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Simple Summary: We provide a data classification and analysis method to estimate fire risk using
facility data for thermal power plants. Experimental analysis is conducted on the data classified by
the proposed method for 500 megawatt (MW) and 100 MW thermal power plants.

Abstract: In this paper, we propose a data classification and analysis method to estimate fire risk
using facility data of thermal power plants. To estimate fire risk based on facility data, we divided
facilities into three states—Steady, Transient, and Anomaly—categorized by their purposes and
operational conditions. This method is designed to satisfy three requirements of fire protection
systems for thermal power plants. For example, areas with fire risk must be identified, and fire risks
should be classified and integrated into existing systems. We classified thermal power plants into
turbine, boiler, and indoor coal shed zones. Each zone was subdivided into small pieces of equipment.
The turbine, generator, oil-related equipment, hydrogen (H2), and boiler feed pump (BFP) were
selected for the turbine zone, while the pulverizer and ignition oil were chosen for the boiler zone.
We selected fire-related tags from Supervisory Control and Data Acquisition (SCADA) data and
acquired sample data during a specific period for two thermal power plants based on inspection
of fire and explosion scenarios in thermal power plants over many years. We focused on crucial
fire cases such as pool fires, 3D fires, and jet fires and organized three fire hazard levels for each
zone. Experimental analysis was conducted with these data set by the proposed method for 500 MW
and 100 MW thermal power plants. The data classification and analysis methods presented in this
paper can provide indirect experience for data analysts who do not have domain knowledge about
power plant fires and can also offer good inspiration for data analysts who need to understand power
plant facilities.

Keywords: fire risk estimation; SCADA system; anomaly detection; thermal power plant; turbine;
boiler; exploratory data analysis

1. Introduction

Several types of power plants, including nuclear, thermal, and hydroelectric, produce
electricity. Any issues arising in these power plants can significantly impact the national
economy and regional safety. Due to their crucial role in infrastructure, most nations
consider power plants as essential facilities and prioritize their management accordingly.
Power generation companies employ advanced systems to detect and resolve potential
problems to ensure a continuous and safe electricity supply. Since fire risk is one of the
severe problems in power plants, all power plant buildings have fire prevention systems
to respond to fires. However, these systems employ a static method that assesses whether
firefighting equipment, such as fire extinguishers and smoke–flame detectors, is present in
a specific location, assigns each piece of equipment a particular score, and then calculates
an overall score. Risk Failure Mode Effect Analysis (RFMEA) is a representative method
that performs various types of risk analysis and evaluates identified risks based on severity,
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consequences, and likelihood of occurrence during the risk resolution process [1,2]. This
risk assessment provides limited accuracy due to the rare occurrence of fires and diverse
factors affecting fire occurrence. This traditional and static approach must be revised to
detect and respond to fire hazards proactively. It is essential to create a fire protection
system that can adapt to changes in fire risks over time. To achieve this, we can leverage
the existing SCADA system in many power plants to incorporate time-based variables.
This approach will enable dynamic detection and response to potential fire hazards.

SCADA systems have become essential to the automated control and monitoring of
critical infrastructure. They serve various purposes, such as monitoring facility status,
acquiring large amounts of real-time data, increasing power efficiency, and automatically
detecting facility abnormalities [3]. Due to their advantages, SCADA systems have become
increasingly popular in facility abnormality detection research. Most studies using power
plant SCADA data concentrate on power efficiency and predictive maintenance [4–9]. In
order to develop a dynamic fire protection system, it is necessary to detect any abnor-
malities in the facilities. SCADA systems process complex time-series data, so analyzing
multivariate time-series data is crucial to identify anomalies. In recent years, there has been
rapid development in the research of multivariate time-series anomaly detection. Several
systematic reviews have been conducted using deep-learning-based anomaly detection
for multivariate time-series data. Anomalies in multivariate time-series can be defined in
various ways, such as contextual anomalies, point anomalies, and interval anomalies, and
there are numerous examples of industrial field applications and performance comparisons
of various methodologies for detecting these defined anomalies [10–13].

Most of the turbine facilities that are crucial power plant components have rotating
machines. As such, detecting abnormalities in these machines is essential, and we will
explore this topic in this paper using SCADA data. A rotating machine’s two most critical
components are the shaft and bearings. Bearings, in particular, play a crucial role in
machines that rotate at high speeds, as damaged bearings can lead to equipment damage,
explosions, or fires. Various deep learning methods are available to detect abnormalities,
bearing defects, and the causes of vibration, and there are many examples of vibration
measurement technology in the time, frequency, and time–frequency domains [14–19].
The boiler feed pump (BFP) and pulverizer are subject to fire risk prediction among the
boiler equipment, and related research cases exist [16,20,21]. Although many studies have
been conducted, most have focused on detecting facility abnormalities. Only a few have
attempted to predict fire risk by identifying abnormal detection in power plant facilities [22].

Many of the studies introduced above are primarily studies of some facilities of thermal
power plants or small-scale facilities such as wind power plants. For data analysis for
each facility, it is essential to utilize the SCADA system for the entire thermal power plant.
Additionally, in-depth data analysis is overlooked in most deep-learning-based research
using SCADA data [23]. In order to effectively utilize a SCADA system, it is crucial to
precisely analyze data from multivariate time-series and review various facility structures
based on their function and location. This paper presents how to use SCADA data to
develop a dynamic fire protection system that responds to a facility’s specific fire hazards
based on location and function. The core of this paper is to identify fire-related data from
SCADA data and utilize them through feature analysis of multivariate time-series data
linked to the location and function of the facility. We analyzed and used two data sets from
thermal power plants with 500 MW and 100 MW capacities for the experiments.

1.1. Contributions

From a fire prevention perspective, not all data from SCADA systems are necessary;
only data related to fire risk are needed. However, mathematical and statistical methods still
need to be available. The best way to do this is through collaboration between experts in fire
risk and data analysts who have extensive experience with facility operation knowledge.
This process takes a lot of time and effort and requires experts from various fields to
work together. Also, even if deep learning technology is utilized, domain knowledge of
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power plant facilities and data analysis is necessary for better results. The data selection and
analysis method described in this paper can help data analysts who lack domain knowledge
of power plants better understand relevant time-series data. Additionally, it will inspire
researchers to use SCADA data in various fields, not just predictive maintenance and
anomaly detection, as SCADA data are utilized for fire risk estimation.

1.2. Structure of the Paper

The paper is organized as follows: Section 2 describes the design of the fire risk
estimation method for a thermal power plant based on SCADA data. In Section 3, we
present the classification of zones and facilities and the selection of tags used to analyze
data for fire risk estimation. Section 4 outlines the experiments and discussions based on
the classification and selection data. Finally, in Section 5, we provide the conclusions and
future works.

2. Fire Risk Estimation Method for Thermal Power Plant

Our approach starts from the assumption that fire protection systems for thermal
power plants can be developed using SCADA data, as described in Figure 1 [8,24]. All
facilities in a thermal power plant are designed to achieve a specific purpose and operate
under these conditions. There is no direct way to determine whether the facility operates
under these conditions during operation. Therefore, the facility’s state must be indirectly
monitored by installing sensors to ensure it works according to its requirements. Consider-
ing this perspective, Figure 2 can model the facility state. Sensor values stabilize within a
specific range when a facility is operated under certain conditions, and the state remains
the same. As operating conditions change, the corresponding sensor data also changes.
Over time, the data eventually stabilize within a particular range of values. Repetition of
this routine is the normal state of facility operation. However, if the sensor values change
while the operating conditions remain the same or if they follow a pattern not seen in a
normal state, this can be assumed to be an abnormal state [6,10]. Therefore, the state of the
facility can be defined in three ways as follows:

• Steady State: This is when the operating condition remains constant, and the data are
maintained within a specific range.

• Transient State: This is when the data change rapidly due to changing operating
conditions. This change is expected.

• Anomaly State: This is when the operating conditions remain predefined, but the data
change unexpectedly.

Figure 1. Approach for developing fire protection system.
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Figure 2. State modeling for facility data.

A comparison between transient and anomaly states is presented in Table 1.

Table 1. Comparison between transient and anomaly states.

Transient State Abnormal State Remarks

Data changed Data changed By changing conditions or by remaining
conditions

Repeated pattern Unusual pattern Change-point selection; change-pattern
analysis

Changed in acceptable
range

Changed in
unacceptable range

Relative change according to operating
conditions

Fire Risk Estimation Method for Facilities

Generally, the causes of fires in thermal power plants can be classified into four
categories: mechanical, electrical, chemical, and external reasons, such as carelessness
during work. It is difficult to predict or prevent fires caused by carelessness at work through
facility data analysis, and predicting fire risk from other factors is also challenging [2].
Although predicting fire risk directly from facility data is difficult, for fires caused by
mechanical failure, it is possible to make some assumptions based on facility data.
• There is no fire risk if the facility is in normal condition.
• If the condition of the facility is abnormal, the probability of a fire occurring increases.
• There is no direct relationship between the facility’s abnormal condition and a fire’s

occurrence. In other words, facility failure does not directly lead to a fire.
Therefore, estimating the fire risk of a facility requires a two-step approach: first,

detecting anomalies in the facility and then exploring their relationship with fire.

3. Classification of Zones, Facilities, and Selection of Tags
3.1. Subdivision of Zone and Equipment

Because power plants have many facilities distributed over a large area, it is necessary
to distinguish between areas prone to fire and those not. When designing a fire protection
system based on facility data and additional environmental information, the following
three considerations must be satisfied:
• Areas with a fire risk must be identified as much as possible to enable rapid response.
• Fire risks should be classified according to facility, workplace, and fuel type.
• Fire risk analysis should be integrated into existing and operational fire protec-

tion systems.
To meet these requirements, turbine and boiler areas containing critical equipment that

can significantly impact plant facilities in the event of a fire were selected in consultation with
plant officials. Turbines and boilers were classified as primary areas for fire risk prediction. An
indoor coal shed area found only in coal-fired power plants was added. To subdivide the fire
risk assessment for each facility in the turbine and boiler areas, the facility must be divided
into smaller pieces of equipment. The types of equipment of the turbine and boiler zone were
categorized by cooperating with fire experts based on analysis of power plant fire incidents
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over the years; it has been shown that much equipment in the turbine and boiler zones has been
involved in severe fires. A turbine, a generator, oil, H2, and BFP were selected for the turbine
zone, while the pulverizer and ignition oil were chosen for the boiler zone. The boiler system
of a thermal power plant is very complex, consisting of various equipment such as burners,
superheaters, reheaters, furnaces, air heaters, crushers, ignition oil, etc. Due to the nature of
thermal power plants, much equipment used to handle steam and water poses a low and rare
fire risk. The pulverizer is the equipment that causes most fires in the boiler zone. Additionally,
with ignition oil, although the likelihood of a fire occurring is low, if a fire does occur, it can
cause severe damage. So we selected only oil-related equipment and pulverizers and excluded
the other equipment in the boiler zone. See Table 2.

Table 2. Subdivision of facility.

Zone Facilities Count

Turbine High-Pressure (HP) Turbine, Intermediate-Pressure (IP) Turbine,
Low-Pressure (LP) Turbine, Generator, H2, Hydraulic Oil, Lubricant Oil, BFP 8

Boiler Ignition Oil, Pulverizer 2

We analyzed fire and explosion scenarios of thermal power plants over many years to
classify the contents and ignition sources precisely and accurately. Fires in the turbine zone
often were found in hydraulic oil and lubricant tanks, bearings, and oil supply pipes. These
fires fall into three categories: pool fires, 3D fires, and jet fires. Extinguishing these fires can
be challenging. At the same time, various types of fires were found in different equipment,
including the pulverizer, lubricant oil, hydraulic oil tank, bearings, coal feeder, silos, feed piping,
and air preheater in the boiler zone. Tables 3 and 4 show ignition sources for fire scenarios in
the turbine and boiler zones.

Table 3. Fire and explosion scenarios and ignition sources in the turbine zone.

Equipment Fire and Explosion Scenarios Source of Ignition

Turbine Hydraulic Oil Tank Pool fire due to oil leakage High-temperature parts, Electrical cause, Hot work,
Other

Overheating due to low oil level in the tank
Oil overpressure
Oil overtemperature

Turbine Lubricant Oil Tank Pool fire due to oil leakage High-temperature parts, Electrical cause, Hot work,
Other

Overheating due to low oil level in the tank
Oil overpressure
Oil overtemperature

Turbine Bearing 3D fire caused by oil leakage High-temperature parts, Electrical cause, Hot work,
Other

Oil oversupply
Oil overpressure
Oil overtemperature

Generator Body Unconfined Vapor Cloud Explosion (UVCE) due to
H2 leakage

High-temperature parts, Electrical cause, Hot work,
Other

Jet fire due to H2 leakage
H2 overpressure
H2 oversupply

H2 Supply Equipment UVCE due to H2 leakage
Jet fire due to H2 leakage
H2 overpressure

Lubricant and Hydraulic Oil Supply Piping 3D fire due to oil leakage
Pool fire due to oil leakage
Oil overpressure
Fire due to contact with high-temperature parts
when oil is scattered

Cable Fire due to overheating cables
Other cable fires
Poor insulation due to water leakage

Floor Fire due to hot work Welding, Cutting



Sensors 2023, 23, 8967 6 of 18

Table 4. Fire and explosion scenarios and ignition sources in the boiler zone.

Equipment Fire and Explosion Scenarios Source of Ignition

Pulverizer Lubricant Oil Tank Pool fire due to oil leakage
Oil level drop in tank
Oil overpressure

Pulverizer Hydraulic Oil Tank Pool fire due to oil leakage
Oil level drop in tank
Oil overpressure
Fire due to contact with high-temperature parts when
oil is scattered

Pulverizer Lubricant Oil Tank Pool fire due to oil leakage
Oil level drop in tank
Oil overpressure

Pulverizer Body Pulverizer abnormal temperature High-temperature part, Electrical cause hot work,
Spontaneous ignition, etc.

Sparks and fires in pulverizer
Dust explosion during initial start-up of the pulverizer
Spontaneous ignition during prolonged non-operation

Coal Feeder Abnormal temperature in the feeder High-temperature part, Electrical cause hot work,
Spontaneous ignition, etc.

Spontaneous ignition in feeders
Fires in other feeders

Silo Abnormal temperature in silo High-temperature parts, Electrical causes, Static
electricity hot work, Spontaneous ignition, etc.

Spontaneous fire in upper silo
Spontaneous fire of lower silo
Dust explosion by floating dust during coal loading
Other fires in silo

Vacuum Refined Oil Supply Facility Pool fire due to oil leakage
3D fire due to oil leakage

Boiler Hydraulic Valve for Hydraulic Power Unit Pool fire due to oil leakage
Fire due to contact with high-temperature parts when
oil is scattered
Oil level drop in tank
Oil overpressure

Lubricant and Hydraulic Oil Supply Piping 3D Fire due to oil leakage
Pool fire due to oil leakage
Oil overpressure
Fire due to contact with high-temperature parts when
oil is scattered

Air Preheater Reducer and Bearing Pool fire due to oil leakage
Fire due to contact with high-temperature parts when
oil is scattered
Anomaly caused by oil shortage

Air Preheater Lubricant Oil Tank Pool fire due to oil leakage
Overheating due to low oil level in the tank
Oil overpressure

Boiler Ventilation Lubricator Pool fire due to oil leakage
Fire due to contact with high-temperature parts when
oil is scattered
Anomaly caused by oil shortage

Floor Fire caused by hot work Welding, Cutting

For coal-fired power plants, spontaneous combustion frequently occurs in coal supply
devices and silos due to the nature of coal. However, these incidents have not been classified
as severe fires. After carefully inspecting the turbine and boiler zones, we organized three
fire hazard levels. Table 5 shows primary causes.

Table 5. Primary causes of severe fires in thermal power plants.

Zone 1st Rank 2nd Rank 3rd Rank

Turbine Lubricant Oil Leakage Lubricant Oil Leakage H2 Leakage
Boiler Fuel Oil Leakage Lubricant Oil Leakage Lubricant Oil Leakage
Indoor Coal Storage Spontaneous Combustion Dust Explosion General Fire

3.2. Tag Selection for Equipment

A 500 MW thermal power plant has more than 34,000 tags in the turbine and boiler
areas, and a 100 MW has more than 20,000 tags. However, most of these tags are unrelated
to fires, so selecting tags that may be related to fires is an essential process for more efficient
estimation. No academic, mathematical, or statistical method can accurately identify fire-
related data in SCADA data. Accordingly, we collaborated with field experts and collected
opinions from facility operation experts to select appropriate tags in three stages. In the
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first stage, we excluded all tags not present in previous power plant fire cases, such as
steam, air, various switches, and status indicators that detect conditions. This narrowed
the selection to approximately 3000 and 1500 tags, respectively. In the second stage, tags
related to minor fires that occurred in the past, such as water-related tags, tags related to
abnormal internal temperatures of generators, and tags related to coal transportation at
coal-fired power plants, were removed. Fewer than 1000 and 500 tags, respectively, were
selected at this stage. Finally, based on the information summarized in Tables 3–5, we
selected 183 tags in the turbine zone (Table 6) and 336 in the boiler zone for the 500 MW
plant (Table 7) and 202 in the boiler zone for the 100 MW plant.

Table 6. Number of tags in turbine zone for 500 MW plant.

Zone Equipment Number of Tags Features

Turbine Turbine (Common) 9 Rotor position, number of revolutions, bearing oil pressure,
hydraulic oil pressure

HP 12 Shaft vibration and position, bearing temperature
IP 12 Shaft vibration and position, bearing temperature
LP-A~B 11 × 2 Shaft vibration and position, bearing temperature
Generator 15 Shaft vibration, bearing temperature, air temperature
H2 16 Cooler gas temperature, air temperature, H2 pressure, leakage rate
Lubricant Oil 38 Bearing temperature, oil pressure, oil temperature
Hydraulic Oil 7 Oil pressure, temperature, level
BFP-A~B 30 × 2 Shaft position, oil and bearing temperature, speed

Table 7. Number of tags in boiler zone for 500 MW plant.

Zone Equipment Number of Tags Features

Boiler Ignition Oil 14 Pressure, flow, temperature
Pulverizer (Common) 7 Pressure, valve position

Pulverizer-A~F 53 × 6 Temperature, vibration, coal flow rate, number of revolutions, air
flow rate, air pressure, hydraulic pressure, metal temperature, etc.

4. Experiments and Discussion
4.1. Data Set

The selected tags from the SCADA system were used to acquire data for a specific
period corresponding to two power plants: one with a capacity of 500 MW and the other
with 100 MW. Table 8 shows the data set description. The data contain 5%, 4%, and 3.5%
missing values for each unit. Handling missing values in a data set is essential. Once power
plant equipment begins operation, conditions typically remain the same until subsequent
maintenance periods, which can last several months. As a result, sensor readings either
do not change or follow the same pattern. Therefore, since the number of missing values
in data sets is small, it is better to fill them with previous values rather than remove them.
Using previously received values is also essential for algorithms that operate in real-time.
The method of filling in missing values using the mean of the previous values of each
sensor is as follows:

xn =
∑N

k=1 xn−k

N
(1)

Here, x represents the data series, n represents the current point, k represents the past
point, and N represents the number of past points.

Table 8. Data set.

Generation Capacity Zone Number of Tags Period Interval

500 MW Turbine 183 3 months 10 min
500 MW Boiler 336 3 months 10 min
100 MW Turbine 202 7 months 30 min
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4.2. Main Features of the Facilities

The tags selected for fires in the turbine and boiler zone are mostly related to rotating
machinery and oil. In the turbine zone, there are many tags for representative rotating
machines such as HP, IP, LP, and generators [16]. The boiler zone contains the ignition
oil and pulverizer. These facilities consist of rotating machines and have one thing in
common: they use a lot of oil. Rotating machines comprise shafts, rotating bodies, bearings,
and gearboxes, and various lubricants are used to ensure smooth rotation. Therefore, the
essential characteristics of a rotating machine are the vibration and temperature of the
shaft and bearings, the rotor’s position, and the lubricating oil’s temperature and pressure.
Oil-related tags mainly include pressure, leakage, flow, and temperature.

Oil-Related Features

Lubricants and hydraulic oils are commonly used in turbines and boilers. However,
due to their flammability, conducting a fire risk assessment to monitor these oils is essential.
To this end, the SCADA system monitors the lubricant’s and hydraulic oil’s temperature
and pressure at various points. These points include inside the oil tank, before passing
through the cooler, and after being filtered for bearing lubrication. All the equipment tags
of the turbine and boiler have oil-related features.

Bearing-Related Features

Bearings are essential for ensuring smooth machine rotation and come in various
types. They must adequately operate rotating machinery by stably supporting the shaft
and reducing friction during equipment rotation [14,15]. However, monitoring their state
can be challenging because they are inside the structured form. Their vibration and
temperature are indicators to determine the bearings’ state. Bearing vibration is measured
using a contact accelerometer [17,25,26]. Tags for equipment such as HP, IP, LP, Generator,
BFP, and Pulverizer include bearing temperature and vibration features.

Shaft-Related Features

Observing the vibration of a rotating shaft is crucial for accurately estimating the state
of a rotating object. Perfect coupling is impossible because the shaft is fixed to the center
of the rotating body through bearings. As a result, the rotating body vibrates in the x-
and y-directions while displacing in the z-direction. A non-contact displacement sensor
measures the vibration and position of the shaft, which are the most essential features of
the shaft. Monitoring the shaft’s vibration and position during rotation is necessary, as even
a stably rotating body has small vibrations [19]. Therefore, tolerance limits are established
to differentiate between normal and abnormal vibrations. The operation is automatically
stopped if the vibration exceeds the tolerance limit due to abnormal conditions. The HP, IP,
LP, Generator, and BFP tags contain shaft vibration and position features.

Shell-Related Features

A turbine is a structure that consists of a rotating body fixed to a shaft and enclosed
by a shell. When high-temperature steam is injected into the turbine, the shaft and shell
expand in opposite directions based on the supporting points. However, if the degree
of expansion of the shell and shaft is significantly different, it may cause the rotating
body’s wings to collide with the shell, resulting in damage. Therefore, monitoring the shell
expansion and the difference between the shell and shaft expansion is crucial. The HP, IP,
LP, and Generator tags include shell expansion features.

H2-Related Features

A high-speed rotating turbine generates heat inside the generator, which requires a
cooling system. Cooling systems for generators commonly use air, hydrogen, or water.
Hydrogen is the preferred option for cooling in most power plants due to its numer-
ous benefits.
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• Due to its low density compared to air, H2 can flow easily in narrow gaps and
experience minimal hydrodynamic loss.

• Mitigating facility deterioration through oxygen reduction helps prolong facilities’
lifespans.

• Its higher specific heat and heat transfer coefficient lead to a more significant cooling
effect, resulting in higher output under the same conditions.

Although there are benefits to those above, there are also drawbacks.

• The concentration of hydrogen for cooling must be maintained above 97% due to its
explosion range of 4~75% purity level.

• Installing additional facilities for leakage prevention and high-purity maintenance
can prevent explosions but is costly.

Monitoring the H2 cooling system is essential for fire risk estimation due to its potential
disadvantages. H2 tags include information on tank leakage, the collector, the cooler, purity,
air temperature, pressure, and fan pressure difference.

4.3. Turbine Data
4.3.1. Distribution and Correlation Analysis

Figure 3 shows turbine temperature and vibration distribution data. The temperature
data indicate that while the variation is slight in Unit 1, the overall variation is substantial
in Unit 2. All states, except for variance, exhibit similar trends. The vibration data show
identical patterns to the temperature data. The total variation in Unit 2 is more significant
than that in Unit 1, which can be attributed to the unstable equipment condition of Unit
2, possibly due to its broader operating range or older age. However, IP_SHT3 and
GEN_SHT2 in Unit 1 show a much wider vibration range than others. Furthermore, it is
apparent that the vibration signals from HP_SHT0 - 6 are in different states from those of
Unit 1 and Unit 2. This requires closer examination.

Figure 3. Distribution of turbine temperature and vibration: (Upper Left) temperature of Unit 1,
(Upper Right) vibration of Unit 1, (Lower Left) temperature of Unit 2, and (Lower Right) vibration
of Unit 2.

Figure 4 shows the correlation between each sensor in the temperature and vibration
data. The Pearson correlation coefficients calculated for each pair of columns are shown in
Figure 4.
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rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

x̄ =
1
n

n

∑
i=1

xi

ȳ =
1
n

n

∑
i=1

yi

(2)

where n is the sample size, xi, yi are the individual sample points, and i is the index. The
temperature patterns of Units 1 and 2 are similar, but the vibrations show significantly
different patterns between the two units. In Unit 1, there is a strong correlation between
the temperatures of the bearings. However, there is no direct relationship between the
temperature of the lubricant and the temperature of the bearings. The temperature of
the lubricant filter signal (LUBE_FIL), which is the temperature after passing through
the cooler, is constant regardless of the turbine’s operating conditions. It is clear that the
temperature of the lubricant positioned before the cooler shows significant correlation with
the bearing temperature based on the operating conditions. In such cases, it would be
beneficial to monitor the temperatures of the lubricating oil and bearings separately based
on their locations. The relationship between the lubricant and bearing temperature in Unit
2 is more complex than in Unit 1. Specifically, the relationship is similar before and after
the lubricant passes through the cooler. This suggests that the two facilities are operating
in different operational conditions. The vibration data show a slightly different pattern
compared to the temperature data. Specifically, only about four vibration sensors in Unit
1 operate independently, whereas in Unit 2, many sensors operate independently. This
indicates that Units 1 and 2 might be functioning under different conditions.

Figure 4. Correlation between turbines: (Upper Left) temperature of Unit 1, (Upper Right) vibration
of Unit 1, (Lower Left) temperature of Unit 2, and (Lower Right) vibration for Unit 2.



Sensors 2023, 23, 8967 11 of 18

4.3.2. Characteristic Analysis

Figure 5 shows vibration data for shafts POS-1 and POS-2. The positions of POS-1 and
POS-2 overlap, but POS-1 spreads in the X–Y-direction when the vibration is slight and
gathers in one place when the vibration is significant. The vibration of POS-1 is distributed
widely from 20 to 60 mm in the X- and Y-axes. On the other hand, the vibration of POS-2 is
stably distributed below 40 mm. Observing and analyzing the details of the vibrations on a
3D rather than a 2D plot is easier.

Figure 5. HP Shaft vibration of X- and Y-axes at Positions 1 and 2: (Left) scatter plot and (Right) 3D
plot.

Figure 6 depicts the different bearing vibration patterns compared to shaft vibration.
Although there are similar vibration ranges on the X- and Y-axes for POS-1 and POS-2, POS-
2 has a more extensive vibration distribution than POS-1 during normal turbine operation.
Furthermore, more data than shaft vibration are observed, even when turbine operating
conditions change during the transition phase. The bearing vibration condition varies
relatively slowly compared to changes in operating conditions. The 3D plot also shows that
the X-axis data are widely scattered, while the Y-axis data are concentrated in one place.

Figure 6. HP bearing vibration of X- and Y-axes at Positions 1 and 2: (Left) scatter plot and (Right)
3D plot.

The remaining facilities, such as IP, LP, Generators, Lubricant Oil, H2, Hydraulic Oil,
and BFP, were explored using the same procedure as HP.
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Unusual Patterns

The SCADA system is designed to automatically shutdown the turbine components
when they exceed the preset alarm and trip values, which include vibration, temperature,
position, and other factors [3,6]. However, as thermal power plants operate under stable
conditions, it can be challenging for the SCADA system to detect abnormal patterns if
sensor values do not exceed the preset thresholds [7]. Therefore, it is essential to carefully
examine the data for any unusual patterns, even if the alarm and trip values are not reached.
This helps to identify risk trends. Figure 7 shows the time-series data for HP turbine shaft
vibration over a specific duration. We noticed a periodic increase in shaft vibration, which
is an unusual pattern. This periodically increasing signal must be monitored, but no action
is needed as it remains below the alarm threshold. It is believed that an action was taken
during the overhaul period, as the signal disappeared afterward. As the area is enlarged to
check the periodically occurring signal, it lasts about 2 h and then disappears. It is unclear
why these signals occur periodically, but it is clear that they are unexpected.

Figure 7. Unusual pattern of HP shaft vibration: (Upper Left) X- and Y-axes at Position 1, (Upper
Right) zoom in on shaded areas of the left figure, (Lower Left) X- and Y-axes at Position 2, and
(Lower Right) zoom in on shaded areas of the left figure.

4.4. Boiler Data
4.4.1. Distribution and Correlation Analysis

Figure 8 shows the BFP distribution data [20]. Units 1B and 2A have a more extensive
range than Units 1A and 2B. It can be estimated that Units 1A and 2B do not undergo as
many state transitions as Units 1B and 2A, and they are more stable. Unit 1A’s temperature
distribution changes by 50% from 25 to 40 degrees. In Unit 2A, some sensors maintain their
intermediate states for a considerable period. It can be confirmed that the MOT_TEMP0,1
and PUM_VIB2,3 sensors maintain a tri-state. This indicates that the BFP is operating at a
medium level. In Unit 2B, the PUP_VIB3 vibrated over 200 mm, significantly higher than
other sensors. Furthermore, MOT_VIB2,3 exhibited abnormally higher vibrations than all
the other sensors. The operation of the BFP depends on the turbine’s condition and is not
limited to the highest or minimum level.

• Different facilities show similar patterns under the same conditions but vary widely
depending on their conditions.

• Two temperature states can be observed at identical locations, even if only a tri-state
is observed by the vibration sensor.
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Figure 8. Distribution of BFP temperatures and vibrations: (Upper Left) Unit 1A, (Upper Right) Unit
1B, (Lower Left) Unit 2A, and (Lower Right) Unit 2B.

Figure 9 shows the correlation between temperature, vibration, and position of the
BFP. It can be seen that a similar pattern is observed overall for each BFP. The correlation is
relatively high for the same type of sensor in all facilities. It can be seen that the correlation
between temperature and vibration is relatively high, while MOT_VIB0,1 has a high inverse
relationship. Although the correlation between temperature sensors in Unit 1A is not
observed as strongly as in Unit 1B, it can be confirmed that it is more than 70% overall.
On the other hand, a more complex pattern is observed in Unit 2. A similar pattern is
observed for each BFP. The correlation between the same type of sensor is relatively high
in all units. Additionally, there is a relatively high correlation between temperature and
vibration, while MOT_VIB0,1 shows a high inverse relationship. Although the correlation
between temperature sensors in Unit 1A is not as strong as in Unit 1B, it can be confirmed
that it is more than 70% overall. However, a more complex pattern is observed in Unit 2.
Unit 2A’s overall correlation between vibration and temperature is robust. Unit 2B shows a
slightly different pattern from Unit 2A. SHT_VIB0 correlates very highly with other sensors,
while SHT_VIB1 does not correlate highly with other sensors. The remaining characteristics
overall show similar correlation between Units 1A and B.

Figure 9. Correlation between BFPs: (Upper Left) Unit 1A, (Upper Right) Unit 1B, (Lower Left) Unit
2A, and (Lower Right) Unit 2B.
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4.4.2. Characteristic Analysis

As mentioned above, most of the equipment in the boiler zone was excepted except oil-
related equipment and the pulverizer. Therefore, we focus on ignition oil and pulverizers
among various equipment with high fire risk.

Ignition Oil

When the boiler starts, the ignition oil is only used once to ignite the burner. However,
ignition oil has low density, which poses a high fire risk when it leaks, unlike lubrication
or hydraulic oil with high viscosity. The data for ignition oil include supply and return
path oil flow rates, temperatures, ratios, and pressures. During turbine operation, the oil
temperatures in the supply and return paths show regular intervals. There is almost no
temperature difference when the turbine stops. The supply path values are significantly dif-
ferent depending on the turbine operation conditions. However, the oil pressure fluctuates
while the turbine is stopped, as shown in Figure 10. Operational experts acknowledged
that the reason is related to equipment maintenance during the overhaul period. The sensor
may detect unusual patterns when the facilities are dismantled and maintained. For these
reasons, it is more reasonable to pause the monitoring of fire risk estimated from SCADA
data during the overhaul period.

Figure 10. Supply path pressure values of ignition oil.

Pulverizer

The pulverizer grinds coal into fine particles, which are used to fuel the boiler burners
in thermal power plants. However, the pulverizer is one of the facilities in the boiler zone
that often causes fires. The system comprises various components, including the bunker,
feeder, gearbox, motor, primary air, seal air, lubricant oil, hydraulic oil, and others, each
monitored by numerous sensors. Due to the system’s complexity, nonlinearity, and high
dimensionality, developing an accurate mathematical model for anomaly detection in the
coal pulverizer system is challenging [21]. Therefore, pre-processing must be cautiously
approached due to the large and diverse data. The bunkers, motors, lubricant oil, and
gearboxes are the main objects that must be observed in the fire monitoring system. Grind-
ing coal requires a lot of current caused by using a roller and motor. The pulverizer data
strongly correlate with the motor’s current consumption, as shown in Figure 11. This is
because the motor operation increases its load as current consumption rises regardless of
the turbine’s state.
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Figure 11. Pulverizer motor signals: (Upper) temperatures vs. current of motor and (Lower) vibra-
tions of motor vs. turbine RPM.

4.5. Discussion

After analyzing the data provided, we can gather the following information:
• The associated features are not altered if the RPM stays the same.
• Regarding the facility data for which we have not been provided with allowable

ranges, the data of a single item cannot be meaningful because the permissible range
is unknown.

• Observing the RPM can help us estimate how much the turbine-related features
change. If there is a change to the RPM, we can predict the corresponding changes
to turbine-related features. We then compare the expected and actual values. On the
other hand, by observing the turbine-related features, we can estimate the current
state of the turbine.

• Using RPM as a reference feature is appropriate due to its strong correlation with
turbine-related features.

• Oil-related features exhibit diverse patterns and cannot be generalized. A deep
learning model efficiently detects abnormalities.
The following items require additional discussion:

• What are the primary causes of data fluctuations compared to other units? Should
these fluctuations be considered when designing the model if they fall within the
normal range?

• Should different models be designed for each unit, even in identical facility types
where different patterns may be observed?

• It is reasonable to assume that sensor data will have similar patterns. Therefore, is it
appropriate to use one model to make predictions for the same facility?

• If abnormal sensor data are detected during the overhaul period, should the model
automatically stop predicting for that period?

• When sensor data show an abnormal pattern, can a model distinguish between sensor
malfunctions and equipment issues?

• How do we respond to facility abnormalities or deterioration based on the operating
period, even under the same conditions?
We can design an algorithm for real-time fire risk estimation through the data analysis,

as illustrated in Figure 12. The algorithm determines whether the equipment is being
operated based on RPM sensor data. Statistical analysis can be conducted by extracting
statistical features and checking the upper and lower limits when the system is oper-
ational. Along with statistical analysis, we also perform deep-learning-based analysis
simultaneously. The deep-learning-based analysis is practical, but statistical analysis is
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used to explain anomalies. Fire risk is estimated by combining statistical analysis and
deep-learning-based analysis.

Figure 12. Fire risk estimation diagram.

5. Conclusions

In this paper, we proposed using facility data to estimate fire risk to develop a dynamic
fire protection system for thermal power plants. Firstly, we considered that facilities are
designed and manufactured with a specific purpose in mind and are operated within the
scope of design conditions to achieve that purpose. Therefore, we presented a method for
estimating fire risk using facility data. Since a facility’s operating conditions can determine
its exact state, we assume it has normal, transient, and abnormal states and model fire
risk estimation based on them. In order to ensure that the requirements for a dynamic
fire protection system were met, the power plant’s facilities were categorized based on
their functions, zones, and fuels. The corresponding data for each facility were classified
accordingly. Furthermore, the selection of fire-related data from the SCADA data was
explained to estimate the fire risk. In order to develop a fire risk estimation algorithm,
the selected data were analyzed for their distribution, correlation, and characteristics of
individual data for each facility. This helped us estimate the status and operation of the
facility and understand the characteristics of the thermal power plant data. The data
analysis was conducted using data sets from 500 MW and 100 MW power plants based on
the described approach. The data classification and analysis method proposed in this paper
can provide indirect experience to data analysts who need domain knowledge about power
plant fires. It can also inspire data analysts who require knowledge of power plant facilities.

6. Future Works

In this paper, we proposed a method to select fire-related tags from the thermal
power plant SCADA system and analyzed two plants’ data. Based on the analyzed results,
research on machine learning and deep learning models that can estimate fire risk by facility
and area should be conducted. Additionally, a framework that can store, process, and
manage data in real-time based on classified tags should be developed. Since estimating fire
risk based on facility data is very limited, better results can be produced when combined
with image-based prediction, which is the most-actively researched method recently in
deep learning.

Author Contributions: C.-J.S. conceived and designed the experiments; J.-Y.P. classified and acquired
the data; C.-J.S. and J.-Y.P. analyzed the data; C.-J.S. wrote the paper. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was granted financial resources from the Ministry of Trade, Industry, and
Energy (MOTIE, Korea)—Project Name: Development of visualized fire protection system to Thermal
Power Plant through IIoT & Digital Twin technology/Project Number: 20206610100060.

Institutional Review Board Statement: Not applicable.



Sensors 2023, 23, 8967 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: Sample data sets are not available because of the NDAs of the thermal
power plant companies.

Acknowledgments: This work was supported by Energy Technology Development of the Korea
Institute of Energy Technology Evaluation and Planning (KETEP).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SCADA Supervisory Control And Data Acquisition
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SAD Semi-Supervised Anomaly Detection
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AutoML Automated Machine Learning
ECG Electrocardiogram
MW Megawatt
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IP Intermediate-Pressure
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BFP Boiler Feed Pump
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UVCE Unconfined Vapor Cloud Explosion
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