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Abstract: In this study, a vehicle state joint estimation method based on lateral stiffness was applied
to estimate the running states of electric vehicles driven by rear-drive, in-wheel motors. Different
from the estimation methods used in other research, the joint estimator designed in this study uses
the least-squares (LS) algorithm to estimate the lateral stiffness of the front and rear axles of the
vehicle, deploying the high-degree cubature Kalman filter algorithm to estimate the vehicle state.
We establish a three-degree-of-freedom nonlinear vehicle model with longitudinal velocity, lateral
velocity, and yaw rate, and the lateral stiffness of the front and rear axles as the principal parameters.
For the low-speed running state of the vehicle, a linearized magic tire model with high fitting accuracy
was used to calculate the lateral force of the entire vehicle. The LS algorithm with a forgetting factor
was used to design a lateral stiffness estimator to assess the front-axle and rear-axle lateral stiffness
of the entire vehicle. The generalized high-degree cubature Kalman filter (GHCKF) algorithm was
used to design the vehicle state estimator and further improve the GHCKF algorithm. A vehicle
state estimator, using the square root generalized high-degree cubature Kalman filter (SRGHCKF),
was designed. Therefore, the joint estimator, comprising a lateral stiffness estimator and a vehicle
state estimator, adopts the LS-GHCKF/SRGHCKF algorithm and enables the estimation of the lateral
stiffness, the longitudinal velocity, the lateral velocity, and the yaw rate of the entire vehicle during
the driving process. A double lane change and slalom simulation were performed to analyze the
feasibility and accuracy of the joint estimation algorithm and verify the results of the LS-GHCKF
algorithm and the LS-SRGHCKF algorithm. Further, a low-speed driving experiment was carried
out for electric vehicles driven by rear in-wheel motors. The inertial navigation system (INS), the
global positioning system (GPS), the real-time kinematic (RTK), and an angle sensor were used to
collect real-time vehicle data. The results were compared to verify the feasibility of the joint estimator
and the progressiveness of the algorithm. The experimental verification and simulation both show
that the vehicle state joint estimator, designed based on the LS-GHCKF/SRGHCKF algorithm, can
accurately estimate the real-time state of the vehicle. Additionally, the LS-SRGHCKF algorithm shows
better effectiveness and robustness than the LS-GHCKF algorithm.

Keywords: joint estimator; lateral stiffness; running states of electric vehicles; rear-drive; in-wheel
motors; LS-GHCKF/SRGHCKF; double lane change; slalom; robustness

1. Introduction

The in-wheel electric vehicle is an emerging automotive technology that integrates the
motor and wheel hub to improve the power performance and efficiency of vehicles [1]. The
handling stability of in-wheel electric vehicles depends on the torque control of the motor,
which requires decision-making based on the state variables of in-wheel electric vehicles.
Therefore, the vehicle state variables are important prerequisites for vehicle handling and
stability. Additionally, they have a significant impact on the active safety performance of the
vehicle [2]. The vehicle status mainly includes the longitudinal velocity, the lateral velocity,
the yaw rate, etc. Sensors can be used in the measurement to accurately obtain the above
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parameters. If all state variables are measured using sensors, the cost is relatively high.
Thus, the method of integrating partial low-cost sensor measurement and state estimation
is generally used to obtain state variables [3,4]. At present, the neural network method [5],
sliding mode observation method [6–8], fuzzy logic estimation method [9], Kalman filter
method [10,11], etc., are widely used in vehicle state estimation algorithms. The neural
network method requires a large number of samples and possesses strict requirements. The
sliding mode observation method requires state estimation to strictly follow the motion of
the sliding mode surface. The weighting coefficients of fuzzy logic estimation are difficult
to determine. The Kalman filter algorithm has the advantage of recursive iteration, which
can effectively suppress noise and improve system accuracy. Therefore, the Kalman filter
method is widely used. On the basis of classical Kalman filter algorithms, an extended
Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF) were
developed. These algorithms are widely used in the field of vehicle state estimation.

References [12,13] integrated the EKF algorithm with other algorithms for state es-
timation. Reference [12] combined EKF with an improved radial basis function (RBF)
neural network to jointly estimate the centroid sideslip angle and road adhesion coefficient.
Compared with the results obtained when using the EKF algorithm or RBF algorithm
alone, the joint estimation algorithm had higher accuracy [12]. Reference [13] combined
EKF with a limited-memory filter to develop a limited-memory adaptive extended Kalman
filter (LM-AEKF). Like reference [12], the fused algorithm has significant advantages in
terms of filtering stability and estimation accuracy [13]. A dual unscented Kalman filter
(DUKF) algorithm was proposed in references [14,15]. Reference [14] analyzed and derived
the local observability of the DUKF observer through the theory of differential geometry,
comparing the estimation results with those of the dual extended Kalman filter (DEKF) [14].
The DUKF algorithms in reference [15] jointly observed the vehicle state: one of the two
filters observed the vehicle speed, the sideslip angle of the body’s center of mass, and
other states, while the other one observed the vehicle inertia parameters [15]. The DUKF
proposed in references [14,15] received solid observation results. References [16,17] pro-
posed an improved algorithm based on the CKF algorithm. Reference [16] adopted a fuzzy
adaptive robust cubature Kalman filter (FARCKF) to estimate the sideslip angle and tire
stiffness. At the same time, the least-square method was used to update the model parame-
ters of FARCKF [16]. Reference [17] proposed the adaptive square-root cubature Kalman
filter (ASCKF) algorithm that adaptively adjusts the model parameters of ASCKF [17].
Through simulations and experiments, the improved cubature Kalman algorithm proposed
in references [16,17] was found to be feasible and to have reliable results. Reference [18]
proposed a vehicle state estimation method that superimposes Kalman filter algorithms
and accurately estimates the vehicle state parameters [18]. Reference [19] used an EKF
algorithm to estimate the state of the vehicle. According to the random weighting theory,
the weighting coefficient subject to Dirichlet distribution is designed to further improve
the accuracy of the estimation [19]. In reference [20], in order to effectively estimate the
vehicle state with the non-Gaussian noise, the maximum correntropy criterion was com-
bined with an adaptive extended Kalman filter (AEKF) [20]. Reference [21] proposed an
adaptive filtering algorithm that combines UKF and a genetic algorithm to achieve adaptive
process noise and measurement noise and to accurately estimate the operating status of
the vehicle [21]. To improve the accuracy of state parameter estimation for distributed
drive electric vehicles, a UKF algorithm combined with the Huber method was proposed
in reference [22]. This algorithm improves the robustness of the observer, reflects vehicle
status in real-time, effectively suppresses the influence of errors and noise, and achieves
high observation accuracy [22]. A traditional Kalman filter algorithm has poor accuracy
and robustness in solving the problem of non-Gaussian noise. Reference [23] presented a
robust hierarchical estimation scheme for the vehicle driving state based on the maximum
correntropy square-root cubature Kalman filter (MCSCKF) and achieved good results [23].
The adaptive volume particle filter (ACPF) proposed in reference [24] estimates key state
variables such as vehicle roll angle and center-of-mass roll angle [24]. The least-squares
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method can effectively and concisely solve nonlinear problems and improve the rate of
convergence. As such, it is often used in the field of parameter detection and variable
estimation [25]. In reference [26], the LS method and fuzzy adaptive extended Kalman
algorithm are used to estimate the vehicle state and achieve good results [26]. The above
literature involves EKF, UKF, and CKF. Through literature analysis, the comparison of the
three Kalman filtering algorithms is as follows (Table 1):

Table 1. Comparison and analysis of EKF, UKF, and CKF algorithms.

Kalman Algorithm Principle Application Scenario Characteristic

EKF

Based on first-order Taylor
series expansion; approximating

nonlinear functions to
linear functions

Generally applicable to weakly
nonlinear systems.

The accuracy and stability of
EKF for state estimation are also

relatively average.

UKF

Using the traceless
transformation method to

approximate
nonlinear functions

Generally applicable to strongly
nonlinear systems.

When dealing with complex
nonlinear systems, UKF usually

has better performance than
EKF.

CKF
Approximating nonlinear

functions based on
volume criterion

Can be applied to nonlinear
systems with additive Gaussian

white noise.

CKF has higher computational
efficiency than UKF, and its
approximation accuracy for
nonlinear functions is lower

than UKF.

Therefore, after the above comparative analysis, and factoring in computational effi-
ciency and accuracy, it can be determined that CKF is more suitable for complex nonlinear
systems. GHCKF is derived from CKF. The GHCKF algorithm can deal with more complex
systems than CKF, including nonlinear and non-Gaussian systems [27–30]. In practical
applications, as the vehicle system is a complex nonlinear system, the use of a high-order
cubature Kalman filtering algorithm can better process nonlinear information and improve
filtering accuracy. This article uses the LS algorithm to estimate the lateral stiffness of vehi-
cles in real-time, rather than traditional methods such as testing and table lookup. Based on
lateral stiffness estimation, the vehicle state is estimated using nonlinear three-degrees-of-
freedom. On this basis, the GHCKF algorithm is used to estimate the vehicle state. Further,
we combine the square root method with GHCKF to develop a new SRGHCKF vehicle
state estimator. In theory, the SRGHCKF algorithm has better robustness and effectiveness
than the GHCKF algorithm. Under the framework of the LS-GHCKF/SRGHCKF joint
estimation method, the dynamic behavior of vehicles is modeled and predicted while
filtering out the influence of sensor noise and uncertain factors to improve vehicle handling
performance and safety. This article uses experimental and simulation methods to verify
whether the joint estimation method of LS-GHCKF/SRGHCKF can better handle complex
nonlinear systems such as vehicles. If this method can provide an optimal estimation
of the vehicle state, it indicates that the LS-GHCKF/SRGHCKF joint estimation method
has important application value. At the same time, it is also necessary to prove that the
LS-SRGHCKF algorithm is a more efficient and reliable vehicle state estimation algorithm
compared to the LS-GHCKF algorithm.

2. Design of Vehicle State Joint Estimator

The vehicle state estimation topic studied in this paper consists of five parts: the
model of an electric vehicle driven by a rear in-wheel motor; measurement sensors; a magic
formula; a lateral stiffness estimator, and a vehicle state estimator. The lateral stiffness
estimator and the vehicle state estimator form a joint estimator as shown in Figure 1.
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Figure 1. The schematic diagram of joint estimation. 
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Figure 1. The schematic diagram of joint estimation.

The principle of the joint estimation of vehicle states is as follows: the variables in
the lateral stiffness estimator and vehicle state estimator modules are state variables, and
the transmission variables indicated by the arrows are system parameters. When the state
variables leave the estimator as transmission variables, they are also considered to be
parameters. The sensors measure parameters such as steering wheel angle, longitudinal
acceleration, lateral acceleration, and yaw rate. These are input into the vehicle state estima-
tor for calculation. The magic formula receives the vertical force parameters of the vehicle
model and calculates the lateral force of the vehicle. Then, they are input into a lateral
stiffness estimator. The vehicle model receives the estimated values of the joint estimator,
calculates the sideslip angles, longitudinal velocity derivative, lateral velocity derivative,
and yaw velocity derivative, and then returns to the joint estimator for calculation. The
lateral stiffness estimator and vehicle state estimator exchange parameters such as lateral
stiffness, longitudinal velocity, lateral velocity, and yaw rate. Then, the lateral stiffness
estimator and vehicle state estimator use advanced algorithms to calculate these input
variables, respectively, to achieve the estimated results of the electric vehicle driven by the
rear-drive, in-wheel motor.

2.1. The Vehicle State Estimator

A vehicle state estimator was designed based on a three-degree-of-freedom vehicle
model using the GHCKF algorithm. Then, a more advanced SRGHCKF algorithm was
developed for estimating the vehicle state.

2.1.1. The Linear Two-Degree-of-Freedom Vehicle Model

A linear two-degree-of-freedom model for the entire vehicle was established, and
the following assumptions were made: (1) ignoring the suspension effect, it was assumed
that the vehicle only moves parallel to the ground; (2) the origin of the vehicle coordinate
system of the entire vehicle model coincides with the center of mass of the vehicle; (3) the
influence of longitudinal rolling resistance on vehicle status is ignored. The linear two-
degree-of-freedom model is shown in Figure 2.
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The absolute acceleration of the vehicle’s center of mass on the y axis of the vehicle
coordinate system:

ay =
(aC f − bCr)ωr

mvx
+

(C f + Cr)β

m
−

C f δ

m
(1)

In the above formula, ay is the lateral acceleration of the vehicle; β is the sideslip angle
of the center of mass; ωr is the yaw rate; Cf is the vehicle’s front-axle lateral stiffness; Cr is
the vehicle’s rear-axle lateral stiffness; m is the mass of the entire vehicle; a is the distance
from the center of mass to the front axle; b is the distance from the center of mass to the
rear axle; and ∆ is the front wheel steering angle.

Moment balance equation around the z axis:

.
ωr =

(aC f − bCr)β

Iz
+

(a2C f + b2Cr)ωr

Izvx
−

aC f δ

Iz
(2)

In the above formula, Iz is the moment of inertia of the entire vehicle around the z axis;
vx is the longitudinal velocity of the center of mass.

The vehicle centroid sideslip angle:

β = arctan(
vy

vx
) ≈

vy

vx
(3)

In the above formula, vy is the lateral velocity of the center of mass.

2.1.2. The Nonlinear Three-Degree-of-Freedom Vehicle Model

Because vehicles do not travel in a fixed straight line during the actual driving process,
various operating conditions such as turning or overtaking can cause the vehicle to experi-
ence bumps or roll. Therefore, when a vehicle model is established, the yaw and sideslip
situations are considered. Additionally, the vehicle also has nonlinear characteristics when
traveling longitudinally. Therefore, based on the linear two-degree-of-freedom vehicle
model, a nonlinear three-degree-of-freedom vehicle model with specific yaw, lateral, and
longitudinal characteristics was established [31]. We derived a longitudinal kinematic
formula based on Figure 3 [32].

Velocity variation along the x axis direction:

(vx + ∆vx) cos ∆θ − (vy + ∆vy) sin ∆θ − vx
= vx cos ∆θ + ∆vx cos ∆θ − vy sin ∆θ − ∆vy sin ∆θ − vx

(4)

In the above formula, ∆vx is the longitudinal velocity increment of the x axis in the
vehicle coordinate system; ∆vy is the lateral velocity increment of the y axis in the vehicle
coordinate system; and ∆θ is the rotation angle increment of the vehicle coordinate system.

Considering a very small ∆θ and ignoring second-order trace amounts:

cos ∆θ ≈ 1, sin ∆θ ≈ ∆θ (5)
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vx cos ∆θ + ∆vx cos ∆θ − vy sin ∆θ − ∆vy sin ∆θ − vx
= vx + ∆vx − vy · ∆θ − ∆vy · ∆θ − vx
= ∆vx − vy · ∆θ

(6)

Divide by ∆t and take the limit. The longitudinal acceleration of the vehicle’s center of
mass on the x axis of the vehicle coordinate system is as follows:

ax =
∆vx − vy · ∆θ

∆t
=

dvx

dt
− vy

dθ

dt
=

.
vx − vy ·ωr (7)

In the above formulae, ax is the longitudinal acceleration of the vehicle.
Similarly, the lateral acceleration of the vehicle’s center of mass on the x axis of the

vehicle coordinate system can be obtained:

ay =
.
vy + vx ·ωr (8)
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2.1.3. The Vehicle State Estimation Model

According to the structure of the vehicle state joint estimator designed in this article,
the vehicle state is estimated based on the nonlinear vehicle dynamics model. For general
nonlinear systems, the state estimation model can be expressed as:{ .

x(t) = f (x(t), u(t), w(t))
.
z(t) = h(x(t), u(t), v(t))

(9)

In the above equations, w(t) and v(t), respectively, represent the process noise and the
measurement noise matrices of the system, which follow a Gaussian distribution and are
independent of each other.

The state vector of the vehicle state estimator is defined as xc(t) = [vx,vy,ωr]T. The
measurement vector of the vehicle state estimator is defined as zc(t) = [ay,ωr]T. From the
parameter flow direction shown in Figure 1, it can be seen that the input vector of the
vehicle state estimator not only includes the measurement parameters of the steering angle,
longitudinal acceleration, lateral acceleration, and yaw rate of the sensors but also includes
the estimated lateral stiffness of the front and rear axles by the lateral stiffness estimator. As
such, the input vector of the vehicle state estimator is defined as uc(t) = [∆,ax,ay,ωr,Cf,Cr]T.

By combining nonlinear vehicle dynamics models (1), (2), (3), (7), and (8), the state
equation of the vehicle estimator is established:

[ .
ωr.
vy

]
=

 (aC f +bCr)

Izvx

(aC f +bCr)

Izvx
(aC f−bCr−mv2

x)

mvx

(C f +Cr)

mvx

[ωr
vy

]
−
[ aC f δ

Iz
C f δ

m

]
(10)



Sensors 2023, 23, 8960 7 of 22

.
vx = vy ·ωr + ax (11)

Combining the nonlinear vehicle dynamics model (1), the measurement equation of
the vehicle estimator is established:[

ay
ωr

]
=

[
(aC f−bCr)

mvx

(C f +Cr)

mvx
1 0

][
ωr
vy

]
−
[

C f δ

m
0

]
(12)

2.1.4. Design Generalized High-Degree Cubature Kalman Estimator

This article adopts the GHCKF algorithm [33]: this is concise in form, computationally
efficient, and has better scalability. It considers discrete nonlinear systems such as in
Equation (9), which limit the nonlinear filtering integral equation to the real number
field Rn:

I(g) =
∫

Rn
g(x) exp(−xTx)dx (13)

Equation (13) is transformed into the standard Gaussian distribution. Then, the
following formula is obtained [34]:

I(g) =
1√
πn

∫
Rn

g(
√

2x) exp(−xTx)dx =
2n2+1

∑
i=1

ρig(ηi) (14)

Among them, the cubature points ξi and the weight values wi are:

ηi =


[0]i, i = 1;[√

3
]

i
, i = 2, · · · , 2n + 1;[√

3,
√

3
]

i
, i = 2n + 2, · · · , 2n2 + 1.

(15)

ρi =


(1− (7− n)n/18), i = 1;
(4− n)/18, i = 2, · · · , 2n + 1;
1/36, i = 2n + 2, · · · , 2n2 + 1.

(16)

In the above equations, n is the number of state variables. Equations (14)–(16) are
then implemented into the CKF framework to obtain the standard GHCKF algorithm. The
GHCKF algorithm for the vehicle state estimation is as follows:

(1) Initialize state-estimated values and error covariance:

_
x k = x0; Pk = P0 (17)

(2) Calculate cubature points xk
i (i = 1, 2, . . ., 2n2 + 1):

Sk = Cholesky(Pk) (18)

xk
i = Skηi + x̂k (19)

(3) Calculate cubature points propagated using the state equation xk|k+1
i:

xk+1|k
i = f (xi

k) (20)

(4) Calculate the state estimation value at the current moment x̂k|k+1
i:

x̂k+1|k =
2n2+1

∑
1

ρixk+1|k
i (21)
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(5) Calculate the prediction error covariance Pk|k+1:

Pk+1|k =
2n2+1

∑
1

ρi(xk+1|k
i − x̂k+1|k)(xk+1|k

i − x̂k+1|k)
T
+ Qk (22)

In this equation, Qk is the process noise covariance.
(6) Calculate cubature points xk+1

i (i = 1, 2, . . ., 2n2 + 1):

Sk+1 = Cholesky(Pk+1|k) (23)

xk+1
i = Sk+1ηi + x̂k+1|k (24)

(7) Calculate cubature points propagated using the measurement equation zk|k+1
i:

zk+1|k
i = h(xi

k+1) (25)

(8) Calculate the measurement prediction value at the current moment ẑk|k+1
i:

ẑk+1|k =
2n2+1

∑
1

ρizk+1|k
i (26)

(9) Calculate measurement error covariance Pk+1
zz and cross-correlation covariance

Pk+1
xz:

Pzz
k+1 =

2n2+1

∑
1

ρi(zk+1|k
i − ẑk+1|k)(zk+1|k

i − ẑk+1|k)
T
+ Rk (27)

Pxz
k+1 =

2n2+1

∑
1

ρi(xk+1|k
i − x̂k+1|k)(zk+1|k

i − ẑk+1|k)
T

(28)

In this equation, Rk is the measurement noise covariance.
(10) Update the filter gain matrix Kk+1, the state variable matrix x̂k+1, and the error

covariance matrix Pk+1:
Kk+1 = Pxz

k+1(P
zz
k+1)

−1 (29)

x̂k+1 = x̂k+1|k + Kk+1(zk − ẑk+1|k) (30)

Pk+1 = Pk+1|k −Kk+1Pzz
k+1Kk+1

T (31)

In this formula, zk is the measured value matrix at the current time.

2.1.5. Design Square Root Generalized High-Degree Cubature Kalman Estimator

In order to further explore the progressiveness of the joint estimator, the SRGHCKF
estimation algorithm is proposed by combining the square root theory with the GHCKF
algorithm. In the SRGHCKF algorithm, the main function of the square root is to optimize
the calculation process of the Kalman filter and improve the computational efficiency.
The SRGHCKF algorithm utilizes the square root to approximate the iterative process of
the state estimation and covariance estimation of the Kalman filter, thereby avoiding the
complexity of directly solving the Kalman equation.

Specifically, the SRGHCKF algorithm uses iterative equations in the square root form
for state estimation and covariance estimation, rather than directly solving the Kalman
equation. This iterative method can use the square root of the matrix to approximate
the inverse of the matrix, thereby avoiding the computational complexity and numerical
stability issues of directly solving the inverse of the matrix. In addition, the SRGHCKF
algorithm also adopts a volume update method, which combines the iterative process of
state estimation and covariance estimation, thereby improving computational efficiency.
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The square root method process is as follows [35,36]:
Calculate the square root factor of the prediction error covariance Sk+1:

Xk+1|k =
1√

2n2 + 1

[
2n2+1

∑
1

(
xk+1|k

i − x̂k+1|k

)]
(32)

SQk = chol(Qk) (33)

Sk+1 = qr([Xk+1|k, SQk ]) (34)

Calculate the covariance of innovation Sk+1
zz:

Zk+1|k =
1√

2n2 + 1

[
2n2+1

∑
1

(
zk+1|k

i − ẑk+1|k

)]
(35)

SRk = chol(Rk) (36)

Szz
k+1 = qr([Zk+1|k, SRk ]) (37)

Calculate the cross-correlation covariance Sk+1
xz:

Xk+1 =
1√

2n2 + 1

[
2n2+1

∑
1

(
xk+1

i − x̂k+1|k

)]
(38)

Sxz
k+1 = Xk+1ZT

k+1|k (39)

Update the filter gain matrix Kk+1, the square root factor of the error covariance matrix
Sk+1:

Kk+1 = Sxz
k+1(S

zz
k+1Szz

k+1
T)
−1

(40)

Sk+1 = qr([Xk+1 −Kk+1Zk+1|k, Kk+1SRk ]) (41)

Replace Equations (22) and (23) with Equations (32)–(34), Equations (27) and (28) with
Equations (35)–(39), Equation (29) with Equation (40), and Equation (31) with Equation (41),
and obtain the SRGHCKF algorithm process, as shown in Figure 4.

2.2. The Lateral Stiffness Estimator

The estimation of lateral stiffness is based on the magic formula, using the least-
squares method with the forgetting factor to estimate the vehicle’s front- and rear-axle
lateral stiffness online. Due to the fact that the estimation of lateral stiffness is within
the linear range of the tire, this estimation method is generally applicable to low-speed
driving conditions.

2.2.1. Magic Formula

The “magic formula” uses the combination formula of specific trigonometric functions
to fit experimental tire data. With a set of formulae in the same form, the longitudinal force,
the lateral force, the righting moment, the reversing moment, the rolling resistance, and
the working conditions under the combined action of the longitudinal force and lateral
force can be completely expressed. The magic formula has strong uniformity, and the
parameters that require fitting have clear physical meanings. Moreover, the magic formula
is based on test data. It can show high accuracy within the test range and even be used
to a certain extent beyond the limit value. The magic formula has high fitting accuracy
but requires a large amount of calculation. As such, it is more suitable for use in product
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design, automobile dynamic simulation, test comparison, and other fields that require an
accurate description of tire mechanical properties [37,38].
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According to the magic formula, under a single operating condition of pure lateral
force, the relationship between the lateral force, the sideslip angle, and the vertical ground
load Fz of the tire is:

y(x) = Dy sin
{

Cyarctan
[
Byx− Ey(Byx− arctanByx)

]}
Y(X) = y(x) + Sv
x = α + Sh

(42)

where
D = a1F2

zi + a2Fzi, E = a7F2
zi + a8Fzi + a9, Sh = a10 · γ

Sv = (a11F2
zi + a12Fzi) · γ, B · C · D = (a3F2

zi + a4Fz) · e−a12·Fzi
(43)

In the formula, Y(x) is the lateral force, including the front-tire lateral force Ff and the
rear-tire lateral force Fr; α is the sideslip angle, including the front-axle sideslip angle αf
and the rear-axle sideslip angle αr; Dy is the peak factor; By is the stiffness factor; Cy is the
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curve shape factor; Ey is the curvature factor of the curve; Sh represents the horizontal drift
of the curve; Sv represents the vertical drift of the curve; a1. . .a12 are the fitting parameters.

2.2.2. The Lateral Stiffness Estimation Model

As shown in Figure 1, in order to calculate the tire force, the vertical load on each axis
must be calculated first. For the vehicle model shown in Figure 2, ignoring the lateral load
transfer of the tires, the vertical load on the front and rear axles is:

Fz f =
1

(a+b) (mgb−mhGax)

Fzr =
1

(a+b) (mga + mhGax)
(44)

In the formula, Fzi is the vertical ground load, and i takes f and r, representing the
front tire and rear tire, respectively; and hG is the vehicle centroid height.

When the tire sideslip angle is small, there is a linear relationship between the tire
lateral force and the front- and rear-axle sideslip angle under different loads. The tire lateral
force can be approximated as a linear function of the front- and rear-axle sideslip angle:

Ff = C f α f
Fr = Crαr

(45)

Due to the fact that the linearized tire model only has high fitting accuracy when
the tire sideslip angle is small, and considering the monorail vehicle model shown in
Figure 2, the method of small angle assumptions can approximate the front- and rear-axle
sideslip angles:

α f = arctan( vy+aωr
vx

)− δ ≈ vy+aωr
vx
− δ

αr = arctan( vy−bωr
vx

) ≈ vy−bωr
vx

(46)

When the lateral acceleration ay ≤ 0.4 g and the tire sideslip angle αy ≤ 6◦, a magic
tire linearization model has high fitting accuracy for conventional tires. At this point,
Equation (45) is applied to calculate the front- and rear-axle lateral stiffness within the
linear range of the tire.

2.2.3. Design Lateral Stiffness Estimator

Tire linear lateral stiffness is an important parameter for linearizing a vehicle model
and reflects the stability characteristics of the vehicle in the linear region of the tire. This
parameter often changes with different driving conditions and road conditions. The real-
time estimation of tire linear lateral stiffness can improve the adaptability of running
vehicles to road surfaces with different adhesion coefficients. This article uses the LS
method with a forgetting factor to estimate front- and rear-axle lateral stiffness [39,40].

According to Equation (45), the linear discrete regression equation is established,
including the tire lateral force with noise and the linear lateral stiffness:

Fy(k) = C(k)α(k) +ψ(k) (47)

In the above equation, Fy(k) is the lateral force matrix, C(k) is the lateral stiffness matrix,
α(k) is the sideslip angle matrix, and ψ(k) is the noise matrix.

The principle of model parameter estimation based on the LS method can be expressed
as follows: in the studied historical data window, if the square difference between the actual
value and the estimated value is minimized, then the cost function J can be expressed as:

J =
N

∑
i=1

λN−i
[

Fy(i)−
_
C(i)α(i)

]
(48)
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Solve the cost function, and obtain the recursive least-squares formula with the forget-
ting factor λ:

P(k) =

[
N

∑
i=1

λN−i
[
α(i)αT(i)

]]−1

(49)

P(k + 1) = λ−1
[
P(k)−K(k + 1)αT(k + 1)P(k)

]
(50)

K(k + 1) = P(k)α(k + 1)
[
λ +αT(k + 1)P(k)α(k + 1)

]−1
(51)

_
C(k + 1) =

_
Cy(k) + K(k + 1)

[
Fy(k + 1)−αT(k + 1)

_
C(k)

]
(52)

Among them, K(k + 1) is the correction vector matrix; P(k + 1) is the covariance matrix
of the error; and λ is the forgetting factor, 0 < λ < 1. The forgetting factor can ensure that
Equation (52) does not degrade its correction ability as the sampled data increase; N is the
step size of the operation time window, and C(k̂) represents the estimated matrix of the
lateral stiffness.

3. Simulation Analysis

A joint simulation platform is built based on the nonlinear vehicle dynamics model
and the proposed algorithms to jointly simulate the vehicle state joint estimator. As the
lateral stiffness estimator proposed in this article is designed for the linear deformation zone
of the tire, the vehicle speed in the simulation is set to a low speed, and double lane change
and slalom are selected to verify the effectiveness of the joint estimator. A comparison
is made between the effectiveness of the LS-GHCKF algorithm and the LS-SRGHCKF
algorithm.

3.1. Double Lane Change Simulation

The low-speed double lane change simulation working conditions were as follows:
The vehicle speed is set to 40 km/h and the road adhesion coefficient µ is set to 0.85. The
simulation step size is set at 0.005 s. The setting of the initial condition is as follows: the error
covariance matrix P = 0.1 × eye(3), the process noise covariance matrix Q = 0.01 × eye (3),
and the measurement noise covariance matrix R = 0.01 × eye (2). The simulation results
are shown in Figure 5a–f. The blue solid line represents the reference value, the red dashed
line represents the estimated value of the LS-GHCKF algorithm, and the green dotted line
represents the estimated value of the LS-SRGHCKF algorithm.

Analysis of the simulation results: Figure 5a shows the steering wheel angle-change
curve during the vehicle’s running process along the double lane change path. As shown
in Figure 1, the lateral stiffness estimator can estimate the front- and rear-axle lateral
stiffness after receiving the state variables, such as vx, vy, and ωr from the vehicle state
estimator. Figures 5b and 5c, respectively, show the front- and rear-axle lateral stiffness
curves based on the state variables of the vehicle state estimators adopting the LS-GHCKF
and LS-SRGHCKF algorithms. As shown in the figures, the estimated values of lateral
stiffness in the two algorithmic environments are similar in size, and the trends of the
data are basically the same. The lateral stiffness changes with the driving time, especially
during steering. After stable operation, overall, the average absolute value of the front-axle
lateral stiffness of the two algorithms is about 103,000 N/rad, the average absolute value of
the rear-axle lateral stiffness is about 95,000 N/rad, and the value of the rear-axle lateral
stiffness is smaller than the value of the front-axle lateral stiffness. For the entire vehicle
model used for simulation, the ratio of the distance from the center of mass to the rear axle
to the distance from the center of mass to the front axle is 1.87. Thus, it can be calculated
that the front-axle vertical load is greater than the rear-axle vertical load. According to
automotive theory, within a certain range, the lateral stiffness increases with an increase in
vertical load; therefore, the front-axle lateral stiffness is greater than the rear-axle lateral
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stiffness. When the vehicle turns, the vertical loads on the front and rear axles undergo
a sudden change, and the lateral stiffness also changes accordingly. Therefore, the above
simulation results are in line with theoretical analysis. 
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Figure 5d shows the estimated results of the longitudinal velocity. For the LS-GHCKF
algorithm, it can be seen that the error between the estimated value and the reference
value does not exceed 0.01 m/s. For the LS-SRGHCKF algorithm, the error between the
estimated value and the reference value does not exceed 0.005 m/s, and the estimated
results are relatively stable. Figures 5e and 5f, respectively, show the estimated results
of the lateral velocity and the yaw rate. Additionally, the LS-GHCKF algorithm and the
LS-SRGHCKF algorithm can accurately estimate the lateral velocity and the yaw rate, but
the LS-SRGHCKF algorithm has a better filtering effect than the LS-GHCKF algorithm.

Further comparing the estimated accuracy, the root-mean-square error (RMSE) is used
to evaluate the accuracy of the simulation results. The formula for this RMSE is as follows:

M =

√√√√√ n
∑

i=1
(σ̂− σ0)

2

n0
(53)
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where M is the root-mean-square error; n0 is the quantity of the data; σ̂ is the evaluated
value; and σ0 is the reference value.

As shown in Table 2, the RMSE values of three groups of estimated values were com-
pared and analyzed: The difference in longitudinal velocity v̂x between the two algorithms
is 0.0045, the difference in lateral velocity v̂y is 0.0014, and the difference in yaw rate ω̂r
is 0.0001. We know that the LS-SRGHCKF algorithm and the LS-GHCKF algorithm have
similar estimation effects on yaw rate, according to Formulas (10) and (12), and the yaw
rate is both the input of the measurement equation and the output of the state equation;
therefore, the LS-GHCKF algorithm and the LS-AGHCKF algorithm can accurately track
the measurement signal and estimate the yaw rate. However, there are gaps in the estima-
tion of longitudinal velocity and lateral velocity. By contrast, the LS-SRGHCKF algorithm
estimates the longitudinal velocity and the lateral velocity more accurately. In general, the
RMSE values of the LS-SRGHCKF algorithm are smaller than the ones of the LS-GHCKF
algorithm for all three groups of estimated values, indicating that the LS-SRGHCKF al-
gorithm has higher estimated accuracy. Therefore, the simulation results of vehicle state
estimation based on the LS-SRGHCKF algorithm are better in accuracy and filtering effect
than the LS-GHCKF algorithm.

Table 2. The RMSE of the double lane change simulation.

Estimated Value LS-SRGHCKFRMSE LS-GHCKFRMSE DIFFERENCE

The longitudinal velocity v̂x 0.0038 0.0083 0.0045

The lateral velocity v̂y 0.0047 0.0061 0.0014

The yaw rate ω̂r 0.0019 0.0020 0.0001

3.2. Slalom Simulation

Regarding the low-speed slalom simulation working condition, the vehicle speed is
set to 40 km/h, and the road adhesion coefficient µ is set to 0.85. The simulation step size
is set to 0.005 s. Regarding the setting of the initial condition, the error covariance matrix
P = 0.1 × eye(3), the process noise covariance matrix Q = 0.01 × eye (3), and the mea-
surement noise covariance matrix R = 0.01 × eye (2). The simulation results are shown
in Figure 6a–f, and the line type setting is the same as that in the double lane
change simulation.

Analysis of the simulation results: Figure 6a shows the steering wheel angle-change
curve during the vehicle’s running process along the slalom path. Figures 6b and 6c,
respectively, show the front- and rear-axle lateral stiffness curves based on the state variables
of the vehicle state estimators, adopting the LS-GHCKF and LS-SRGHCKF algorithms.
As shown in the figure, the estimated values of lateral stiffness in the two algorithmic
environments are similar in size, and the trends of the data are basically the same. When
the vehicle is running along the slalom path, compare Figure 6a with Figures 6b and 6c.
When the steering wheel angle curve shows peaks and valleys, the lateral stiffness curve
also shows corresponding peaks and valleys, indicating that the lateral stiffness fluctuates
with steering changes. After stable operation, overall, the average absolute value of the
front-axle lateral stiffness of the two algorithms is about 89,000 N/rad, the average absolute
value of the rear-axle lateral stiffness is about 74,800 N/rad, and the value of the rear-axle
lateral stiffness is smaller than the value of the front-axle lateral stiffness. For the entire
vehicle model used for simulation, the reason for the analysis is the same as that of the
double lane change working condition.

Figure 6d shows the estimated results of the longitudinal velocity. The estimated
accuracy of the LS-GHCKF algorithm and the LS-SRGHCKF algorithm is roughly the same
as at the beginning. However, after the 3 s, the error begins to increase and stabilize until
16 s, where it reaches the maximum error value. The maximum difference between the
estimated value of the LS-GHCKF algorithm and the reference value is 0.05 m/s, while the
LS-SRGHCKF algorithm has a difference of 0.01 m/s. It can be seen that the LS-SRGHCKF
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algorithm has better stability and accuracy in estimating longitudinal velocity than the LS-
GHCKF algorithm. Figures 6e and 6f show, respectively, the estimated results of the lateral
velocity and the yaw rate. Both algorithms can accurately estimate the lateral velocity and
the yaw rate. From the locally enlarged image, it can be seen that the LS-GHCKF algorithm
has a better filtering performance than the LS-GHCKF algorithm.
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The RMSE is also used to evaluate the accuracy of the two algorithms, as shown in
Table 3. The difference in longitudinal velocity v̂x between the two algorithms is 0.0205, the
difference in lateral velocity v̂y is 0.0001, and the difference in yaw rate ω̂r is also 0.0001.
We know that, except for the longitudinal velocity, the RMSE values of the LS-SRGHCKF
algorithm and the GHCKF algorithm are very close and small, which illustrates that both
algorithms have high accuracy in estimating the lateral velocity and the yaw rate. However,
upon carefully comparing the two algorithms, the LS-SRGHCKF algorithm has obvious
advantages in terms of accuracy and filtering.
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Table 3. The RMSE of the slalom simulation.

Estimated Value LS-SRGHCKFRMSE LS-GHCKFRMSE DIFFERENCE

The longitudinal velocity v̂x 0.0122 0.0327 0.0205

The lateral velocity v̂y 0.0012 0.0013 0.0001

The yaw rate ω̂r 0.0037 0.0038 0.0001

4. Experimental Verification

In order to further verify the effectiveness of the joint estimator and compare the
progressiveness of the LS-GHCKF algorithm and the LS-SRGHCKF algorithm, a modified
vehicle driven by a rear-drive, in-wheel motor was used to perform a road experiment. As
shown in Figure 7, the angle sensor collects data on the steering wheel angle, the GPS/RTK
module collects data on the vehicle’s longitudinal velocity and the heading angle, and the
INS module collects data on the lateral acceleration, the lateral acceleration, the yaw rate,
and the yaw angle. The lateral velocity cannot be directly measured, and integrating the
measured lateral acceleration can easily cause cumulative errors. This article indirectly
calculates the vehicle’s lateral velocity through the heading angle, the yaw angle, and
the longitudinal velocity. The upper computer software collects and saves measurement
data, imports them into the controller based on LS-SRGHCKF/GHCKF algorithms, and
calculates the vehicle status values. As an intermediate variable, the lateral stiffness of the
front and rear axle cannot be experimentally measured. Due to a detailed analysis of the
lateral stiffness estimation process in the simulation, the final state estimation results of
the vehicle were used in the experiment to indirectly verify the effectiveness of the joint
estimator in estimating lateral stiffness.
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4.1. The Double Lane Change Experiment

The double lane change experiment with a constant speed was conducted on an asphalt
pavement (the coefficient of adhesion is 0.8–0.9). Considering the linear characteristics
of the tires, the speed of the vehicle was set to 40 km/h, the sampling time interval of
the angle sensor and INS module was set to 0.05 s, and the sampling time interval of the
GPS/RTK module was set to 0.2 s. Figure 8a shows the data of the steering wheel angle,
and Figures 8b and 8c show, respectively, the lateral acceleration and the longitudinal
velocity. To perform this procedure, researchers should import the measurement data
into the LS-GHCKF and LS-SRGHCKF algorithm programs of the controller, calculate the
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values of the longitudinal velocity, the lateral velocity, and the yaw rate, and then compare
the calculated values with the measurement data of the GPS/RTK/INS module. As shown
in Figure 8d–f, the blue solid line represents the direct and indirect measurement data of
the sensors, the red dashed line represents the estimated value of the LS-GHCKF algorithm,
and the green dotted line represents the estimated value of the LS-SRGHCKF algorithm.
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The experimental results show that the data of the steering wheel angle and lateral
acceleration change according to the double lane change law and fluctuate with the entire
vehicle’s movement. The longitudinal acceleration fluctuates at the 0-scale line. The changes
in the steering wheel angle, lateral acceleration, and longitudinal acceleration are consistent
with theoretical analysis and in line with actual working conditions. The LS-GHCKF and
LS-SRGHCKF algorithms can track the longitudinal velocity of the vehicle, and both of
them can perform effective filtering. The maximum relative error between the estimated
and measured values of the LS-GHCKF algorithm is about 0.2 m/s, and the maximum
relative error between the estimated and measured values of the LS-GHCKF algorithm is
about 0.22 m/s. Therefore, the longitudinal estimated value of the LS-SRGHCKF algorithm
is more accurate. From the figure, it can be observed that the lateral velocity estimation



Sensors 2023, 23, 8960 18 of 22

curve with the LS-SRGHCKF algorithm mostly fits the measurement curve and is very
smooth. Therefore, compared to the LS-GHCKF algorithm, the LS-SRGHCKF algorithm
is more accurate and has a better filtering performance. Due to the fact that the yaw
rate serves as both an input of the measurement equation and output of the vehicle state
estimator, the yaw rate values of the LS-GHCKF and LS-SRGHCKF algorithms basically
overlap with the measurement data. However, the LS-SRGHCKF algorithm has higher
accuracy and better filtering performance in some intervals than the LS-GHCKF algorithm,
especially at the peak and valley positions of the curve.

RMSE is used to estimate the estimation accuracy. The RMSE for the experiment
condition adopts Formula (53); at this point, σ0 in the formula is the measurement value.

As shown in Table 4, the difference in the longitudinal velocity v̂x between the two
algorithms is 0.0187, the difference in the lateral velocity v̂y is 0.001, and the difference
in the yaw rate ω̂r is 0.0806. It can be seen that both the LS-GHCKF and LS-SRGHCKF
algorithms have very small RMSE values, indicating that both algorithm estimates are
valid and available. In a further comparison of RMSE between the two algorithms, the
RMSE value of the LS-SRGHCKF algorithm is still smaller than that of the LS-GHCKF
algorithm, suggesting that the estimated accuracy of the LS-SRGHCKF algorithm is higher.
In summary, in the double lane change, low-speed experiment, the joint estimator based on
the LS-SRGHCKF algorithm is significantly superior in terms of estimation accuracy and
filtering effect compared to the one based on the LS-GHCKF algorithm.

Table 4. The RMSE of the double lane change experiment.

Estimated Value LS-SRGHCKFRMSE LS-GHCKFRMSE DIFFERENCE

The longitudinal velocity v̂x 0.0926 0.1113 0.0187

The lateral velocity v̂y 0.0171 0.0181 0.0010

The yaw rate ω̂r 0.0657 0.1463 0.0806

4.2. The Slalom Experiment

A slalom experiment with a constant speed was conducted on an asphalt pavement
(the coefficient of adhesion was 0.8–0.9). Considering the linear characteristics of the tires,
the speed of the vehicle was set to 40 km/h, the sampling time interval of the angle sensor
and INS module was set to 0.05 s, and the sampling time interval of the GPS/RTK module
was set to 0.2 s. Figure 9 a shows the data of the steering wheel angle, and Figure 9b,c shows
the lateral and longitudinal acceleration data. As with the double lane change experiment,
researchers should import the measurement data into the LS-GHCKF and LS-SRGHCKF
algorithm programs of the controller, calculate the longitudinal velocity, the lateral velocity,
and the yaw rate, and then compare the calculated values with the measurement data of
the GPS/RTK/INS module. As shown in Figure 9d–f, the line type setting is the same as
that in the double lane change experiment curve.

The results show that, for estimating the longitudinal velocity, both the LS-SRGHCKF
and LS-GHCKF algorithms can track the measurement curve well, but there is a significant
difference between the two estimation algorithms after 14 s. However, visually, the LS-
SRGHCKF estimation curve can better fit the measurement curve. For the lateral velocity,
compared to the LS-GHCKF algorithm, the LS-SRGHCKF algorithm can track the trend of
measurement curve changes; however, there are still errors. This phenomenon is mainly
caused by measurement errors, model errors, and indirect calculation errors, and the LS-
SRGHCKF algorithm has a significantly better filtering performance than the LS-GHCKF
algorithm in estimating the lateral velocity. The estimated values of the LS-GHCKF and the
LS-SRGHCKF algorithms can accurately estimate the value of the yaw rate, mainly because
the yaw rate is both an input to the measurement equation and an output of the vehicle
state estimator. However, when the vehicle turns, there is a relatively small error between
the estimated and measured values, which is manifested as errors in peaks and valleys on
the curve.
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Further comparing the estimation accuracy, as in the double lane change experiment,
the RMSE index is used for evaluation. As shown in Table 5, the difference in the longitudi-
nal velocity v̂x between the two algorithms is 0.0052, the difference in the lateral velocity v̂y
is 0.0095, and the difference in the yaw rate ω̂r is 0.0025. We know that the LS-SRGHCKF
algorithm and the LS-GHCKF algorithm have similar estimation effects on the yaw rate.
However, there is a gap in the estimation of the longitudinal velocity and the lateral ve-
locity. In general, the RMSE values of both algorithms are very small, indicating that the
estimated values of both algorithms are very close to the measured values and that the
estimation results are effective. However, the RMSE value of the LS-SRGHCKF algorithm
is smaller than that of the LS-GHCKF algorithm, indicating that the estimated accuracy
of the LS-SRGHCKF algorithm is higher, especially for the estimation of the longitudinal
velocity and the lateral velocity. Therefore, the LS-SRGHCKF has great advantages.
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Table 5. The RMSE of the slalom experiment.

Estimated Value LS-SRGHCKFRMSE LS-GHCKFRMSE DIFFERENCE

The longitudinal velocity v̂x 0.0730 0.0782 0.0052

The lateral velocity v̂y 0.0329 0.0424 0.0095

The yaw rate ω̂r 0.0197 0.0222 0.0025

5. Conclusions

In this article, a vehicle state estimation method based on lateral stiffness is proposed.
Advanced algorithms are used to design a joint vehicle state estimator. Simulation analysis
and experimental methods are used to verify the joint estimator and its algorithm. The
progressiveness of the technical route of the vehicle state is discussed, and the following
conclusions are drawn:

A joint estimator that includes the lateral stiffness estimation and the vehicle state
estimation can be implemented. Based on the establishment of a three-degree-of-freedom
vehicle model and tire model, researchers designed the state equation and measurement
equation of the joint state estimator and distinguished both the lateral acceleration and the
yaw rate as two measurements; then, the principles of the lateral stiffness estimation and
the vehicle state estimation were studied and analyzed. Furthermore, researchers designed
a forgetting factor-based LS lateral stiffness estimator and a vehicle state estimator using
the GHCKF/SRGHCKF algorithm.

Through simulation analysis, the lateral stiffness estimator based on the forgetting
factor LS method can estimate the lateral stiffness of the vehicle. Both the LS-GHCKF
algorithm and LS-SRGHCKF algorithm can estimate the longitudinal velocity, the lat-
eral velocity, and the yaw rate of driving vehicles, with accurate and stable estimation
results. The simulation results also indicate that the LS-SRGHCKF algorithm is significantly
superior to the LS-GHCKF algorithm.

Through experimental verification, both the LS-GHCKF algorithm and the LS-
SRGHCKF algorithm have obtained acceptable vehicle state estimation values. The experi-
mental results are consistent with the simulation analysis results. Under different operating
conditions, the LS-SRGHCKF algorithm has higher estimation accuracy than the LS-GHCKF
algorithm, reflecting the effectiveness and robustness of the LS-SRGHCKF algorithm.

Further analysis of the simulation and experimental curves shows that the LS-
SRGHCKF algorithm has a smaller estimated curve fluctuation than the GHCKF curve, indi-
cating that the LS-SRGHCKF algorithm has a good filtering function. Through the in-depth
comparison of RMSE values, it can be seen that the estimated RMSE of the LS-SRGHCKF
algorithm is much smaller than that of LS-GHCKF, which indicates high accuracy in esti-
mating vehicle states. In summary, the LS-SRGHCKF algorithm can stably and accurately
estimate vehicle status, offering strong practicality and significant application value in the
field of vehicle control.

Author Contributions: Conceptualization, L.Q.; methodology, L.Q. and R.C.; software, R.C. and
C.G.; validation, R.C., C.G. and B.L.; formal analysis, L.Q.; investigation, C.G.; data curation, R.C.;
writing—original draft preparation, L.Q. and R.C.; writing—review and editing, C.G.; visualization,
B.L.; project administration, B.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 8960 21 of 22

References
1. Ya, J.F. Application Analysis of In-wheel Motor Technology in New Energy Vehicles. Auto Time 2023, 11, 92–94.
2. Wang, Y.; Yi, G.D.; Geng, K.K.; Dong, H.X.; Liu, S.P.; Chen, N. Active collision avoidance adaptive control based on identification

of different emergency conditions. J. Mech. Eng. 2020, 56, 115–124. [CrossRef]
3. Ding, X.; Wang, Z.; Zhang, L.; Wang, C. Longitudinal vehicle speed estimation for four-wheel-independently-actuated electric

vehicles based on multi-sensor fusion. IEEE Trans. Veh. Technol. 2020, 69, 12797–12806. [CrossRef]
4. Park, G. Vehicle Sideslip Angle Estimation Based on Interacting Multiple Model Kalman Filter Using Low-Cost Sensor Fusion.

IEEE Trans. Veh. Technol. 2022, 71, 6088–6099. [CrossRef]
5. García, G.J.; Prieto, G.L.; Pajares, R.J.; Montalvo, M.M.; Boada, M.J.L. Real-time vehicle roll angle estimation based on neural

networks in iot low-cost devices. Sensors 2018, 18, 2188. [CrossRef] [PubMed]
6. Menhour, L.; Lechner, D.; Charara, A. Embedded unknown input sliding mode observer to estimate the vehicle roll and road

bank angles: Experimental evaluation. IFAC Proc. Vol. 2010, 43, 623–628. [CrossRef]
7. Cheng, S.; Li, L.; Yan, B.; Liu, C.; Wang, X.; Fang, J. Simultaneous estimation of tire side-slip angle and lateral tire force for vehicle

lateral stability control. Mech. Syst. Signal Process. 2019, 132, 168–182. [CrossRef]
8. Chen, T.; Xu, X.; Chen, L.; Jiang, H.; Cai, Y.; Li, Y. Estimation of longitudinal force, lateral vehicle speed and yaw rate for

four-wheel independent driven electric vehicles. Mech. Syst. Signal Process. 2018, 101, 377–388. [CrossRef]
9. Dong, M.M.; Zhang, Y.; Wang, Z.F. A research on the estimation of vehicle rolling state. Automot. Eng. 2018, 40, 1089–1095.

[CrossRef]
10. Reina, G.; Messina, A. Vehicle dynamics estimation via augmented Extended Kalman Filtering. Measurement 2018, 133, 383–395.

[CrossRef]
11. Wang, Y.; Yin, G.D.; Geng, K.K.; Dong, H.X.; Lu, Y.B.; Zhang, F.J. Tire lateral forces and sideslip angle estimation for distributed

drive electric vehicle using noise adaptive cubature Kalman filter. J. Mech. Eng. 2019, 55, 103–112. [CrossRef]
12. Li, S.H.; Wang, G.Y.; Yang, Z.K.; Wang, X.W. Dynamic joint estimation of vehicle sideslip angle and road adhesion coefficient

based on DRBF-EKF algorithm. Chin. J. Theor. Appl. Mech. 2022, 54, 1853–1865. [CrossRef]
13. Huang, B.; Fu, X.; Wu, S.; Huang, S. Calculation algorithm of tire-road friction coefficient based on limited-memory adaptive

extended Kalman filter. Math. Probl. Eng. 2019, 2019, 1056269. [CrossRef]
14. Jin, X.J.; Yang, J.P.; Yin, G.D.; Wang, J.X.; Chen, N.; Lu, Y.B. Combined state and parameter observation of distributed drive electric

vehicle via dual unscented Kalman filter. J. Mech. Eng. 2019, 55, 93–102. [CrossRef]
15. Jin, X.J.; Yang, J.P.; Li, Y.J.; Zhu, B.; Yin, G.D. Online estimation of inertial parameter for lightweight electric vehicle using dual

unscented Kalman filter approach. IET Intell. Transp. Syst. 2020, 14, 412–422. [CrossRef]
16. Wang, Y.; Geng, K.; Xu, L.; Ren, Y.; Dong, H.; Yin, G.D. Estimation of sideslip angle and tire cornering stiffness using fuzzy

adaptive robust cubature Kalman filter. IEEE Trans. Syst. Man Cybern. 2020, 52, 1451–1462. [CrossRef]
17. Cheng, S.; Li, L.; Chen, J. Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation.

IEEE Trans. Industr. Electr. 2017, 65, 5754–5763. [CrossRef]
18. Boada, B.L.; Garcia, P.D.; Boada, M.J.L.; Diaz, V. A constrained dual Kalman filter based on pdf truncation for estimation of vehicle

parameters and road bank angle: Analysis and experimental validation. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1006–1016.
[CrossRef]

19. Hu, J.Y.; Wang, Y.; Yan, Y.J.; Geng, K.K.; Bai, S.; Yin, G.D. Vehicle state estimation based on limited memory random weighted
extended Kalman filter. J. Southeast Univ. Nat. Sci. Ed. 2022, 52, 387–393. [CrossRef]

20. Qi, D.; Feng, J.; Wan, W.; Song, B. A novel maximum correntropy adaptive extended Kalman filter for vehicle state estimation
under non-Gaussian noise. Meas. Sci. Technol. 2022, 34, 025114. [CrossRef]

21. Zhou, W.Q.; Qi, X.; Chen, L.; Xu, X. Vehicle State Estimation Based on the Combination of Unscented Kalman Filtering and
Genetic Algorithm. Automot. Eng. 2019, 41, 198–205. [CrossRef]

22. Wan, W.; Feng, J.; Song, B.; Li, X. Huber-based robust unscented Kalman filter distributed drive electric vehicle state observation.
Energies 2021, 14, 750. [CrossRef]

23. Qi, D.L.; Feng, J.G.; Li, Y.B.; Wang, L.; Song, B. A Robust Hierarchical Estimation Scheme for Vehicle State Based on Maximum
Correntropy Square-Root Cubature Kalman Filter. Entropy 2023, 25, 453. [CrossRef] [PubMed]

24. Xing, D.X.; Wei, M.X.; Zhao, W.Z.; Wang, Y.; Wu, S.F. Vehicle State Estimation Based on Adaptive Cubature Particle Filtering.
J. Nanjing Univ. Aeronaut. Astronaut. 2020, 52, 445–453. [CrossRef]

25. Bai, Y.; Ding, D.W.; Zhang, G.Q.; Wang, G.L.; Xu, D.G. Position and Speed Detection Method of PMSM Drives Based on
Moving-average Least Square Method. Proc. CSEE 2023, 43, 2532–2539. [CrossRef]

26. Wang, Y.; Wei, M.X.; Zhao, W.Z.; Zhang, F.J.; Yan, M.Y. Vehicle State Estimation Based on Combined RLS and FAEKF. China Mech.
Eng. 2017, 28, 750–755. [CrossRef]

27. Liu, D.; Chen, X.; Xu, Y.; Liu, X.; Shi, C. Maximum correntropy generalized high-degree cubature Kalman filter with application
to the attitude determination system of missile. Aerosp. Sci. Technol. 2019, 95, 105441. [CrossRef]

28. Hao, S.Y.; Lu, H.; Wei, X.; Xu, M.Q. Reduced high-degree strong tracking cubature Kalman filter and its application in integrated
navigation system. Control. Decis. 2019, 34, 2105–2114. [CrossRef]

29. Peng, Z.Y.; Xia, H.B.; Xu, Y.S. Adaptive generalized high-degree Cubature Kalman Filter based on target tracking. Comput. Eng.
Appl. 2018, 54, 46–52.

https://doi.org/10.3901/JME.2020.04.115
https://doi.org/10.1109/TVT.2020.3026106
https://doi.org/10.1109/TVT.2022.3161460
https://doi.org/10.3390/s18072188
https://www.ncbi.nlm.nih.gov/pubmed/29986499
https://doi.org/10.3182/20100906-3-IT-2019.00107
https://doi.org/10.1016/j.ymssp.2019.06.022
https://doi.org/10.1016/j.ymssp.2017.08.041
https://doi.org/10.19562/j.chinasae.qcgc.2018.09.013
https://doi.org/10.1016/j.measurement.2018.10.030
https://doi.org/10.3901/JME.2019.22.103
https://doi.org/10.6052/0459-1879-21-551
https://doi.org/10.1155/2019/1056269
https://doi.org/10.3901/JME.2019.22.093
https://doi.org/10.1049/iet-its.2019.0458
https://doi.org/10.1109/TSMC.2020.3020562
https://doi.org/10.1109/TIE.2017.2774771
https://doi.org/10.1109/TITS.2016.2594217
https://doi.org/10.3969/j.issn.1001-0505.2022.02.022
https://doi.org/10.1088/1361-6501/aca172
https://doi.org/10.19562/j.chinasae.qcgc.2019.02.012
https://doi.org/10.3390/en14030750
https://doi.org/10.3390/e25030453
https://www.ncbi.nlm.nih.gov/pubmed/36981341
https://doi.org/10.16356/j.1005-2615.2020.03.013
https://doi.org/10.13334/j.0258-8013.pcsee.220492
https://doi.org/10.3969/j.issn.1004-132X.2017.06.019
https://doi.org/10.1016/j.ast.2019.105441
https://doi.org/10.13195/j.kzyjc.2017.1757


Sensors 2023, 23, 8960 22 of 22

30. Liu, Y.; Huang, P. A more general class of cubature Kalman filters. Comput. Eng. Appl. 2015, 51, 207–210. [CrossRef]
31. Yan, S.; Zhang, H.H.; Gao, C.; Li, Q.W. The linear three-degree-of-freedom vehicle model based on Simulink simulation. Intell.

Comput. Appl. 2020, 10, 200–207.
32. Yu, Z.S. Automobile Theory, 5th ed.; China Machine Press: Beijing, China, 2009; pp. 144–146.
33. Quan, L.X.; Chang, R.L.; Guo, C.H. Vehicle State and Road Adhesion Coefficient Joint Estimation Based on High-Order Cubature

Kalman Algorithm. Appl. Sci. 2023, 13, 10734. [CrossRef]
34. Qin, K.; Dong, X.M.; Chen, Y.; Liu, Z.C.; Li, H.B. Huber-based robust generalized high-degree cubature Kalman filter. Control.

Decis. 2018, 3, 88–94. [CrossRef]
35. Liu, Y.; He, Y.; Wang, H.P.; Dong, K. Augmented target tracking algorithm based on SRCKF for joint estimation of state and

sensor systematic error. J. Jilin Univ. Eng. Technol. Ed. 2015, 45, 314–321. [CrossRef]
36. Du, R.F.; Wang, J.; Li, N.; Fei, M.Z.; Deng, H.; Wang, Y.J. Road Friction Coefficient Estimation Based on Square Root Cubature

Kalman Filter. Automot. Eng. 2023, 8, 30–37. [CrossRef]
37. Qiu, C.F.; Zhou, L.; Chen, R.Q.; Sun, X.Y.; Jia, C.H.; Qiu, J.W.; Zhang, C.; Yang, H.T. Calculation Method of Tire Longitudinal Slip

Characteristic Parameters Based on Magic Formula. Tire Ind. 2021, 41, 607–611. [CrossRef]
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