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Abstract: In response to issues such as the lack of capability for timely early warning and the difficulty
in monitoring the status of rolling bearings, a condition-monitoring method for rolling bearings based
on the Honey Badger Algorithm (HBA) for optimizing dynamic asynchronous periods is proposed.
This method is founded on the peak factor and involves comparing peak factors at different periods
to construct a dynamic asynchronous peak-factor-ratio-monitoring index, which is then optimized
using the HBA. Simulated experiments were carried out using the XJTU-SY dataset. The results
indicate that, compared to the early warning times defined by international standards, the warning
times provided using this method are consistently over 33 min in advance within the test dataset.
Additionally, an envelope spectrum analysis of the warning data confirms the existence of early faults.
This demonstrates that the monitoring indicator developed in this paper is capable of delivering
earlier and more accurate early fault warnings and condition monitoring for rolling bearings.

Keywords: rolling bearings; early failure; condition monitoring; Honey Badger Algorithm; dynamic
asynchronous peak factor ratio; envelope spectrum

1. Introduction

Rolling bearings, which are crucial components of rotating machinery, can be influ-
enced by various loads, vibrations, and environmental conditions during their operation.
The performance of bearings deteriorates over time, gradually transitioning from a normal
state to a failure state. Therefore, the timely and accurate detection of potential faults in
rolling bearings is essential to ensure stable operation and prolong the lifespan of mechan-
ical equipment [1]. Today, there are several methods available for bearing monitoring,
such as temperature analysis, oil analysis, noise analysis, current and voltage analysis,
radio frequency analysis (RF), acoustic emission monitoring, and vibration analysis [2–4].
Among these methods, time-domain vibration signals are the most fundamental and direct
signals in the monitoring of rolling bearings. They also contain valuable information about
fault characteristics [5]. Detecting fault characteristics directly from vibration signals for
bearing condition monitoring would be highly beneficial [6,7].

In vibration feature analysis, the probability density function of vibration signals
can better reflect fault information. From the probability density function of vibration
signals, dimensional indicators (such as mean and root mean square) and dimensionless
indicators (such as waveform factor, peak factor, impulse factor, and margin factor) can
be derived [8–10]. In practice, while dimensional indicators are sensitive to bearing fault
characteristics and increase as faults develop, they can be easily disturbed by changing
operating conditions such as load and speed [11], making them less stable and affected by
performance. To address these limitations of dimensional indicators in the monitoring of
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bearing conditions, researchers designed dimensionless indicators by taking the ratio of two-
dimensional indicators. These dimensionless indicators are less sensitive to disturbances
in vibration monitoring signals and exhibit more stable performance. Notably, these
dimensionless indicators are less affected by changes in signal amplitude and frequency,
making them less dependent on machine operating conditions. Therefore, dimensionless
indicators have been widely applied in the diagnosis of rotating machinery faults [8,12,13].
Among dimensionless indicators, amplitude factor and impulse factor are particularly
sensitive to bearing impacts, especially in early-stage faults, where these factors increase
rapidly compared to other dimensionless indicators. However, they still exhibit significant
fluctuations [8].

For over three decades, the condition monitoring of rolling bearings has been a subject
of research interest. In practice, bearings are typically maintained at fixed time intervals.
However, the performance of bearings does not change linearly due to the influence of
environmental and operational conditions. Therefore, the online monitoring of bearings
is necessary to achieve higher efficiency. Methods based on condition monitoring are
employed to enhance bearing performance, efficiency, lifespan, and productivity while
reducing internal and external damage. The monitoring and fault detection of bearings
have become crucial to prevent unexpected failures and minimize unplanned downtime. In
recent years, methods for the monitoring of bearing conditions based on signal processing
and data mining have become mainstream [14]. Xiong J. et al. [8] proposed a data-fusion
method based on dimensionless indicators, which calculates five dimensionless indicators
from real-time collected raw data and then uses support vector machines for fault-type pro-
jection to address the problem of low fault diagnosis accuracy due to the imperfections of
old dimensionless indicators. Qiu et al. [14,15] employed Morlet wavelet transform for de-
noising bearing vibration signals, followed by self-organizing maps for health assessment of
abnormal bearings, ultimately evaluating the current condition of the bearings. Qiao Z. and
Lei Y. [1,16], considering that fault features of initial mechanical faults are difficult to detect,
used random resonance and improved random resonance to enhance and extract weak
fault features in vibration signals. Antoni and Randall [17,18] introduced the spectral kur-
tosis indicator to characterize bearing fault signals. The spectral kurtosis indicator detects
the presence of bearing faults by examining abnormally high kurtosis values in specific
frequency bands. The spectral kurtosis indicator is associated with pulse repetition rate,
sampling rate, and pulse intensity. Qin H. et al. [19] proposed an effective fault diagnosis
method using multiscale dimensionless indicators (MSDI) and random forests, primarily
addressing the low fault-diagnosis accuracy of traditional dimensionless indicators for
nonlinear, non-stationary dynamic signals in rotating machinery. This method employs a
variational mode decomposition on vibration signals, constructs six types of MSDIs based
on the decomposed signals, and uses the Fisher criterion to select the top MSDIs as inputs
for classification in random forests. Yang C. et al. [20] proposed a digital-twin-driven
composite fault-diagnosis method that combines real and virtual data. This method aims
to ensure the safe production of underwater systems. It involves real-time monitoring for
safety and establishes a digital twin model by incorporating the Bernoulli equation along
with loss, control, and state parameters. In the case of a single fault, the digital twin model
verifies the results of fault diagnosis models and corrects any errors. However, in the event
of composite faults, it is diagnosed by combining virtual data from the digital twin model
with real data from the physical system. Civera M. et al. [21] proposed a state-monitoring
method that uses instantaneous spectral entropy and continuous wavelet transform to
address the frequent failures associated with aging in wind turbines. This method involves
anomaly detection and fault diagnosis from historical vibration data of the gearbox.

Currently, the application of non-dimensional indicators for the condition monitoring
of rolling bearings is limited, and traditional non-dimensional indicators have the drawback
of significant fluctuations during monitoring. Therefore, addressing the issues mentioned
above, this paper proposes a method for the condition monitoring of rolling bearing based
on the Dynamic Asynchronous Amplitude Factor Ratio. The Honey Badger Algorithm
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(HBA) [22] is a new metaheuristic algorithm proposed in 2021, mainly simulating the
digging behavior of honey badgers and their dynamic search behavior for honey. HBA
offers advantages such as its simplicity of structure, ease of implementation, and good
optimization performance when dealing with various types of optimization problems [23].
In this paper, we use HBA to optimize the short average period, offset period, and long
average period in dynamic asynchronous peak factor ratios. The main contributions of this
paper are as follows.

1. The paper introduces a novel monitoring indicator, the dynamic asynchronous peak
factor ratio. This application broadens the field of the condition monitoring of rolling
bearings, providing a new monitoring metric for early fault warnings and status
monitoring of rolling bearings.

2. By employing the HBA algorithm, the paper optimizes the critical parameters of the
monitoring indicator. This step enhances the efficiency and accuracy of the monitoring
method, ensuring more timely and reliable early fault warnings and status monitoring.

3. Through practical experiments, the effectiveness of the monitoring method proposed
in this paper has been substantiated. The experimental results indicate that, in com-
parison to the early warning times specified by international standards, this method
provides warnings at least 33 min in advance. Additionally, by subjecting the warning
data to envelope spectrum analysis, the presence of early faults has been confirmed,
thereby enhancing the ability to detect early faults in rolling bearings.

The structure of this paper is as follows. Section 2 reviews the dynamic asynchronous
peak factor ratio monitoring indicator proposed in this paper, the principles of the Honey
Badger Algorithm, and envelope spectrum analysis. Section 3 conducts simulation experi-
ments and analyzes the experimental results of the method proposed in this paper using
the XJTU-SY dataset. Finally, Section 4 conclusions and future work.

2. Proposed Bearing Condition Monitoring Method

By utilizing the new dimensionless metric introduced in this paper, the Dynamic
Asynchronous Peak Factor Ratio, we monitor early-stage faults in bearings. Addressing the
challenge of determining parameter combinations within the Dynamic Asynchronous Peak
Factor Ratio, we propose employing HBA for optimization, allowing it to automatically
search for the optimal parameters. Using the optimized parameters, we monitor bearings
with the Dynamic Asynchronous Peak Factor Ratio, obtaining the warning time. To verify
the presence of early-stage faults in the bearings at the warning time, we perform envelope
spectrum analysis on the data collected during the warning period.

2.1. Dynamic Asynchronous Peak Factor Ratio

The Dynamic Asynchronous Amplitude Factor Ratio is grounded in two identical
non-dimensional indicators known as amplitude factors. The method entails the individual
averaging of these non-dimensional indicators across short, offset, and long periods, fol-
lowed by their division. By employing diverse period averages on two identical indicators,
a fresh non-dimensional indicator is formulated. Dynamic asynchrony is characterized
as the ratio between two non-dimensional indicators sharing the same dimensions but
varying periods. The expression for dynamic asynchrony is presented below:

F(Ts, To, Tl) =
f (Ts)

f (To, Tl)
(1)

where Ts, To, Tl , f (Ts), f (To, Tl), and F(Ts, To, Tl) represent the short-term averaging period
for the numerator dimensionless indicator, the offset period for the denominator dimension-
less indicator, the long-term averaging period for the denominator dimensionless indicator,
the dimensionless indicator obtained by averaging over short periods, the dimensionless
indicator obtained by offsetting and then averaging over long periods, and the resulting
dynamic asynchronous dimensionless indicator, respectively.



Sensors 2023, 23, 8939 4 of 19

Since the peak factor is not influenced by factors such as bearing size or rotational
speed or monitoring the trend of peak factor values over time, it provides timely early
warnings for rolling bearings. Therefore, the dimensionless indicator used in this method
is the peak factor. The peak factor is defined as the ratio of the peak value to the root mean
square value, and its expression is as follows:

f (C) =
max(|x(i)|)√

1
N

N
∑

n=1
(x(i))2

(2)

where x(i), max(|x(i)|), and

√
1
N

N
∑

n=1
(x(i))2, the denominator, represent the time-series

data with i = 1 ∼ N data points, the maximum value among n absolute value data points,
and the root mean square value of n data points, respectively.

In summary, this study introduces a novel Dynamic Asynchronous Peak Factor Ratio
by comparing two peak factors with different periods, which serves as a monitoring
indicator for the early fault detection of bearings.

Compared to traditional dimensional and dimensionless monitoring indicators, the
advantages of the monitoring indicator proposed in this paper are as follows:

1. By performing calculations at different intervals, it can suppress interference caused
by human factors or occasional shocks, thereby enhancing the early fault-detection
capabilities of rolling bearings.

2. Due to its dimensionless property, the dynamic asynchronous peak factor ratio is
theoretically unaffected by factors such as bearing size and rotational speed, which
gives it good stability in various environmental conditions. Moreover, the process of
constructing and applying this indicator is not overly complex.

3. The dynamic asynchronous peak factor ratio can more accurately identify early faults
in rolling bearings, thereby facilitating the implementation of appropriate maintenance
measures before the issue deteriorates further.

An early fault warning model for bearings based on the dynamic asynchronous peak
factor ratio is established, with key parameters including the short-term averaging period
(Ts), the offset period (To), and the long-term averaging period (Tl). Generally, a larger
Ts results in smaller peak amplitudes in the indicator, potentially leading to delayed
warnings in the model and inadequate coverage of early bearing faults. The offset period,
To, fine-tunes the starting point for long-term averaging and is ideally set between the
minimum value of Ts and the maximum value of Tl . A larger Tl can effectively suppress
waveform spikes caused by occasional impacts during machine operation, thus enhancing
the model’s ability to detect real machine faults, particularly early faults, and deliver timely
and precise warnings. Additionally, Tl should numerically surpass Ts. The optimization
ranges for these three parameters are detailed in Table 1 for reference. Given that the
parameters in the dynamic asynchronous peak factor ratio play a pivotal role in enhancing
its early bearing fault warning capabilities, precisely defining the values of Ts, To, and Tl to
optimize the early bearing fault warning model can be a complex endeavor. To achieve
accurate parameter determination, this study introduces the HBA as an effective method
for optimizing the parameters within the early bearing fault warning model.

Table 1. Parameter ranges for the dynamic asynchronous peak factor ratio.

Parameter Value

Ts [2,8]
To [3,15]
Tl [10,15]
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2.2. HBA Principles

In this article, we will provide a brief overview of the HBA; for a more detailed
analysis, please refer to [22]. The HBA mimics the foraging behavior of honey badgers.
Honey badgers, to find a food source, either dig using their sense of smell or follow guide
birds. The phase where they dig using their sense of smell is referred to as the digging
mode, while the phase where they follow guide birds is called the honey mode.

In the HBA algorithm, the overall representation of candidate solutions is given by
x11 x12 x13 · · · x1j
x21 x22 x23 · · · x2j

...
...

...
. . .

...
xi1 xi2 xi3 · · · xij

 (3)

Here, the position of the ith honey badger can be represented as [xi1, xi2, · · · , xij].
Step 1: Initialize the positions of honey badgers. The expression is as follows:

xi = lbj + r1 × (ubj − lbj) (4)

where xi is the position parameter of the ith honey badger. lbj is the lower limit of the
search range for the jth parameter. ubj is the upper limit of the search range for the jth
parameter. r1 is a random number between 0 and 1.

Step 2: The speed of honey badgers’ movement primarily depends on the magnitude
of intensity Ii, which is defined using Equation (5). If Ii is stronger, honey badgers will
move very quickly, and vice versa.

Ii = r2 ×
S

4πd2
i

S = (xi − xi+1)
2

di = xprey − xi

(5)

where S represents the source strength or concentration intensity, while di signifies the
distance between the hive and the ith honey badger. xprey denotes the location of the prey,
which corresponds to the position of the optimal honey badger in the HBA. Additionally,
r2 is a random number ranging between 0 and 1.

Step 3: The parameter α, known as the density factor, regulates the temporal varia-
tion in randomness during foraging, ensuring a seamless transition from exploration to
exploitation. Its mathematical expression is as follows:

α = C · e(
−t

tmax ) (6)

where C = 2. tmax is the maximum number of iterations.
Step 4: The honey badger position is updated through two phases: the digging mode

and the honey mode. The selection between these modes is determined by a random
number, denoted as r. Here, r is a random value ranging from 0 to 1. If r ≤ 0.5, the digging
mode is chosen for updating the honey badger position; otherwise, the honey mode is
selected to update its position.

Step 5: The honey badger’s digging action resembles a heartbeat-like pattern, and its
motion equation is expressed as follows:

xnew =xprey + F× β× Ii × xprey + F× r3

× α× di × |cos(2πr4)× [1− cos(2πr5)]|
(7)
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where β, which is set to 6 by default, represents the honey badger’s food-acquisition ability.
r3, r4, and r5 are random numbers ranging from 0 to 1. Additionally, the parameter F plays
a pivotal role in dictating HBA search direction, and its mathematical representation is
as follows:

F =

{
1 i f r6 ≤ 0.5
−1 else

(8)

where r6 is a random number between 0 and 1.
Step 6: The expression for updating positions during the honey mode is:

xnew = xprey + F× r7 × α× di (9)

where xnew refers to the new position of the honey badger. r7 is a random number between
0 and 1.

In summary, this paper applies vibration data within the context of the HBA algorithm.
Subsequently, HBA is utilized to optimize the parameters Ts, To, and Tl . The parame-
ter ranges subjected to optimization by HBA are detailed in Table 1, while the specific
optimization process of HBA is illustrated in Figure 1.

Figure 1. Flowchart of the HBA approach.



Sensors 2023, 23, 8939 7 of 19

2.3. Envelope Spectrum Analysis

The Envelope Spectrum is a demodulation technique used for signal analysis, and
it is commonly applied in the assessment of vibrations and pulse signals within bearing-
related applications. In such scenarios, these signals frequently undergo modulation due
to inherent vibrations. The envelope spectrum plays a pivotal role in demodulating and
extracting these low-frequency impact signals, thereby facilitating fault detection and
diagnosis [24]. First, it is necessary to subject the processed signal to appropriate bandpass
filtering to enhance the bearing fault frequencies. Performing the Hilbert transform on the
filtered signal yields its analytic signal conjugate part.

H[x(t)] =
1
π

∫ ∞

−∞

c(τ)
t− τ

dτ (10)

Therefore, the analytic signal z(t) can be represented as

z(t) = x(t) + jH[x(t)] (11)

It can also be expressed as
z(t) = r(t)· ejθ(t) (12)

where x(t) is the filtered vibration signal, x(t) is the Hilbert transform of the filtered

vibration signal, z(t) is the analytic signal, and r(t) =
√

x(t)2 + x(t)2 .
Then, we perform a Fourier transform on r(t) to obtain an envelope spectrum capable

of identifying bearing fault characteristics. Subsequently, we calculate the fault’s character-
istic frequency. Since this paper primarily focuses on predicting outer race bearing faults,
the characteristic frequency for outer race faults is as follows:

fo =
z
2

(
1− d

D
cosα

)
fr (13)

where D is the diameter of the rolling elements, d is the bore diameter of the bearing, α is
the contact angle of the rolling element bearing, N is the number of rolling elements, and fr
is the inner raceway of rotational frequency.

Finally, we observe the envelope spectrum chart, and if there is a peak near the
characteristic frequency of outer race faults, it can be determined as an outer race fault.

3. Experimental Results and Discussion

To validate the effectiveness and accuracy of the Dynamic Asynchronous Peak Factor
Ratio monitoring indicator proposed in this paper for early fault warning, three experiments
were conducted on the XJTU-SY dataset.

1. The first experiment was parameter sensitivity analysis, showing how warning times
change with variations in parameters if they are not optimized.

2. The second experiment was about optimizing the parameters of the monitoring indi-
cator. We used the HBA method to fine-tune the three parameters in the monitoring
indicator proposed in this paper. These refined parameters were then used to create
the monitoring indicator. We conducted tests on the test dataset and, as a result,
obtained the early warning time using this monitoring indicator. We then compared
this warning time with the one specified in the national standard.

3. The third experiment entailed utilizing envelope spectrum analysis on the data linked
to the early warning times generated by the monitoring indicator to confirm the
existence of early faults.

In summary, the experimental process is illustrated in Figure 2.
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Figure 2. Experimental process flowchart.

3.1. Introduction to the XJTU-SY Dataset

The XJTU-SY dataset was designed and collected by Professor Lei Yaguo’s team at the
School of Mechanical Engineering, Xi’an Jiaotong University [25]. The test rig is shown
in Figure 3, where the left side displays the overall shape and components of the test
rig, and the right side provides an enlarged view of the bearing location. Acceleration
sensors are placed in both the vertical and horizontal directions of the bearing, allowing
data collection in two directions. The test rig consists of an AC electric motor, an electric
motor speed controller, a rotating shaft, support bearings, a hydraulic loading system, and
test bearings. It is capable of conducting accelerated life tests on rolling bearings under
various operating conditions. During data acquisition, a sampling frequency of 25.6 kHz
was used with a sampling interval of 1 min, and each sampling period lasted for 1.28 s. In
each sampling period, the collected vibration signals were stored in a CSV file. The first
column represents the horizontal vibration signal, while the second column represents the
vertical vibration signal. The CSV files are named in chronological order of sampling times,
such as 1.csv, 2.csv, . . . , and N.csv, where N is the total number of samples. The test bearing
used in the experiments is the LDK UER204 rolling bearing. Three categories of operating
conditions were designed for the experiments, as shown in Table 2, with five bearings for
each condition. Table 3 provides detailed information for each test bearing, including its
corresponding operating condition, the total number of data samples, the basic rated life
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(L10), the actual life, and the failure location. Figure 4 shows photographs of normal and
faulty bearings, with failures resulting from various types of issues, including inner race
wear, cage fracture, outer race wear, and outer race fracture.

Figure 3. Testbed of rolling element bearings. Image source [25]. The manufacturer of the machine is
Changxing Shengyang Technology Co., Ltd. located in Huzhou, China.

Table 2. Operating condition.

Operating Condition Condition 1 Condition 2 Condition 3

Rotational speed
(r/min) 2100 2250 2400

Radial load (kN) 12 11 10

Table 3. XJTU-SY Bearing Datasets.

Operating
Condition

Bearing
Dataset

Number of
Files

Bearing
Lifetime

Fault
Element

Condition 1
(35 Hz/12 kN)

Bearing 1_1 123 2 h 3 min Outer race
Bearing 1_2 161 2 h 41 min Outer race
Bearing 1_3 158 2 h 38 min Outer race
Bearing 1_4 122 2 h 2 min Cage
Bearing 1_5 52 52 min Inner race and

outer race

Condition 2
(37.5 Hz/11 kN)

Bearing 2_1 491 8 h 11 min Inner race
Bearing 2_2 161 2 h 41 min Outer race
Bearing 2_3 533 8 h 53 min Cage
Bearing 2_4 42 42 min Outer race
Bearing 2_5 339 5 h 39 min Outer race

Condition 3
(40 Hz/10 kN)

Bearing 3_1 2538 42 h 18 min Outer race
Bearing 3_2 2496 41 h 36 min Inner race, ball,

cgar and outer race
Bearing 3_3 371 6 h 11 min Inner race
Bearing 3_4 1515 25 h 15 min Inner race
Bearing 3_5 114 1 h 54 min Outer race
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Figure 4. Photographs of the failure bearings. (a) Inner race wear. (b) Cage fracture. (c) Outer race
wear. (d) Outer race fracture. Image source [25].

The simulation in this paper was conducted in an environment with an AMD Ryzen™
7 Mobile Processors (The manufacturer of the equipment is Lenovo Group Ltd., located in
Beijing, China) with Radeon™ Graphics CPU, 2.90 GHz CPU, 32GB RAM, NVIDIA GeForce
RTX 2060 GPU, and Windows 11 operating system. The programming implementation was
carried out using the PyCharm 2021.3.2 (Professional Edition) software.

3.2. Sensitivity Analysis and Optimization of Monitoring Indicator Parameters

To validate the warning time of this model, the warning time obtained using the
dynamic asynchronous peak factor ratio indicator proposed in this paper was compared
with the warning time obtained from the international standard [26]. In the international
standard, the monitoring indicator used is the root mean square (RMS) value, and the
equation for the RMS value is as follows:

xRMS =

√√√√ 1
N

N

∑
n=1

x2(n) (14)

where x(n) represents the time-domain data of the vibration signal, n = 1, 2, 3, . . . , N , and
N is the total number of samples.

The informative guidelines for setting the warning value of the RMS are illustrated
in Figure 5. In this figure, Region A represents the vibration level of machines in new
delivery and is considered suitable for unrestricted long-term operation. Region B indicates
machines with vibration levels that are generally safe for extended operation. Region C
signifies machines with vibration levels that are not suitable for prolonged continuous
operation. Region D corresponds to machines with high vibration levels, which are likely
to cause machine damage. In this paper, we primarily focus on studying early bearing
faults and issuing warnings for them. So, following the informative guidelines, small
machines (e.g., electric motors with power up to 15 kW) tend to lie at the lower end of
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the range, and larger machines (e.g., prime movers with flexible supports in the direction
of measurement) tend to lie at the upper end of the range. When the warning value is
set in region C, it means that the bearing already has significant faults. In this paper, our
experimental platform is designed for small-scale machines. Therefore, the RMS warning
value should be positioned closer to the lower end of region B. Consequently, the RMS
warning value is set to Yr = 2.8 mm/s.

Figure 5. Range of typical values for the zone A/B, B/C, and C/D boundaries. Image source [26].

We divided the XJTU-SY bearing dataset into training and testing sets. Since there
were more data with outer ring faults in the dataset, we chose the outer ring fault data for
training and testing. The bearing data used in this paper consist of horizontal vibration
acceleration data. From each operational condition, one bearing data wet with an outer
ring fault was selected as the testing set. Using the previously mentioned RMS warning
values, we obtained the warning times for outer ring fault data in different operational
conditions, as shown in Table 4.

Table 4. Division of the XJTU-SY bearing datasets and international standard warning times.

Dataset Bearing Yr Warning Times/Min

Training Set Bearing 1_2 63

Testing set
Bearing 1_3 149
Bearing 2_2 84
Bearing 3_1 2517
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To obtain the warning time for this model and compare it with the warning time
based on the international standard root mean square (RMS) warning values, it is necessary
to set the warning values for the dynamic asynchronous peak factor ratio indicator in
the monitoring metric. Here, the three main parameters that influence the monitoring
indicator in this method are set to their minimum values (see Table 1 for the parameters
of the dynamic asynchronous peak factor ratio), resulting in Ts, To, and Tl . Subsequently,
graphs are generated for the training dataset Bearing 1_2, as shown in Figure 6. From
Figure 6, it can be observed that Bearing 1_2 experiences its first peak at around 50 min,
with this peak magnitude significantly exceeding 1.6, and the duration of the peak is
approximately 20 min. As explained earlier regarding the significance of constructing the
dynamic asynchronous peak factor ratio indicator, this indicator can suppress peaks caused
by occasional impacts. Therefore, the duration of this peak is not expected to be very long,
and the peak value is not expected to be very high. Consequently, in the period between 40
and 60 min, the rolling bearing experiences a prolonged period of impact, indicating the
possibility of an early fault condition inside the bearing. Hence, the warning value is set to
Yc = 1.25.

Figure 6. Dynamic asynchronous peak factor ratio plot for Bearing 1_2.

3.2.1. Parameter Sensitivity Analysis

Based on the warning values set by the monitoring indicator in this paper, sensitivity
analysis of the parameters is conducted using the training dataset Bearing 1_2. In this
analysis, the monitoring indicator proposed in this paper has three parameters that need to
be optimized.

Therefore, we keep two of these parameters fixed while allowing the third one to vary.
The values of the parameters need to be integers, not decimals. The fixed parameters are
chosen to be in the middle of the parameter range specified in Table 1, which means that
if all three parameters are fixed, they are set as Ts = 5, To = 8, and Tl = 12. The results
of the sensitivity analysis are represented in terms of warning times, meaning that when
different parameters are inputted, a dynamic asynchronous peak factor ratio is constructed
in the training dataset. When the value of the monitoring indicator exceeds Yc = 1.25,
the corresponding time is considered as the warning time for this indicator. The sensi-
tivity analysis results for the monitoring indicator parameters in this paper are shown in
Figure 7, and the sensitivity analysis data for the short-term averaging period parameters
can be found in Table 5. As for the long-term averaging period parameters, their sensitivity
analysis data are presented in Table 6. The warning times for the sensitivity analysis of the
offset period parameter are consistently 45 min and are not presented in a separate table.
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Figure 7. Sensitivity analysis of monitoring indicators. (a) Short-term averaging period. (b) Offset
period. (c) Long-term averaging period.

Table 5. Sensitivity analysis of the short-term averaging period.

Short-Term
Averaging Period

Offset
Period

Long-Term
Averaging Period

Warning
Times/Min

2

8 12

38
3 39
4 40
5 45
6 48
7 49
8 48

Table 6. Sensitivity analysis of the long-term averaging period.

Short-Term
Averaging Period

Offset
Period

Long-Term
Averaging Period

Warning
Times/Min

5 8

10 45
11 45
12 45
13 40
14 40
15 40

In conclusion, the following observations can be made.

1. As the short-term averaging period increases, the warning time of the monitoring
indicator in this paper tends to increase. In this case, the short-term averaging period
is the numerator of the monitoring indicator, indicating that when the short-term
averaging period is small, it does not effectively reduce short-term peaks. This means
that it cannot suppress artificial interference or occasional impacts, resulting in an
increase in the monitoring indicator value and earlier warning times. When the
short-term averaging period increases, the warning time is delayed, and the value of
the monitoring indicator decreases. This suggests that the suppression of short-term
peaks is enhanced, leading to a strengthening of long-term peaks, which corresponds
to enhanced early fault detection.

2. As the offset period increases, there is no significant trend in the change in warning
times for the monitoring indicator proposed in this paper. Therefore, the impact of
the offset period on the monitoring indicator is relatively small.

3. With an increase in the long-term averaging period, the warning time of the moni-
toring indicator in this paper tends to decrease. In this case, the long-term averaging
period is the denominator of the monitoring indicator. When other parameters remain
constant, the warning time is advanced, indicating that the value of the monitoring
indicator has increased, leading to a decrease in the denominator. When the long-term
averaging period increases, it contains more early fault information in the denomina-
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tor, which further causes an increase in the denominator of the peak factor. The result
is an earlier warning time.

4. Sensitivity analysis reveals that the parameters with the most significant impact on the
monitoring indicator are the short-term averaging period and the long-term averaging
period, while the offset period has a relatively minor effect.

3.2.2. HBA Parameter Optimization and Result Analysis

The tuning of parameters can be a cumbersome task, so we utilize HBA for adaptive
tuning of the monitoring indicator. The population size and the maximum number of
iterations are set as follows: N = 50, tmax = 200. The fitness function for the HBA
optimization of parameters (Ts, To, and Tl) is defined as follows:

z f =

∣∣∣∣ x− µ

σ

∣∣∣∣+ yw (15)

where x is the first warning time when the dynamic asynchronous peak factor ratio exceeds
the warning threshold. µ is the average warning time for values greater than the warning
threshold. σ is the standard deviation of the warning times for values greater than the
warning threshold. yw is the value of the dynamic asynchronous peak factor ratio for the
first occurrence greater than the warning threshold.

Furthermore, HBA is employed to optimize the parameters of the dynamic asyn-
chronous peak factor ratio, and the fitness curve obtained on the training dataset is de-
picted in Figure 8. HBA escapes from local optima and achieves the best fitness in the fifth
generation. The optimization time for HBA to enhance the parameters of the dynamic asyn-
chronous peak factor ratio monitoring indicator is consistently within 0.2 s, demonstrating
that HBA can effectively address the problem of finding the optimal solution. It excels
in various aspects, including algorithm structure, convergence speed, and the balance
between exploration and exploitation.

Figure 8. HBA fitness curve.

The optimal honey badger position found during the search was [3,15,13], indicating
the optimal parameters for optimizing the monitoring indicator of the dynamic asyn-
chronous peak factor ratio are Ts = 3, To = 15, and Tl = 13.

Based on the optimization performed using HBA for the monitoring indicator for the
dynamic asynchronous peak factor ratio, the optimized short, offset, and long periods are
obtained. Finally, the monitoring indicator for the optimized dynamic asynchronous peak
factor ratio is constructed. The optimized monitoring indicator is then tested on the test
dataset, and graphs for the dynamic asynchronous peak factor ratio are plotted accordingly,
as shown in Figure 9. In the training dataset Bearing 1_2, the warning threshold for the
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monitoring indicator of the dynamic asynchronous peak factor ratio was set. During testing
in the test dataset, the time at which the first value of the dynamic asynchronous peak
factor ratio exceeds the warning threshold is considered the warning time obtained using
this method. Finally, the warning time obtained in this paper is compared with the warning
time obtained in the international standard. This comparison allows us to determine
how much earlier the warning time in this paper is compared to that obtained using the
traditional method. The warning times for both the proposed method and the traditional
method in the training and test datasets, along with the lead time, are summarized in
Table 7.

Figure 9. Dynamic Asynchronous Peak Factor Ratio plots. (a) Bearing 1_2. (b) Bearing 1_3.
(c) Bearing 2_2. (d) Bearing 3_1.

Table 7. Overview of the warning times for the XJTU-SY dataset.

Dataset Bearing
Yr Warning
Times/Min

Yc Warning
Times/Min

Lead
Times/Min

Training set Bearing 1_2 63 39 24

Testing set
Bearing 1_3 149 63 86
Bearing 2_2 84 51 33
Bearing 3_1 2517 2382 135

From the preceding text and Table 7, it is evident that the construction process of
the dynamic asynchronous peak factor ratio proposed in this paper is not complicated.
Compared to international standards, the monitoring indicator introduced in this paper
offers early warning times that are advanced by at least 33 min. Experimental results affirm
the significant effectiveness of the monitoring indicator proposed in this paper for early
fault warnings in rolling bearings.
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3.3. Early Fault Verification

Although envelope spectrum analysis effectively demodulates vibration signals for
fault detection and diagnosis, this method lacks real-time fault-monitoring capabilities.
In practice, it is common to perform envelope spectrum analysis on data collected after a
national standard warning to determine the type of bearing fault. The metric proposed in
this paper allows for an early warning time of half an hour before the national standard.
Additionally, envelope spectrum analysis is applied to the bearing data obtained after the
warning based on the Dynamic Asynchronous Peak Factor Ratio to verify the presence of
early-stage faults. Here, Equation (13) is used to calculate the characteristic frequencies of
outer ring faults for three operating conditions in the dataset, as shown in Table 8.

Table 8. Characteristic Frequencies.

Fault Types Condition 1 Condition 2 Condition 3

Outer Race Fault Feature
Frequencies 107.907 Hz 115.615 Hz 123.323 Hz

Based on the warning sample data obtained from the monitoring indicators proposed
in this paper, i.e., files such as Bearing 1_2—39.csv, Bearing 1_3—63.csv, Bearing 2_2—51.csv,
and Bearing 3_1—2382.csv, the original vibration signal waveforms and envelope spectra
were plotted separately, as shown in Figures 10 and 11.

Figure 10. Original vibration signal waveforms. (a) Bearing 1_2—39.csv. (b) Bearing 1_3—63.csv.
(c) Bearing 2_2—51.csv. (d) Bearing 3_1—2382.csv.
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Figure 11. Envelope spectrum plots. (a) Bearing 1_2—39.csv. (b) Bearing 1_3—63.csv. (c) Bearing
2_2—51.csv. (d) Bearing 3_1—2382.csv.

An analysis of the original vibration signal waveforms for the four warning samples
shows that Bearing 1_2—39.csv and Bearing 2_2—51.csv exhibit significant amplitude
spikes. These are the data that the monitoring indicator proposed in this paper warned
about, indicating the impact caused by early bearing failure. On the other hand, Bearing
1_3—63.csv and Bearing 3_1—2382.csv do not show obvious spikes in the original vibration
signal waveforms but exhibit a clear deteriorating trend. The next step involves the
envelope spectrum analysis of these samples.

Based on the envelope spectrum plots in Figure 11, and observing the envelope
spectrum plots in each of the early outer race fault samples, there are clear indications of
the characteristic frequencies of the outer race fault. For example, in Bearing 1_2—39.csv,
the outer race fault’s characteristic frequency is 107.812 Hz, while the calculated ideal
outer race fault’s characteristic frequency is 107.907 Hz. The small difference between
the two suggests that the bearing is experiencing an early-stage outer race fault. As
for Bearing 1_3—63.csv, Bearing 2_2—51.csv, and Bearing 3_1—2382.csv, their outer race
fault’s characteristic frequencies differ significantly from the ideal ones. This is because
early-stage fault signals in bearings are weak and easily susceptible to interference from
other signals, causing the fault characteristic frequencies to fluctuate near the ideal values.
Through envelope spectrum analysis of the warning samples, it is evident that in each
sample, the early-stage outer race fault in the bearings is prominently detected, thereby
demonstrating that the method proposed in this paper is capable of timely and accurate
early-stage fault detection in bearings.
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4. Conclusions

To ensure timely early fault warnings for rolling bearings, this paper introduces a
rolling bearing state monitoring method based on the dynamic asynchronous peak factor
ratio. When comparing this method with the warning values established by international
standards, the results indicate that HBA can optimize key parameters in the model for early
fault monitoring for rolling bearings. For the XJTU-SY dataset, the warning times obtained
from the model developed in this paper precede those of the international standards by
24 min, 33 min, 86 min, and 135 min, respectively. Furthermore, the monitoring indicator
created in this study can provide valuable technical support for early fault condition
monitoring in rolling bearings.

In future research, it will be essential to take into account the potential consequences of
severe faults in rolling bearings. While this method demonstrates proficiency in accurately
monitoring early-stage faults, the stability of the Dynamic Asynchronous Peak Factor Ratio
index may wane when severe faults occur in rolling bearings. Therefore, future research
should prioritize addressing severe faults in rolling bearings.
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