimic the feature
representations of the teacher bottleneck output. Specifically, supposing that Tb(z) denotes
the feature representations of the teacher bottleneck trained on z and Sb(x) denotes the
feature representations of the student bottleneck trained on x, Lb(θ) can be formulated as
follows:

Lb(θ) = ||Tb(z; θ)− Sb(x; θ)||2 (6)

3.3. Loss Function
3.3.1. Loss Function of the Teacher Network

To obtain more effective feature representations for the teacher network, combining
(2) and (3), the teacher loss can be formulated as follows:

LT(θ, α) = Lpred + λ
2

K(K− 1)

i 6=j

∑
i,j

Ltdm
(

Di, Dj; θ, α
)

(7)

3.3.2. Loss Function of the Student/Prediction Networks

The loss of the prediction network has three components: the predicted loss, the TDM
regulation loss, and the distillation loss (i.e., Lg(θ) and Lb(θ)), which can be formulated
as follows:

LS(θ, α) = Lpred + λ
2

K(K− 1)

i 6=j

∑
i,j

Ltdm
(

Di, Dj; θ, α
)

+ Lg(θ) + Lb(θ)

(8)
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In our method, the predicted loss is used to learn the DOA during each period, and
the TDM loss is adopted to reduce the distribution differences between various periods.
Then, the effective DOA feature representation in the teacher model is transferred to the
student model by the distillation loss.

4. Experiments
4.1. DOA Type and Dataset

In order to calculate the DOA, some typical measurements have been proposed in
clinical anesthesia, which are shown in Table 1. Compared with other measurements of
DOA type (e.g., Narcotrend index and Patient State index), the BIS has two main advantages.
On the one hand, the BIS is the most widely used anesthesia depth indicator and has been
approved by the FDA to be marketed as a monitor of anesthetic effects on the brain. The BIS
correlates well with the sedative effects of many anesthetic drugs and can accurately reflect
their depth of sedation, especially for commonly used anesthetic drugs such as propofol
and sevoflurane. On the other hand, the BIS has been widely adopted in clinical validation.
Particularly, the BIS is collected as the only indicator of anesthesia depth in the publicly
available dataset (i.e., VitalDB). Therefore, the BIS is adopted as the measurement of DOA
type in our work.

Table 1. Different measurements of DOA type.

DOA Type

Bispectral Index [35] Narcotrend Index [36]
Phase Lag Entropy [37] Entropy [35]

SedLine [38] Patient State Index [39]
Auditory Evoked Potential [35] Surgical Stress Index [35]

The dataset used in the experiments is the VitalDB (https://vitaldb.net) (accessed
on 1 January 2022). database, which is collected and registered by the Department of
Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul Metropolitan
Medical College, Seoul, Republic of Korea [40]. The VitalDB database is an open-access
dataset, which can freely download from the website, https://vitaldb.net (accessed on
1 January 2022). In addition, the VitalDB database is a comprehensive dataset that includes
the intraoperative biosignals and clinical information of 6388 surgical patients. It not only
contains the demographic data (height, weight, sex, and age), but also contains more than
60 procedure-related clinical indicators of basic equipment used in operating rooms, such
as patient monitors, anesthesia machines, and BIS monitors, as well as target-controlled
infusion pumps, cardiac output monitors, and local oximeters. The BIS data include the BIS
values and the signal quality indices collected by BIS VISTA at 1 s intervals. The propofol
and remifentanil data include the cumulative infusion volumes, Ce values, and plasma
concentration (Cp) values of the two drugs collected by target-controlled infusion pumps
at 1 s intervals.

In our experiments, the data of 1000 patients are randomly selected from the VitalDB.
After data processing, only 332 data are retained and the rest are discarded due to the
excessive missing BIS or the drug administration records. The detailed data processing
is given in Section 4.2. The retained 332 patients are randomly divided into training,
validation, and testing datasets, in which the training, validation, and testing dataset
contain 180, 76, and 76 cases, respectively. The characteristics of these three datasets are
shown in Table 2.

https://vitaldb.net
https://vitaldb.net
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Table 2. Patient characteristics, mean ± standard deviation (min-max).

Training Data Set Validation Data Set Testing Data Set

N 180 76 76
Age (yr) 56.1 ± 14.0 (17–82) 56.3 ± 15.0 (17–79) 56.2 ± 15.1 (17–79)
Sex (male/female) 113/67 47/29 40/36
Weight (kg) 61.5 ± 10.2 (37.9–98.1) 60.7 ± 10.3 (37.9–98.1) 60.0 ± 9.8 (37.9–81.6)
Height (cm) 163.2 ± 8.2 (138.8–186.6) 162.3 ± 7.9 (138.8–182.0) 161.2 ± 7.5 (138.8–182.0)
Median BIS 41.1 ± 5.4 (25.9–59.5) 43.1 ± 6.1 (23.1–57.2) 42.5 ± 5.8 (30.6–55.9)
Propofol total dose (g) 1.19 ± 0.63 (0.28–3.41) 1.27 ± 0.71 (0.32–3.31) 1.32 ± 0.71 (0.30–4.24)
Propofol median Ce (µg/mL) 3.02 ± 0.47 (1.91–4.30) 3.06 ± 0.49 (2.00–4.00) 3.05 ± 0.50 (1.60–4.00)
Remifentanil total dose (g) 1.46 ± 1.01 (0.29–6.29) 1.43 ± 0.84 (0.25–3.70) 1.46 ± 0.91 (0.34–5.16)
Remifentanil median Ce
(µg/mL) 3.73 ± 1.08 (1.50–6.01) 3.67 ± 0.95 (2.00–6.97) 3.70 ± 0.87 (2.00–6.00)

4.2. Data Processing

From the start of the propofol or remifentanil infusion to the end of the BIS measure-
ment, the data meeting the following conditions are discarded:

1. If the BIS value at the start of the drug infusion is less than 80;
2. If the data are missing for more than 300 s;
3. If the first BIS is recorded when the cumulative amount of the infused drug is not 0.

After the above processing steps, the patient sample data may still contain a small
number of missing or erroneous values. To address the issue of missing values in data,
according to the linear relationship between propofol and remifentanil over time, the
missing values in the patient data are determined by linear interpolation. Since the total
dosage of propofol and remifentanil is monotonically nondecreasing, for cases in which
there is a partial decrease in the cumulative infusion volumes in the patient data, the
erroneous values may be caused by instrument recordings or how the data are exported.
To solve this problem, the mean values of the moments before and after the erroneous
moment are used. The above processing techniques were applied to the training set.

The cumulative injection volume is recorded by target-controlled infusion pumps, and
the injection history data collected by the target-controlled infusion pumps are updated every
10 s [41]. Therefore, the cumulative medication usage of propofol and remifentanil over 10 s
is adopted as a feature to create a time window with a sequence length of 120. Since the data
variations among different patients are useless for training the network, we downsample the
training data, i.e., one sampling point every 10 s is selected. Since the BIS values of different
patients have diverse trends and the BIS values of each patient change frequently, we
smoothed the BIS values in the training set by using locally weighted scatter plot smoothing
(LOWESS) with a smoothing parameter of 0.03 to reduce computational errors during
training. The unprocessed BIS values are used in the validation and test datasets.

4.3. Experiment Settings
4.3.1. Teacher and Student Network

The teacher and student networks have the same structure, except that the input to
the teacher network has an additional feature (the BIS value of the previous moment)
that is not available to the student network. Our network includes an RNN module, a
bottleneck module, and an output module. We use a GRU as the basic unit in the RNN
module because of its high performance in practical applications. The bottleneck module
focuses on learning the anesthetic effects of propofol and remifentanil on patients with
different physiological characteristics. In our work, the bottleneck module consists of two
fully connected networks. After the bottleneck network, our proposed model learns the
combined dynamic (propofol and remifentanil drug dosage information) and static (patient
physiological characteristics) information. Finally, the predicted BIS values with a fully
connected network are obtained.
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4.3.2. Implementation Details

In the experiments, PyTorch 1.7.1 is used to implement our proposed model with a
24 GB NVIDIA TITAN RTX GPU and an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz
with 32 GB RAM and 128 GB SSD, and our teacher and student networks are trained
simultaneously. The network is trained by an Adam optimizer with an initial learning rate
of 0.005. The learning rate is decayed every 10 epochs by a factor of 0.1, and the weight
clipping is utilized to prevent gradient explosion. We use a batch size of 256 in the training
phase and a batch size of 128 in the validation and testing phases. The balance parameter
λ is set to 0.05 and the number of difference distribution periods K is set to 5. The cosine
similarity is adopted to measure the distribution differences across each period. The entire
training process takes no more than 2 h, where the training batch size is set to 256. Our
code is available at https://github.com/chanwendy/Domain-adaptation-DOA-prediction
(accessed on 25 June 2023).

4.4. Evaluation Metrics and Results

The experimental results are expressed as the regression errors. To evaluate the
regression performance of our proposed framework, the predicted values are assessed
according to the following commonly used evaluation metrics [42,43]: the mean absolute er-
ror (MAE) [44] and the root mean square error (RMSE) [44]. Based on [28], the performance
error (PE), median performance error (MDPE) [28], and median absolute performance error
(MDAPE) [28] are also used to measure the performance for comparison. Particularly, the
PE is calculated as the measured BIS-predicted BIS/predicted BIS. Since the PE is based
on performance error as part of the predicted drug concentration, it is particularly useful
to clinicians. The MDPE is a signed value and therefore indicates the direction of the per-
formance error (overprediction or underprediction) rather than the size of the error. The
MDAPE measures the computer-controlled infusion pump (CCIP) performance and reflects
the inaccuracy of the CCIP. To further reveal the performance of the model, we evaluated the
performance of the three periods (induction, maintenance, recovery) in TIVA. The induction
period in TIVA represents the 10 min period starting with the surgical injection of propofol,
and the recovery period represents the period between stopping the surgical injection of
propofol to the end of anesthesia; the remaining time represents the maintenance period.

4.4.1. Open-Access Dataset

In the experiment, we conduct a comprehensive analysis of mean comparisons across
all periods, including the induction period, the maintenance period, and the recovery
period. The compared methods are, respectively, the baseline method [12], FEDformer [45],
and Crossformer [46]. The experiment results are shown in Table 3, and are depicted
as the mean ± standard deviation. According to Table 3, one can observe that, in most
situations, our proposed method has better performance than other compared methods
during each period of anesthesia. This indicates that our proposed method can efficiently
solve these issues of the baseline method, i.e., the weak generalizability of the model
and the poor performance in the induction and recovery periods. In addition, we use
the vanilla transformer [47] as the transformer backbone of our pipeline; the results are
shown in Table 3. Benefiting from the long-term modeling capability of the transformer
model, it can effectively capture the global features of the time series data, which can
effectively learn the continuous effect of anesthesia drugs on the human body; therefore,
the transformer encoder can obtain more accurate features of the depth of anesthesia. In
addition, there is only one case in which FEDformer outperforms the proposed model
in the recovery period. The main reason may be that FEDformer is a transformer-based
method that can better capture the global features of the time series and thus is more able
to synthesize information before the recovery period. However, since FEDformer fails
to take into account the excessive differences in the distribution of each individual, the
experimental results in the final evaluation metrics (e.g., RMSE and MAE) of anesthesia
prediction are worse than those of ours.

https://github.com/chanwendy/Domain-adaptation-DOA-prediction
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Table 3. Comparison of the metrics between our model and the compared model during three anesthesia periods in vitalDB dataset with BIS as the DOA.

RMSE MAE

Anesthesia Period Baseline [12] FEDformer [45] Crossformer [46] Ours Ours
(Transformer) Baseline [12] FEDformer [45] Crossformer [46] Ours Ours

(Transformer)
All 10.20 ± 2.45 10.08 ± 2.40 9.66 ± 2.37 9.40 ± 2.29 9.07 ± 1.76 8.07 ± 2.56 7.75 ± 2.39 7.61 ± 2.34 7.45 ± 2.30 7.29 ± 1.40

Induction 14.57 ± 3.39 13.75 ± 5.00 13.64 ± 4.66 13.09 ± 3.90 10.91 ± 3.93 12.80 ± 3.79 11.45 ± 4.63 11.63 ± 4.39 11.14 ± 3.69 9.00 ± 3.54
Maintenance 8.72 ± 2.78 8.56 ± 2.55 8.37 ± 2.62 8.16 ± 2.51 8.63 ± 2.06 7.12 ± 2.79 6.95 ± 2.58 6.80 ± 2.61 6.66 ± 2.52 7.00 ± 1.60

Recovery 15.18 ± 6.43 13.30 ± 5.43 13.16 ± 5.90 12.96 ± 5.45 10.46 ± 2.94 13.43 ± 6.43 11.30 ± 5.13 11.43 ± 5.67 11.26 ± 5.22 8.74 ± 2.45

MDPE (%) MDAPE (%)

Anesthesia Period Baseline [12] FEDformer [45] Crossformer [46] Ours Ours
(Transformer) Baseline [12] FEDformer [45] Crossformer [46] Ours Ours

(Transformer)
All −3.64 ± 14.96 1.76 ± 13.84 −0.59 ± 14.05 0.57 ± 13.77 −13.89 ± 4.98 15.97 ± 7.91 15.35 ± 7.61 14.83 ± 6.66 14.62 ± 6.40 16.76 ± 3.53

Induction −6.35 ± 20.50 7.72 ± 16.84 6.79 ± 17.73 0.89 ± 18.54 −3.15 ± 14.30 22.75 ± 9.39 21.90 ± 19.50 18.88 ± 8.69 18.87 ± 8.14 15.64 ± 9.40
Maintenance −2.99 ± 15.24 1.17 ± 14.31 −0.97 ± 14.48 0.56 ± 14.10 −15.20 ± 5.51 15.08 ± 8.34 14.96 ± 8.01 14.44 ± 8.37 14.12 ± 8.97 17.27 ± 4.14

Recovery −13.92 ± 25.44 1.94 ± 19.35 −2.33 ± 21.69 −3.98 ± 21.38 −7.44 ± 11.56 24.97 ± 16.03 19.75 ± 12.90 19.81 ± 11.10 19.52 ± 11.18 15.34 ± 6.22
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Figure 5 shows the results of the visual comparison between the proposed method and
the compared methods. From this figure, it can be seen that the proposed method can predict
the DOA of unknown patients more accurately than these compared methods. The main
reason that our model outperforms the compared models is that the proposed framework
considers the distribution shift problem caused by different patient data and solves this
problem with an appropriate method. Moreover, the introduction of historical BIS values
to the teacher network in the distillation model allows the prediction model to obtain much
useful information about the intermediate feature representations of the BIS values, thereby
allowing the model to predict partial mutations in the induction and recovery periods.

Figure 5. Visualization of the test cases with other compared methods in the VitalDB dataset.

4.4.2. In-House Dataset

To further validate the generalization ability of our model and the applicability of our
model under different measurements of DOA type, we perform the training and testing on
our in-house dataset. This dataset uses the Narcotrend index (NI) as the measurement for the
depth of anesthesia. Compared with the BIS, the NI has a larger response gap for patients of
different age groups and different disease states, creating a larger domain shift. The main
difference between the VitalDB dataset and our in-house dataset is shown in Table 4.

Table 4. Difference in VitalDB and our dataset.

Our Dataset VitalDB (Training Set)

N 44 180
Age (yr) 39.9 ± 13.4 (19–69) 56.1 ± 14.0 (17–82)
Sex (male/female) 22/22 113/67
Weight (kg) 62.6 ± 10.5 (43–105) 61.5 ± 10.2 (37.9–98.1)
Height (cm) 166 ± 8.1 (147–183) 163.2 ± 8.2 (138.8–186.6)
Median NI/BIS 43.5 ± 10.1 (23.0–68.2) 41.1 ± 5.4 (25.9–59.9)

In the experiment, we randomly select 24 cases as the training set, and others as
the test cases. The experiment results are shown in Table 5. Obviously, our proposed
method still performs better than these compared methods during each period of anesthesia.
This demonstrates that our proposed method can achieve good results when there is a
large domain shift in the dataset, while other compared methods suffer from significant
performance degradation due to the domain shift. In addition, the results without the
preprocessed data of our in-house dataset show that noisy data will lead to performance
degradation, but our method can still achieve better performance than the SOTA models
using the preprocessed data for training.
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Table 5. Comparison of metrics between our proposed model and other methods during three anesthesia periods in our in-house dataset with NI as the DOA.

RMSE MAE

Anesthesia
Period Baseline [12] FEDformer

[45]
Crossformer

[46] Ours Ours
(Transformer)

Ours (without
data

preprocessing)
Baseline [12] FEDformer

[45]
Crossformer

[46] Ours Ours
(Transformer)

Ours (without
data

preprocessing)
All 13.30 ± 5.98 12.19 ± 3.67 11.43 ± 3.43 10.44 ± 3.23 10.10 ± 1.61 10.64 ± 3.24 11.40 ± 6.29 9.96 ± 3.56 9.80 ± 3.56 8.76 ± 2.98 7.52 ± 1.47 8.93 ± 3.12

Induction 15.85 ± 5.71 15.42 ± 3.87 10.95 ± 2.58 8.01 ± 2.92 21.30 ± 4.75 8.28 ± 3.32 14.64 ± 5.97 13.47 ± 4.43 9.35 ± 2.78 6.79 ± 2.68 18.69 ± 5.70 6.72 ± 2.78
Maintenance 12.22 ± 6.80 10.56 ± 4.24 10.66 ± 4.27 9.77 ± 3.89 7.18 ± 2.03 10.15 ± 3.97 10.72 ± 6.97 9.15 ± 4.17 9.37 ± 4.44 8.43 ± 3.66 5.87 ± 1.81 8.75 ± 3.86

Recovery 15.12 ± 6.72 14.60 ± 6.71 14.75 ± 6.32 13.88 ± 6.69 10.12 ± 2.96 13.97 ± 6.13 13.80 ± 6.76 13.54 ± 6.89 13.72 ± 6.42 12.80 ± 6.86 8.44 ± 2.72 12.93 ± 6.31

MDPE (%) MDAPE (%)

Anesthesia
Period Baseline [12] FEDformer

[45]
Crossformer

[46] Ours Ours
(Transformer)

Ours (without
data

preprocessing)
Baseline [12] FEDformer

[45]
Crossformer

[46] Ours Ours
(Transformer)

Ours (without
data

preprocessing)
All −6.02 ± 22.62 2.71 ± 17.13 6.08 ± 16.85 1.34 ± 15.65 0.64 ± 8.02 4.67 ± 16.13 23.23 ± 12.21 19.66 ± 9.17 19.39 ± 9.09 18.29 ± 7.75 13.08 ± 3.71 18.05 ± 8.48

Induction 15.16 ± 11.41 −14.31 ± 11.23 −6.13 ± 9.11 −1.78 ± 7.99 −27.21 ± 13.28 −2.11 ± 8.34 17.78 ± 8.18 17.18 ± 7.79 11.33 ± 4.98 7.74 ± 3.87 28.00 ± 12.30 8.04 ± 4.47
Maintenance −8.77 ± 24.83 5.43 ± 18.50 8.87 ± 18.16 1.53 ± 18.01 3.64 ± 9.08 5.63 ± 18.11 25.00 ± 13.98 19.86 ± 10.22 19.78 ± 10.80 19.36 ± 9.46 12.10 ± 4.93 19.17 ± 10.10

Recovery −6.04 ± 32.20 −9.73 ± 29.35 −11.95 ± 28.23 −4.07 ± 29.83 −3.98 ± 9.76 −2.59 ± 27.44 25.49 ± 14.08 27.27 ± 17.19 28.33 ± 15.28 25.16 ± 17.46 14.29 ± 5.97 23.46 ± 15.48
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Figure 6 shows the results of the visual comparison between the proposed method
and these compared methods in our in-house dataset. From this figure, it can be seen
that, compared with other compared methods, our proposed method has better trend and
prediction results in all periods. This is because our proposed method is not only trained
from the interval with the largest distribution differences but also utilizes the NI data of
historical moments to the teacher network.
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Figure 6. Visualization of the test cases with other compared methods in our in-house dataset.

4.4.3. Statics Test and Application in the Real Word

In addition, we perform some statistical tests, such as pair-t test and F-test, with these
compared methods in both public and in-house datasets, and the experimental results
are shown in Table 6. According to this table, one can see that, in most situations, the
p-values for the pair-t test and F-test are less than 0.05 in both datasets, which indicates
that our proposed model has better performance than other compared methods from the
viewpoint of statistical test. There is only one case where the p-values for the Crossformer
in the F-test are greater than 0.05. The main reason may be that the Crossformer takes into
account the information interaction between multiple variables and achieves relatively
good stability. However, from the results in Table 3, one can see that, in most cases, the
standard deviations of our proposed model are still better than Crossformer.

Table 6. Comparison of the statistic test between our proposed model and the compared methods.

VitalDB In-House
Statics Test Pairt-t F Pair-t F

Ours&Baseline 0.014 0.027 0.013 0.004
Ours&Fedformer 0.007 0.036 0.003 0.044

Ours&Crossformer 0.023 0.163 0.003 0.003

In a real clinical environment, the closed-loop target-controlled infusion system is
divided into two main parts, which are the prediction of DOA and the control of drug
dosage according to the DOA, respectively. Our work mainly addresses the first part of
predicting the DOA based on drug efficacy, and the part of controlling the dose based
on the DOA is our future work. The prediction of DOA is commonly performed at a
frequency of one prediction per second, aiming to estimate the BIS value. To simulate
this inference process and evaluate the real-time capabilities of our model, we set the
batch size to one in the experiments. Remarkably, our findings reveal that our model
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achieves a remarkable inference time of only 1 × 10−5 s per prediction of the BIS value. In
addition, we compute model complexity between our model and the compared methods;
the results are shown in Table 7. One can see that our model has a smaller parameter
and FLOPS compared with the SOTA models. Although the baseline model parameter
and FLOPS are the smallest, its ability is also the worst. In contrast, although our model
increases the number of parameters with respect to the baseline, at the same time, it obtains
a better performance improvement that outperforms the SOTA models, and our proposed
model predicts the depth of anesthesia in only 1 × 10−5 per second, which can fully
meet the clinical requirements. Therefore, our proposed model can be suited for real-time
monitoring applications.

Table 7. Comparison of the model complexity between our proposed model and the compared methods.

Paramters (M) FLOPS (G)

Baseline [12] 0.1 0.0004
FEDformer [45] 16.5 139

Crossformer [46] 11.4 80
Ours 9.4 0.1

Ours (Transformer) 6.2 51

4.5. Ablation Study

To verify the effectiveness of the neural-network-based importance evaluation method,
a comparative experiment with our TDM method and the boosting-based TDM method
is derived to evaluate the respective performance. Table 8 shows the experimental re-
sults of our TDM method and the boosting-based method. Compared with the baseline
method in Table 3, our TDM method and the boosting-based TDM method both have
better experimental results than the baseline. From Table 8, one can see that our TDM
method outperforms the boosting-based method in all periods, including the induction
and maintenance periods. In addition, the performance between our TDM method and the
boosting-based TDM method is slightly different in the recovery period. This is because
the boosting-based method focuses more on the distribution at the end of the time series,
so it has better results in the recovery phase, while our neural-based method focuses more
on the early part of the time series, i.e., the induction period and maintenance period. This
only causes our method to be a little bit worse than the boosting-based method in the
recovery period. However, our method achieves significantly better results in the induction
period, the maintenance period, and all three periods combined. Therefore, the proposed
TDM method is adopted in our task.

The experimental results of the ablation study are illustrated in Figure 7. As can be
seen from Figure 7, when the baseline is introduced with the AdaRNN, the proposed model
usually works better than the original model in all stages of anesthesia. This is due to the
fact that the proposed model trains in the worst case, which can alleviate the effects of
excessive differences in the distribution of different patient data to a certain extent, making
the model more robust and generalized. Thus, the model is able to predict better in the face
of unknown patient data.

Table 8. Comparison of the evaluation metrics between our TDM method and the boosting-based
TDM method in three anesthesia periods.

MDPE (%) MDAPE (%) RMSE MAE

Anesthesia
Period

Boosting-based
TDM

Ours Boosting-based
TDM

Ours Boosting-based
TDM

Ours Boosting-based
TDM

Ours

All 5.22 ± 13.25 1.93 ± 13.36 14.91 ± 6.12 14.53 ± 6.18 9.93 ± 2.49 9.71 ± 2.29 7.95 ± 2.38 7.51 ± 2.29
Induction 10.75 ± 17.54 5.45 ± 17.83 19.01 ± 10.56 18.64 ± 8.73 14.24 ± 5.93 13.09 ± 4.60 12.17 ± 5.65 11.31 ± 4.41

Maintenance 5.06 ± 13.65 1.87 ± 13.70 14.63 ± 6.62 14.06 ± 6.73 8.69 ± 2.44 8.27 ± 2.42 7.19 ± 2.50 6.75 ± 2.44
Recovery 0.84 ± 20.88 −2.40 ± 21.02 18.64 ± 11.74 19.44 ± 10.86 12.75 ± 6.28 12.80 ± 5.28 11.07 ± 5.93 11.14 ± 5.15



Sensors 2023, 23, 8994 18 of 21

According to Figure 7a, when a knowledge distillation approach is applied in the
baseline model, the new model has better performance during each period. In Figure 7c,d,
the MDPE achieves better performance in the induction and maintenance periods than
the AdaRNN model, which indicates that the predicted values for these two periods are
more accurate and display fewer fluctuations. Therefore, knowledge distillation is useful
for solving the overprediction problem faced by the AdaRNN model in the induction
and maintenance periods. Based on Figure 7a,b, although incorporating the knowledge
distillation into the baseline model has good stability, the difference between the AdaRNN
and the knowledge distillation approach is very small in terms of the RMSE and MAE.
However, when the AdaRNN and knowledge distillation are used in the same model, the
prediction performance can improve, and the combined model still brings good stability.
Thus, incorporating knowledge distillation into the AdaRNN model results in a great
improvement in our proposed work.

(a) (b)

(c) (d)

Figure 7. Ablation analysis of the various methods in all periods for different evaluation metrics.
(a) RMSE; (b) MAE; (c) MDPE, where * denotes a negative value; (d) MDAPE.

5. Conclusions

Accurate anesthesia depth prediction is crucial in clinical surgeries. In this paper, a
new deep learning framework is proposed that combines the domain adaptation technique
and the knowledge distillation technique to improve the generalizability and prediction
accuracy of anesthesia depth prediction models. Specifically, different from previous works,
the proposed framework first considers the problem of distribution shifts among patients
with different physiological characteristics data and trains the model from cases with the
largest distribution differences in order to enhance the generalizability of the proposed
model. Moreover, to improve the accuracy of anesthesia depth prediction, the BIS values
of the historical moments are introduced in the teacher network of the proposed method
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to extract the intermediate features, representing the anesthesia depth accurately. After
that, the prediction network is utilized to mimic the feature representations of the teacher
network. Experimental results have shown the effectiveness of our proposed framework
on a publicly available dataset compared with the traditional response model and the
baseline model.

In future studies, more information on historical drug doses or patient physiological
indicators related to clinical anesthesia, such as plasma concentration, effect-site concentra-
tion, target concentration, and infusion rate, can be added to our model to further improve
the prediction accuracy. Furthermore, an attention mechanism can be incorporated to allow
the model to focus on anesthesia depth features that are effective for predicting anesthesia
depth. Finally, due to the imbalance in the quantity of data (i.e., most of the BIS is in the
range of 35–45, while the other quantities are sparse). Thus, addressing data imbalance in
our task also can improve the performance.
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