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Abstract: Graph neural networks (GNNs) have been increasingly employed in the field of Parkinson’s
disease (PD) research. The use of GNNs provides a promising approach to address the complex
relationship between various clinical and non-clinical factors that contribute to the progression of PD.
This review paper aims to provide a comprehensive overview of the state-of-the-art research that is
using GNNs for PD. It presents PD and the motivation behind using GNNs in this field. Background
knowledge on the topic is also presented. Our research methodology is based on PRISMA, presenting
a comprehensive overview of the current solutions using GNNs for PD, including the various types
of GNNs employed and the results obtained. In addition, we discuss open issues and challenges that
highlight the limitations of current GNN-based approaches and identify potential paths for future
research. Finally, a new approach proposed in this paper presents the integration of new tasks for the
engineering of GNNs for PD monitoring and alert solutions.
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1. Introduction

Categorized as a progressive neurodegenerative disease, PD exerts its impact on mil-
lions of individuals globally. Despite extensive scholarly inquiry, the precise etiology of
PD remains largely elusive, and the currently available therapeutic regimens exhibit con-
strained effectiveness in retarding or arresting the disease’s relentless progression. Recent
times have witnessed a burgeoning emphasis on the utilization of data-driven methodolo-
gies, specifically machine learning (ML) and deep learning (DL) ones, as instruments for
probing into the fundamental mechanisms underpinning PD and augmenting the efficacy
of therapeutic interventions.

Neural networks (NNs), inspired by the human brain, learn patterns from data and are
widely used in healthcare for tasks like disease diagnosis, drug discovery, and personalized
treatment planning [1]. In PD research, they constitute a promising technology in predict-
ing progression, categorizing stages, and detecting early signs [2]. However, NNs have
limitations, including their ‘black box’ nature, big data demands, risks of overfitting or
underfitting, and computational intensity, which can hinder interpretation, explainability,
and generalization.

In contrast to traditional NNs, GNNs are particularly well-suited for graph-structured
data, characterized by varying sizes and complexity of structure. GNNs excel at capturing
intricate relationships within graphs, making them highly effective in tasks such as node
classification, link prediction, and graph classification [3]. As a specialized form of DL,
GNNs are designed explicitly for graph-structured data, commonly found in domains like
social networks and molecular biology [4]. Their strength lies in their ability to incorporate
both local and global structural information for more accurate predictions, enabling them
to uncover intricate relationships among entities.
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Compared to traditional NNs, GNNs are preferred for the representation of graph-
structured data. While NNs are designed for vector or sequence data, GNNs excel at
analyzing complex graphs by leveraging node and edge relationships. They are particularly
useful in domains with inherent graph-based data, such as traffic analysis, social networks,
and recommendation systems [5]. In medical applications, including the PD domain, GNNs
play a pivotal role in tasks like gene expression analysis, disease diagnosis, drug discovery,
and brain imaging data analysis. Their graph-centric approach serves as a robust tool
for the analysis of complex medical data, yielding novel insights and interpretations of
disease diagnosis and treatment. In the context of neurodegenerative disorders like PD, a
representative recent study introduced a GNN-based method to forecast PD progression
by analyzing brain connectivity networks from MRI data [6]. Notably, this GNN model can
identify changes in brain connectivity patterns that are predictive of disease progression,
even in the early stage of PD, offering a promising approach for early diagnosis and
improved treatment strategies [7]. Additionally, in another related work [8], PD was
recognized as a common neurodegenerative ailment and a widespread condition influenced
by a blend of genetic and environmental factors, contributing to the formation of abnormal
protein aggregations in specific neuron groups, ultimately resulting in cellular dysfunction
and degeneration. The clinical diagnosis of PD often relies on a careful evaluation to
distinguish it from other parkinsonism-related disorders, necessitating a heightened level
of clinical suspicion. A multitude of treatment modalities, including pharmaceutical
agents and surgical interventions, are now available to address both early- and late-stage
complications associated with PD.

Statistical reasoning in healthcare, especially in PD research, involves data-driven
inferences, aiding in risk identification, intervention assessment, and uncovering progres-
sion patterns. Symbolic reasoning in PD healthcare research uses symbols for structured
problem-solving, contributing to the understanding of complex relationships among symp-
toms, biomarkers, and treatments, enabling personalized treatment planning. It also ex-
tracts information from patient records to cover disease progression and treatment response.

Hybrid AI combines statistical and symbolic approaches, blending data-driven and
knowledge-driven methods [9]. This blending addresses complex problems by leveraging
the strengths of both approaches [10]. For example, probabilistic soft logic (PSL) unifies sta-
tistical and symbolic reasoning in social network analysis and natural language processing,
and inductive logic programming (ILP) extracts symbolic rules from data for application in
bioinformatics and expert systems [11].

The key contributions of our work are:

• Emphasize the integration of cutting-edge technologies, particularly GNNs, for the
development of innovative solutions in PD research.

• Provide a comprehensive overview of GNNs in PD research, including open issues
and challenges, and a proposed approach to tackle them.

• Highlight the need for the semantic representation and integration of sensor/historic
data from disparate and heterogeneous sources, such as wearable technology and
electronic healthcare records (EHRs), into GNN frameworks.

• Introduce a novel comprehensive and cohesive approach to harness the full potential
of GNNs in PD research.

• Present an innovative edge-device-based application for real-time health data collec-
tion, integration, and analysis for generating timely alerts for missed medication doses.

• Assist experts/scientists in bridging the gap in understanding the full scope of GNN
applications in PD and their potential impact on disease management.

• Highlight opportunities that GNNs bring to PD research for a deeper understanding
of the disease, paving the way for more effective treatments and personalized care.

The structure of this paper is as follows: Section 2 provides essential background
knowledge on the subject. Section 3 outlines the research methodology adopted for this
survey. In Section 4, we present a curated selection of state-of-the-art scientific studies.
Section 5 discusses open issues and challenges for expanding the role of GNNs in the
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domain of personal health monitoring for PD. Moving beyond the state-of-the-art, Section 6
introduces a proposed framework for GNN use in PD patient care. Finally, Section 7
concludes the paper and outlines plans for future research.

2. Background Knowledge

In this section, our objective is to offer a comprehensive overview of fundamental
concepts and prior scientific investigations in the domain of utilizing GNNs for PD. This
review serves the dual purpose of establishing a knowledge baseline and identifying the
most promising avenues for the development of a reference architecture for GNNs in PD
treatment and prevention [12]. It encompasses the elucidation of key terminologies and a
meticulous examination of pertinent scientific literature [13]. The concepts to be addressed
are outlined in the following paragraphs.

Data analysis assumes a pivotal role in contemporary medical research, with relevance
in the context of PD [14]. PD stands as a complex and progressive neurodegenerative
disorder, marked by a spectrum of symptoms encompassing tremors, rigidity, and mo-
tor impairments. To fathom the underlying mechanisms of PD necessitates the analysis
of extensive and diverse datasets, including clinical and non-clinical data drawn from
various sources [15]. These sources encompass EHRs, patient-reported outcomes, and
imaging data.

In the landscape of PD research, data analysis has traditionally relied upon classical
statistical methodologies such as regression analysis and hypothesis testing. However,
the burgeoning availability of high-dimensional data and the increasing complexity of
relationships between variables necessitate the adoption of more advanced techniques [16].
This shift has ushered in the prominence of ML and DL methodologies as formidable
instruments for dissecting intricate datasets, unveiling latent patterns, and discerning
intricate relationships.

In the context of PD research, ML and DL techniques prove invaluable, enabling
the identification of pertinent features, the stratification of patients based on the severity
of their symptoms, and the prediction of disease progression [17]. Additionally, these
techniques provide the means to explore the intricate associations between various clinical
and non-clinical factors, encompassing demographic parameters, genetics, lifestyle choices,
and environmental influences, and their collective impact on the trajectory of PD [18].
Consequently, data analysis assumes a pivotal role within the domain of PD research,
holding the potential to not only deepen our comprehension of the ailment but also to
foster the development of more efficacious treatments. The integration of advanced ML
and DL methodologies within this field promises to yield fresh insights into the intricate
underpinnings of PD, ultimately enhancing outcomes for patients. In [19], the authors
highlight the diagnostic challenges in identifying PD due to the absence of well-defined
clinical markers, emphasizing the importance of nonmotor symptoms as significant contrib-
utors to patient disability and suggesting their occurrence even before the motor symptoms.
The review discusses the evolution of PD diagnosis criteria, with particular focus on the
incorporation of nonmotor symptoms in current guidelines, aiming to improve diagnostic
accuracy, especially in the early stages. The use of molecular markers and smart devices
is suggested as potential strategies for detecting prodromal PD symptoms, enabling early
disease identification and the development of novel neuroprotective therapies.

In PD research, data preparation plays a pivotal role. Datasets from sources like EHRs,
patient-reported outcomes, and imaging data often possess diverse formats, structures, and
varying data quality [20]. Data preparation encompasses crucial tasks such as cleaning,
integration, normalization, and transformation, ensuring data suitability for rigorous
analysis while accurately reflecting variable relationships. PD research, marked by data
complexity and heterogeneity [21], heightens the importance of data preparation. For
example, EHRs may contain missing or inconsistent data, patient-reported outcomes use
varying measurement scales, and imaging data exhibit resolution and orientation variations.
Thus, meticulous data preparation becomes pivotal, ensuring result accuracy and reliability.
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Indeed, data preparation is an indispensable component of PD research, influencing result
quality [22]. Effective data preparation techniques overcome challenges posed by data
intricacies, facilitating deeper insights into PD’s underlying mechanisms.

EDA assumes a pivotal role in PD research, primarily due to the disorder’s complexity
and the diverse data sources it encompasses [23]. EDA serves as a critical means of
discerning data patterns, relationships, and anomalies, thereby facilitating a comprehensive
grasp of the data’s underlying structure. This holds particular significance in the context of
PD research, where the intricacies and heterogeneity of data necessitate the discovery of
concealed patterns and relationships that can profoundly impact disease progression [24].

In the domain of PD research, EDA employs an array of visualization techniques
and descriptive statistics, encompassing scatter plots, histograms, and heat maps, as well
as metrics like mean, median, and standard deviation. These analytical tools are instru-
mental in unearthing trends such as the temporal distribution of symptoms, associations
between demographic variables and disease evolution, and the influence of lifestyle and
environmental factors on PD [25]. Effectively conducted EDA contributes significantly
to a comprehensive understanding of data and their inherent structure. By unveiling
hidden data patterns and relationships, EDA harbors the potential to furnish fresh insights
into the fundamental mechanisms of PD, ultimately guiding the development of more
efficacious treatments.

In continuation of the analytical progression outlined in the preceding stages, a knowl-
edge graph emerges as a graph-based model that organizes information into a structured
format, employing nodes and edges. Within the framework of PD, a knowledge graph finds
utility in representing relationships among various entities, encompassing genes, proteins,
drugs, and diseases, while capturing the scientific knowledge pertaining to PD from the
literature. Its functionality extends to reasoning over this knowledge, thereby enabling
the inference of novel relationships among entities. For instance, a knowledge graph can
facilitate the prediction of potential drug targets for PD based on established interactions
among genes, proteins, and drugs. On a parallel note, GNNs, a specialized category of
NNs, operate directly on graphs. They are meticulously designed to acquire node and edge
representations within a graph, effectively encapsulating the intrinsic relationships that
bind them. In the context of PD, GNNs prove instrumental in tasks such as classifying
PD patients [26] based on their symptoms, predicting disease progression, or identifying
potential biomarkers of the ailment. Their utility is particularly pronounced when dealing
with data presented in a graph format, as is often the case with brain imaging data or social
network data. In [27], the authors delve into the contributions and applications of the
Internet of Things (IoT) and the Internet of Medical Things (IoMT), with a specific focus on
dementia patient care and early detection. The study highlights the extensive use of sensors
and smart devices for remote monitoring of patients’ vital statistics, especially those with
dementia. It emphasizes the potential of smart IoMT-enabled systems in early dementia
detection, offering the opportunity for better disease management and enhanced patient
quality of life. The proposed model “Demencare” leverages IoT and edge computing to
provide 24/7 patient monitoring, addressing the challenges in dementia care. The incorpo-
ration of fog computing is suggested to further enhance the capabilities of IoMT, promising
improved patient care and diagnostic outcomes.

In the context of PD, a knowledge graph serves as a repository encompassing diverse
facets of information pertinent to the ailment. This wealth of data spans aspects including
symptoms, etiological factors, risk determinants, therapeutic modalities, and clinical trial
data. Within this kind of graph, intricate relationships interlink various concepts, elucidat-
ing connections such as the correlation between specific genes and PD onset, the influence
of environmental variables on disease progression, and the efficacy of different medications
in symptom management. To illustrate, a knowledge graph can unveil the intricate in-
volvement of particular genes in PD pathogenesis while delineating their interactions with
factors like age and environmental toxins [28]. Additionally, it can portray the interplay
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between distinct PD symptoms, such as tremors and rigidity, and the array of available
treatment options aimed at symptom alleviation.

The current approach to monitoring and alerting for pill dosing in PD relies on fixed-
time alerts on smart devices, which are based on daily dosage interval (DDI) values entered
by the patient or their doctor in the configuration settings of the app. However, this
approach does not take into account the real-time health status of the patient, such as their
immediate symptoms or condition, and solely relies on the patient’s actions, potentially
leading to deviations from the treatment plan. This lack of real-time health data integration
can result in suboptimal treatment adherence and effectiveness. DDIs refer to the specific
times at which medications or treatments are scheduled to be administered or taken each
day. They define the intervals or time gaps between doses of a particular medication or
therapy within a 24 h period. DDIs are commonly used in healthcare to ensure that patients
receive their medications at the prescribed times and in the correct doses, which is crucial
for effective treatment, especially in conditions like PD where medication adherence is
important for symptom management.

GNNs represent a class of algorithms ideally suited for handling graph-structured data,
a prevalent data format in PD research [29]. These algorithms leverage graph-based data
representation to effectively model relationships between variables, allowing for predictive
modeling and pattern recognition. The process of constructing a knowledge graph involves
scrutinizing the data within a knowledge base to extract triples, followed by their insertion
based on a graphical data model. This integration of data triples results in the formation of a
comprehensive knowledge graph, encompassing five distinct entity types: genes, diseases,
drugs, channels, and side effects. Notably, these entities are interconnected, fostering a web
of interrelationships among them. A partial example representation of a data schema is
shown in Figure 1. The ontology data schema serves as the foundation for the development
of a medication adherence monitoring and alert system tailored for PD patients. The
system’s primary objective lies in facilitating timely medication intake while minimizing
instances of missed doses. Additionally, it incorporates mechanisms to promptly notify
both the patient and their healthcare provider in the event of emergency situations.
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The depicted scenario describes a practical application within the realm of PD. The
existing approach to monitoring and alerting for pill dosing in PD primarily relies on
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fixed-time alerts through smartphones or tablets, which are contingent upon patient or
healthcare provider inputs. This method does not take into consideration the patient’s
actual health status, allowing the patient to confirm dosing at any time, irrespective of
alignment with the prescribed treatment plan. To address this limitation, a novel approach
is proposed, centered around an edge-device-based application [30]. This application
functions by continuously collecting and analyzing real-time or near-real-time personal
health data from PD patients. It aims to discern instances of missed doses by examining
low-level events such as bradykinesia (slowness of movement) and tremors [31]. This
novel approach employs a knowledge-graph-based methodology to model relationships
among various variables and symptom patterns, thus facilitating accurate predictions and
alerting either the patient or their healthcare provider about missed doses. Leveraging
the knowledge graph framework enables the system to uncover previously unrecognized
connections between different variables and symptom patterns, ultimately enhancing the
precision of missed dose detection and optimizing the management of PD symptoms.

Conversely, a GNN possesses the capability to absorb data encompassing PD patient
symptoms, medication dosages, and temporally tagged information regarding medication
adherence. Subsequently, it constructs a graph-based representation that encapsulates the
patient’s evolving health status over time. The GNN leverages message-passing algorithms
to disseminate information throughout the graph, enabling the acquisition of insights
into the relationships between diverse variables and symptom patterns. This acquired
knowledge empowers the GNN to make precise predictions regarding the occurrence of
missed dose events and to communicate timely alerts to either the patient or healthcare
provider. In contrast to the conventional fixed-time alerts approach, the GNN methodology
excels in terms of accuracy and effectiveness in the management of PD symptoms.

As depicted in Figure 1, the ontology data schema collectively holds the potential to
enhance medication adherence and mitigate adverse events among PD patients. It achieves
this by offering personalized and timely alerts rooted in the patient’s medication regimen
and medical history.

This survey underlines the significance of data representation within the realm of
GNNs for PD research. During the developmental phase, the utilization of data visu-
alization emerges as a pivotal component, aiding in the augmentation of accuracy and
robustness in GNN models. It accomplishes this by facilitating the recognition of inter-
variable relationships and the detection of potential data anomalies [32]. Furthermore,
data visualization assumes a crucial role in the interpretation of GNNs. It empowers
researchers to uncover data patterns and comprehend the intricate web of relationships
among variables, thereby enabling fresh insights into the underlying mechanisms of PD
and contributing to the refinement of novel treatment strategies [33].

ML is a swiftly advancing field, holding substantial promise in the exploration of PD.
PD, being a multifaceted and progressively deteriorating neurodegenerative condition,
afflicts millions worldwide. A comprehensive understanding of its underlying mechanisms
necessitates the scrutiny of extensive and diversified datasets [34]. These datasets originate
from diverse channels, including EHRs, patient-reported outcomes, and imaging data,
collectively harboring a reservoir of insights regarding the disease and its progression.

GNNs constitute a specialized category of data processing (DP) algorithms tailored
for managing graph-structured data, commonly encountered in PD research datasets. By
embracing graph-based data representation, these algorithms effectively model intercon-
nections among variables, enabling both pattern recognition and prediction. Additionally,
ML proves invaluable in PD research due to its capability to analyze extensive and intricate
datasets, unveiling latent patterns and relationships that significantly influence disease pro-
gression [35]. In the context of PD research, ML is instrumental in constructing predictive
models for estimating disease trajectories, identifying patient cohorts with similar profiles,
and devising personalized treatment strategies. Together, ML and GNNs play pivotal roles
in advancing PD research, offering a robust and versatile approach to comprehending the
ailment’s underlying mechanisms and optimizing therapeutic strategies [36]. Through
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in-depth analysis of complex datasets and the revelation of hidden patterns and relation-
ships, these technologies provide fresh insights into PD and serve as valuable resources for
enhancing treatment modalities.

GNNs constitute a category of DL algorithms purposefully engineered to manage
graph-structured data in the context of PD research, encompassing datasets such as patient-
reported outcomes, imaging data, and EHRs [37]. Through their capacity to model inter-
variable relationships within the data, GNNs have the potential to yield novel insights
into the underlying mechanisms of PD and facilitate the development of more efficacious
treatment modalities [32]. Concurrently, DL stands poised to provide substantial contri-
butions to PD research by offering a potent and adaptable instrument for scrutinizing
intricate datasets. This capability enables the unveiling of concealed patterns and relation-
ships, thereby unearthing fresh perspectives on the progression of PD and streamlining the
creation of individualized treatment regimens for patients.

In summary, the utilization of DL and GNNs stands as a fundamental requirement in
PD research, providing a versatile and potent approach to comprehending the underlying
mechanisms of the disease and devising efficacious treatments [38]. By meticulously
scrutinizing intricate datasets and unveiling obscured patterns and interrelations, DL
and GNNs possess the capacity to yield innovative perspectives on the disease and its
progression. This, in turn, holds the potential to enhance the development of more efficient
treatment strategies.

PD is a neurological disorder characterized by the degeneration of dopamine-producing
neurons in the substantia nigra, resulting in a spectrum of motor and non-motor symp-
toms. The comprehension and management of this intricate ailment represent a substantial
challenge in healthcare. NNs offer a promising avenue for shedding light on the under-
lying mechanisms of PD and the development of more effective therapeutic strategies.
Through the modeling of intricate interconnections among various factors encompassing
patient-reported outcomes, imaging data, and EHRs, NNs possess the potential to unveil
concealed patterns and relationships that are pivotal in unraveling the complexities of PD
progression. PD represents a neurodegenerative ailment characterized by the deteriora-
tion of dopaminergic neurons in the substantia nigra, resulting in a spectrum of motor
and non-motor symptoms [35]. The intricate nature of PD, coupled with the multitude
of factors influencing its advancement, presents a substantial hurdle in gaining a com-
prehensive understanding of the underlying disease mechanisms and in the pursuit of
effective therapeutic interventions. GNNs hold the potential to catalyze advancements
in PD research by offering a robust and adaptable tool for dissecting graph-structured
data [39]. These algorithms can be trained to discern intricate inter-variable relationships
and derive predictions based on these relationships. This has the potential to yield fresh
insights into the fundamental mechanisms governing PD and contribute to the refinement
of more efficacious treatment approaches.

NNs play a pivotal role in PD research as they provide a robust and flexible approach
to analyzing intricate datasets, uncovering hidden patterns, and discerning correlations.
By modeling the intricate connections between various factors, NNs hold the potential
to reveal fresh insights into the fundamental mechanisms underlying PD, thereby aiding
in the development of more effective therapeutic interventions. In recent years, GNNs
have gained prominence due to their proficiency in capturing complex relationships within
graph-structured data, with applications spanning various domains, including health-
care. Table 1 provides an overview of the technologies (machine learning, deep learn-
ing, data preparation, data visualization, GNNs, and NNs) utilized in the context of the
related works.
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Table 1. Utilized technologies in PD research, as presented in related work.

References Machine
Learning

Deep
Learning

Neural
Networks

Knowledge
Graphs GNNs Data

Preparation EDA Data
Visualization

[12]
√

[13]
√

[14]
√

[15]
[16]

√

[17]
√ √

[18]
√ √

[19]
√ √

[20]
√

[21]
√

[22]
√

[23]
√

[24]
√

[25]
√

[26]
√

[27]
√

[28]
√

[29]
√

[32]
√

[33]
√ √

[34]
√

[35]
√ √

[36]
√ √

[37]
√ √

[38]
√

[39]
√ √

3. Research Methodology

A comprehensive literature survey was conducted, utilizing Google Scholar as the
primary search tool. The search strategy involved a combination of pertinent keywords,
including: “Data Analysis”, “Data Preparation”, “Exploratory Data Analysis”, “Data
Visualization”, “ML”, “DL”, “Graph NNs”, and “Electronic Healthcare Records”. These
keywords were also systematically paired with “PD” to ensure comprehensive coverage. All
types of scholarly works were considered eligible for inclusion in the review, encompassing
conference proceedings, dissertations, book chapters, peer-reviewed archived manuscripts,
and published peer-reviewed manuscripts.

The search queries outlined earlier yielded a total of 300 papers from Google Scholar
and 40 papers from ResearchGate. A thorough manual review of these papers was con-
ducted to identify those with a specific focus on the utilization or construction of GNNs
within the healthcare domain, with PD being the primary subject of study. This metic-
ulous review process led to a refined selection of 143 papers meeting the criteria. Ad-
ditionally, during the phase of data collection, a total of 340 documents were gathered
from various conferences. Subsequently, prior to initiating the article screening process,
18 duplicate records were identified and removed, while 28 records were deemed in-
eligible, and 60 documents were excluded for various reasons. As the screening phase
commenced, 234 articles were initially considered. Of these, 41 were excluded, and an
additional 17 reports were unobtainable. Consequently, following the conclusion of the
article screening phase, 176 reports remained for further assessment of eligibility. Of these,
certain documents were eliminated due to non-relevance to the research objectives after
a thorough reading. Upon concluding the article screening phase, 143 sources remained,
and notably, 94 of these represented articles that referenced an additional 45 sources, all of
which contributed to the comprehensive bibliographic review.

Subsequently, this collection of papers underwent further refinement to exclusively
encompass those papers that had been published or made available in public manuscript
archives during the period spanning from January 2018 to December 2022, with their
full-text versions publicly accessible at the time of composing this study. This meticulous
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process culminated in a final set of 94 papers. Additional details and insights are illustrated
in Figure 2.

Figure 2 provides an overview of the paper selection process. By amalgamating the
outcomes of our searches on ResearchGate and Google Scholar, we systematically applied
the research methodology known as PRISMA. Initially, a rapid review was conducted to
winnow down the initial pool of papers. Subsequently, each paper underwent meticulous
scrutiny, coupled with additional techniques, leading to the ultimate inclusion of 75 papers
in our study.
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4. State-of-the-Art in GNNs for PD

The realm of GNNs in PD research is rapidly evolving, witnessing an upsurge in
novel approaches. Recent years have witnessed growing interest in employing GNNs to
explore PD’s underlying mechanisms, thanks to their robust data analysis capabilities. An
inherent strength of GNNs in PD research lies in their adeptness at handling vast datasets
from various sources, including patient-reported outcomes, imaging data, and EHRs. By
integrating these datasets into a knowledge graph, GNNs can unveil intricate data patterns
and relationships, providing insights into PD’s fundamental mechanisms. Furthermore,
advancements have emerged in using GNNs for PD diagnosis, including the use of DP
models to analyze imaging data and predict disease progression, showing promising
results in PD detection and prognosis. These approaches hold the potential to improve
patient well-being and reduce the healthcare burden of PD. In summary, GNNs in PD
research continue to evolve, with new approaches frequently reported. This dynamic field
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offers promise for advancing our understanding of PD and enhancing patient outcomes,
representing a promising area for future research.

4.1. Graph Convolutional Networks (GCNs)

Graph convolutional networks (GCNs) represent a specific category of GNNs tailored
for the analysis and manipulation of graph-structured data. In the context of PD research,
characterized by intricate relationships between diverse data sources like patient-reported
outcomes, imaging data, and EHRs, GCNs emerge as a fitting choice. Within GCNs, the
graph’s nodes serve as data points, while edges denote the connections between these
points. Through the application of convolutional filters on these graph structures, GCNs
efficiently process and scrutinize data, accounting for the interdependencies among differ-
ent data points. This unique ability empowers GCNs to unveil intricate data patterns and
relationships, thereby facilitating a deeper understanding of the fundamental mechanisms
underlying PD.

A notable advantage of GCNs in PD research lies in their capacity to handle substantial
volumes of data from varied sources, encompassing patient-reported outcomes, imaging
data, and EHRs. This integration of data into a knowledge graph enables GCNs to unveil
complex data patterns and relationships, offering valuable insights into the underlying
aspects of PD. Recent advancements in applying GCNs to PD diagnosis have emerged,
notably in deploying DL models to scrutinize imaging data and forecast disease progression.
These approaches exhibit considerable promise, characterized by robust accuracy rates in
detecting PD and predicting its progression. Such developments signify the potential to
enhance patient outcomes and alleviate the strain that PD places on healthcare systems.

This research has introduced a method called multi-view graph convolutional network
(MV-GCN) designed for predictive tasks related to PD. MV-GCN utilizes multiple brain
graph inputs from diverse perspectives to enhance prediction accuracy [40]. Validation of
the MV-GCN method is conducted using real-world data from the Parkinson’s Progression
Markers Initiative (PPMI), which tracks disease progression in patients. The method’s
effectiveness is assessed in predicting pairwise matching relationships within the context
of PD, and the results highlight its promising performance in addressing this challenge.

Within the realm of skeleton-based action recognition, various studies have embraced
diverse strategies to enhance the performance of recognition models. Some have incorpo-
rated attention mechanisms to emphasize discriminative joints within each frame, while
others have employed a spatial–temporal graph convolutional network (ST-GCN) as the
foundational framework [41]. An ST-GCN effectively captures both spatial and temporal
information by introducing graph convolution for spatial features and conventional con-
volution for dynamic temporal information [42]. To further elevate performance, certain
studies have proposed enhancements to the ST-GCN, such as cross-domain spatial residual
layers and dense connection blocks. These innovations effectively handle spatial–temporal
information and enhance feature robustness, respectively [43,44]. Additionally, another
study introduced variable temporal dense blocks with varying kernel sizes to extract
temporal features across different ranges [45].

In [46], the authors present a novel model, known as the crow-search-algorithm-based
decision tree (CSADT), for the early diagnosis of PD. The proposed method was rigorously
tested on four distinct PD datasets: meander, spiral, voice, and speech-Sakar. Key highlights
of the CSADT model include data normalization, novel locations generated through the
crow search algorithm, sub-feature selection using the sigmoid function, and decision tree
analysis. The CSADT model achieved remarkable accuracy, with results indicating close
to 100% accuracy and swift diagnosis, demonstrating its potential for early PD detection.
The CSADT model achieved close to 100% accuracy in the diagnosis of Parkinson’s disease,
making it a promising tool for early detection. The model’s success is attributed to its
innovative approach, including data preprocessing, the crow search algorithm, and decision
tree analysis. It outperformed other machine learning algorithms in terms of accuracy,
precision, recall, and the combination measure F1. This innovation offers a reliable and
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rapid diagnosis of PD. In [47], ML and DL techniques were employed to identify blood-
based biomarkers for Alzheimer’s and Parkinson’s diseases, with a specific focus on the
promising performance of CNNs for biomarker identification and disease detection, which
holds potential for early diagnosis and clinical trial screening.

In recent years, the field of neuroimage analysis has witnessed the development of
numerous data mining techniques, with a particular surge in the popularity of DL mod-
els, attributed to their accomplishments in diverse computer vision applications [48]. An
illustrative example is the work by Ktena et al. [49], which introduced a metric learning
approach aimed at distinguishing between cases and controls in autism research. This inno-
vative method involves the construction of a graph representing patients’ brain networks
in regions of interest (ROIs) utilizing GCN. It leverages this graph to extract features from
patients’ neuroimages.

4.2. Graph Attention Networks (GATs)

GATs, a subset of GNNs, integrate attention mechanisms to evaluate the significance
of connections within a graph. They have proved highly advantageous for analyzing
graph-structured data in the context of PD research, where intricate relationships among
various data sources, such as patient-reported outcomes, imaging data, and EHRs, can be
portrayed as a graph. Using GATs, each node within a graph receives an attention weight
based on its associations with other nodes. This weight governs the node’s importance
within the network, influencing the information flow between nodes. Consequently, GATs
possess the ability to dynamically assess the importance of diverse connections within the
graph and focus on critical information during DP.

A notable strength of GATs in PD research lies in their capacity to manage extensive
and intricate graphs featuring numerous nodes and connections. Leveraging attention
mechanisms to adaptively weigh connections, GATs effectively filter out extraneous or
irrelevant data and prioritize essential information during DP. Recent advancements in
the application of GATs for PD diagnosis have emerged, notably utilizing DL models for
the analysis of imaging data and prognosis of disease progression. These approaches
have exhibited promising outcomes, boasting high accuracy rates in PD detection and
prognostication, which could significantly enhance patient outcomes and alleviate the
burden of PD on healthcare systems.

Additionally, researchers have explored the utilization of GCNs in the concurrent
analysis of structural and functional MRI data to classify autism. In one study (Arya
et al. [50]), relational data between nodes were extracted from T1w structural metrics, while
functional brain summaries were derived from fMRI data, and subsequently employed
within a GCN model. Another study (Dsouza et al. [51]) introduced a multimodal GCN
(M-GCN) framework for predicting phenotypic measures, amalgamating inputs from
functional connectivity (FC) and subject-specific structural connectomes. Moreover, the
GAT model has been explored for its potential interpretability in predicting phenotypic
measures within a bipolar dataset (Yang et al. [52]), using the FC matrix as the graph
and an anatomical and statistical FC feature set. These endeavors showcase the ongoing
exploration of graph-based NN models to advance our understanding of neurological
conditions like PD and autism while potentially enhancing patient care.

This study proposes a deep multi-modal fusion model (DMFM) based on GAT as
the method for capturing spatial dependencies. GAT is harnessed to model these graphs,
effectively incorporating spatial dependencies. Furthermore, a combination of global con-
text information and the allocation of adjacent time importance is achieved by integrating
convolutional long short-term memory (ConvLSTM) and an attention mechanism into a
temporal attention mechanism (TAM) to model the spatiotemporal correlation [53]. Finally,
a prediction module is employed for making the ultimate prediction.
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4.3. Graph Recurrent Networks (GRNs)

Graph recurrent networks (GRNs) represent a subtype of GNNs that incorporate
recurrent connections, facilitating the modeling of dynamic changes in graph-structured
data. Within the context of PD research, where alterations in patient symptoms, imaging
data, and EHRs unfold over time and can be represented as a dynamic graph, GRNs prove
to be well-suited for processing such time-series data.

In GRNs, every node within a graph maintains connections with itself across multiple
time steps, enabling the network to effectively capture the temporal evolution of the graph.
This characteristic is particularly advantageous when dealing with time-series data in
the PD domain, where shifts in patient symptoms and clinical indicators can be aptly
characterized as dynamic graph structures [54].

A notable advantage of GRNs in the realm of PD research lies in their capacity to cap-
ture temporal dependencies among various data sources, encompassing patient-reported
outcomes, imaging data, and EHRs. By effectively modeling the evolving nature of a graph
over time, GRNs contribute to a more comprehensive understanding of disease progres-
sion, thereby assisting healthcare providers in gaining deeper insights into the underlying
mechanisms of PD. Recent advancements in the deployment of GRNs for PD diagnosis
involve the application of DL models to analyze time-series imaging data and predict
disease progression. These endeavors have yielded promising outcomes, characterized by
high accuracy rates in PD detection and prognosis, suggesting the potential to enhance
patient outcomes and alleviate the burden of PD on healthcare systems. In summation,
GRNs represent a robust tool for processing and analyzing time-series data within the scope
of PD research. Their utility holds substantial promise for advancing our comprehension of
this intricate condition and, consequently, for improving patient outcomes [37].

4.4. Graph Transformer Networks (GTNs)

Graph transformer networks (GTNs) represent a subtype of GNNs that have been
infused with the transformer architecture, initially conceived for sequential data like natural
language. In the realm of PD research, GTNs have found utility via the adaptation of this
architecture to process graph-structured data, manifesting their applicability in diverse
domains. Within GTNs, the preservation of the graph structure is achieved through the
employment of graph attention mechanisms. These mechanisms empower the network
to assign varying degrees of importance to different nodes within the graph, a crucial
attribute when dealing with the intricacies of PD research. In this context, where distinct
clinical markers and patient-reported outcomes may hold differing degrees of relevance
in predicting disease progression, the ability of GTNs to weigh such importance proves
especially valuable.

An inherent strength of GTNs in the domain of PD research lies in their proficiency
in managing substantial and intricate graph structures. This capability is particularly
pertinent when dealing with complex data sources like EHRs and imaging data. By doing
so, GTNs effectively capture the intricate interconnections between various data elements,
thus furnishing a more comprehensive perspective on disease progression and patient
outcomes [54]. Recent strides made in applying GTNs to the diagnosis and treatment
of PD have been noteworthy. These advances encompass the utilization of DL models
for scrutinizing imaging data and forecasting disease progression. Impressively, these
approaches have exhibited considerable potential, yielding commendable accuracy rates
in the realms of PD detection and progression prediction. Such advances hold substantial
promise in the realm of healthcare systems by potentially ameliorating patient outcomes
and mitigating the healthcare burden induced by PD.

It is worth noting that these approaches encompass distinct optimization techniques,
with the first relying on the Adam optimizer and the second opting for the L-BFGS opti-
mizer [55]. However, due to the limitations of the baseline implementation, the use of the
Adam optimizer becomes a pragmatic choice, albeit necessitating additional hyperparame-
ter fine-tuning to yield optimal results. Despite this requirement for meticulous tuning, the
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outcomes achieved with the Adam optimizer surpass those achieved through fast neural
style transfer [55]. This enhancement can be attributed to the intricate nature of the task
involving the creation of a versatile transformer network proficient in accommodating both
the style and content signals.

4.5. Graph Autoencoders (GAEs)

Graph autoencoders (GAEs) constitute a noteworthy facet of GNNs applied to the
intricate realm of PD research. Operating on the autoencoder architecture, GAEs are adept
at processing graph-structured data, an attribute that aligns with the multifaceted nature of
PD studies. Autoencoders, by design, are NNs proficient in the art of reconstructing their
input data. They achieve this by encoding the data into a lower-dimensional representation
and subsequently decoding it to regain the original form. In the context of GAEs, this
input takes the form of a graph, while the lower-dimensional counterpart materializes as a
graph embedding. Within the domain of PD research, GAEs prove invaluable in deriving
concise representations from intricate graph structures, such as EHRs and imaging data.
This proficiency enables GAEs to capture the underlying relationships interconnecting
diverse data sources, thereby furnishing a more comprehensive understanding of disease
progression and patient outcomes. Additionally, GAEs serve as adept tools for dimensional
reduction—an asset of considerable importance in PD research, where handling high-
dimensional datasets, notably in the realm of imaging data, poses distinct challenges.
By condensing data into lower dimensions, GAEs simplify the process of identifying
latent patterns and relationships, which might have eluded detection within the original
data representation.

Noteworthy strides have been made in employing GAEs for PD diagnosis and ther-
apeutic interventions. These advancements encompass the utilization of DL models for
dissecting imaging data and forecasting disease progression. Encouragingly, these ap-
proaches have yielded promising outcomes, harboring substantial potential for enhancing
patient well-being and alleviating the healthcare burden associated with PD. In conclusion,
GAEs emerge as a vital and adaptable tool within the PD research landscape. Their compe-
tence in managing graph-structured data, coupled with their ability to streamline complex
datasets through dimensionality reduction, positions them as valuable assets in unraveling
the complexities of PD.

Other authors have introduced DD-GCN, a novel method for predicting human splice-
site (SL) events using GCNs. DD-GCN employs a two-pronged drop-out strategy, including
coarse-grained node dropout and fine-grained edge dropout, to enhance gene embeddings
for precise SL prediction [56]. Importantly, DD-GCN exclusively trains on established
SL pairs without additional data from external gene sources. Furthermore, the authors
present the SLMGAE model, designed for predicting protein–protein interactions (PPIs)
by considering multiple perspectives within a protein graph. Using an autoencoder archi-
tecture, SLMGAE obtains low-dimensional graph representations for predictive purposes.
Experiments confirm SLMGAE’s superior predictive performance compared to other GNN
methods and matrix factorization techniques [57,58]. In [59], the authors introduced two
innovative Hessian-based SSFS frameworks, denoted as Hessian–Laplacian-based SSFS
frameworks using the generalized uncorrelated constraint (HLSFSGU). These frameworks
employ mixed-norm (0 < p < 1) regularization for joint sparse feature selection, presenting a
novel approach to selecting informative features. Both the HLSFSGU framework and GAEs
represent innovative approaches in their respective domains. The HLSFSGU framework
introduces a novel method for feature selection by combining Hessian and Laplacian matri-
ces, while GAEs are known for their unique approach to graph-based autoencoding. In
summary, GAEs are valuable for analyzing graph-structured data in PD research, offering
potential benefits in understanding the disease and improving patient outcomes.
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4.6. Graph Generative Networks (GGNs)

Graph generative networks (GGNs) represent a category of graph-based DL models
designed to produce new graph instances resembling a given graph or a collection of
graphs. In the context of PD, GGNs can be employed to create realistic depictions of PD
symptom progression over time, leveraging available PD patient data. These generated
graphs serve as a foundation for predicting future PD symptom developments or gaining
insights into the fundamental biological processes driving the disease. By integrating
graph-based representations and generative models, GGNs furnish a potent instrument
for unraveling the intricate interplay between PD symptoms and the underlying disease
pathology, as well as for crafting more efficacious and personalized PD treatments [60].

In the domain of medical image analysis, where labeled images are often limited in
availability, augmentation plays a pivotal role, facilitated by the GGNs-based data aug-
mentation technique. GGNs constitute a generative framework comprising two networks:
a generator network responsible for crafting synthetic data and a discriminator network
tasked with distinguishing real data from synthetic counterparts.

4.7. Graph Reinforcement Learning Networks (GRLNs)

Graph reinforcement learning networks (GRLNs) are graph-based deep learning
models that utilize reinforcement learning algorithms to make decisions based on graph-
structured inputs. In the context of PD, GRLNs are valuable for making personalized
treatment decisions, including optimizing medication dosages, selecting appropriate physi-
cal therapy exercises, and predicting symptom progression. By combining graph-based
representations with reinforcement learning, GRLNs improve treatment choices for PD
patients, leading to better outcomes. They can also be trained on large datasets to cap-
ture complex data patterns and relationships, resulting in more accurate predictions and
enhanced treatment strategies.

In [61], a deep reinforcement learning network was developed to predict brain tumor
locations. Using 70 post-contrast T1-weighted 2D image slices from the BraTS brain tumor
imaging database, a deep Q-network (DQN) was trained to demonstrate reinforcement
learning’s practical application in radiology AI. In another instance [57], researchers devised
a deep-reinforcement-learning-based method for medical image semantic segmentation.
The goal was to reduce human involvement in extracting medical image masks, introducing
an advanced version of the deep Q-learning architecture. Although this technique showed
promise in selecting optimal masks during image segmentation, the authors noted potential
room for improvement in the mask extraction stage in future research. Lastly, in [60], a
reinforcement-learning-based recommendation system for antihypertensive medications
was proposed for patients with hypertension and type 2 diabetes. This system aimed to
enhance precision medicine by integrating electronic health data and machine learning,
resulting in the development of a Q-learning model. Table 2 provides an overview of the
employment of various GNN techniques across the cited related works. The table offers
valuable insights into the adoption of GNNs in different studies, showcasing the diversity
of techniques employed for various research objectives.

Table 2. Utilization of GNN techniques in the related work.

References GCNs GATs GRNs GTNs GAEs GGNs GRLNs

[40–49]
√

[50–53]
√

[37,54]
√

[55]
√

[56–59]
√

[60]
√

[57,60,61]
√
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Table 3 was constructed to encompass a range of criteria meticulously chosen to pro-
vide an all-encompassing characterization of the 12 distinct algorithms and tools employed
within the domain of GNNs. The “Availability” criterion indicates whether the respective
algorithm or tool is readily accessible to the public and whether it can be employed without
financial constraints. The “Data Volume” criterion indicates a pivotal role in gauging the
capability of the algorithm or tool to manage substantial data volumes, thereby address-
ing its aptitude for handling big data. Equally significant is the “Data Variety” criterion,
as it discerns the algorithm/tool’s versatility in accommodating various data types and
facilitating the integration of heterogeneous data sources. The “Data Velocity” criterion
is instrumental in elucidating whether the algorithm/tool is tailored to function seam-
lessly with streaming data or is designed for static DP. In the healthcare context, “data
veracity” alludes to the precision, comprehensiveness, and dependability of healthcare
data, spanning data originating from medical imaging, electronic health records, wearable
devices, and other sources. Assuring the veracity of healthcare data is a critical imperative,
bearing implications for informed decision-making in patient care, treatment strategies, and
healthcare policy formulation. The absence of data veracity, characterized by inaccuracies,
omissions, or unreliability, can culminate in erroneous diagnoses, ineffective therapeutic
interventions, and suboptimal patient outcomes. Hence, the preservation of data veracity
assumes paramount importance in the realm of healthcare data management and analytics.
Lastly, the “Monitoring/Alerting” criterion indicates significance in appraising whether
the algorithm/tool boasts the essential functionality to monitor data and promptly notify
patients and healthcare practitioners of any pertinent issues.

Table 3. Evaluation of related works with specific criteria.

Algorithms/
Criteria Availability Data Volume Data Variety Data

Velocity
Data

Veracity
Monitoring
/Alerting

Multi-view graph convolutional network
MV-GCN [40] OS Scalable Homogeneous Static Low No

Spatial–temporal graph convolutional
network (ST-GCN) [41] OS Scalable Homogeneous Static Medium No

Regions of interest using GCN
(ROI-GCN) [42] PoC Scalable Homogeneous Static Low No

Crow search algorithm and decision tree
(CSADT) for early PD diagnosis [46] OS Scalable Homogeneous Static Low No

Convolutional neural network (CNN)
for Alzheimer’s (AD) and Parkinson’s

disease (PD) [47]
OS Scalable Homogeneous Static Low No

MRI-GCN [50] OS Scalable Homogeneous Static Low No
Multimodal GCN [51] FoS Scalable Heterogeneous Static Low No

Deep multi-modal fusion Model
(DMFM) based on graph attention

networks (GATs) [53]
FoS Scalable Heterogeneous Static Medium No

GRNs for PD diagnosis [54] PoC Scalable Homogeneous Static Low No
L-BFGS hyperparameter tuning [55] OS Scalable Homogeneous Static Low No
DD-GCN for human splice-site [56] OS Scalable Homogeneous Static Low No
Multi-view graph autoencoder [57] FoS Scalable Heterogeneous Static Low No

Hessian–Laplacian-based SSFS
framework [59] PoC Scalable Homogeneous Static Low No

Medical image analysis GGNs [60] OS Scalable Homogeneous Static Low No
Deep Q-network (DQN) from BraTS

brain tumor imaging [61] OS Scalable Homogeneous Static Medium No

Table 3 includes various algorithms, assessing factors like availability, scalability, data
handling (volume, variety, velocity), and monitoring/alerting capabilities. For example,
MV-GCN is open-source, scalable, and handles homogeneous static data, but lacks mon-
itoring and has low velocity. ST-GCN is similar but with medium velocity. ROI-GCN
is a proof-of-concept, scalable, with low velocity and no monitoring. MRI-GCN is open-
source and scalable, with low velocity and no monitoring. Other algorithms share similar
characteristics. Some excel with heterogeneous data (e.g., multimodal GCN), while others
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suit homogeneous data (e.g., GRNs for PD diagnosis). The “DMFM based on GATs” is
scalable, handles heterogeneous data, and has medium velocity and veracity, but lacks
monitoring/alerting. None of the listed algorithms offer monitoring/alerting functionality.

5. Discussing Open Issues and Challenges

While GNNs are promising in the advancement of PD research, there are various open
issues and challenges to be tackled in the future. In this section, we aim to explore and
discuss the issues/challenges identified in this survey.

Data Quality and Quantity: The quality and quantity of data available for PD research
are pivotal factors influencing the effectiveness of GNNs. This encompasses diverse data
sources, including patient-reported outcomes, imaging data, and EHRs. Ensuring data
quality and consistency poses a substantial challenge, underlying the necessity for robust
and standardized data collection protocols.

Data quality and quantity constitute paramount considerations in applying GNNs
within the realm of PD research. The performance of GNN models hinges directly upon
the caliber and volume of available data. PD research draws data from various sources,
including electronic health records, wearable devices, and self-reported surveys. The
imperative lies in maintaining data accuracy, consistency, and relevance to the specific
research problem. Additionally, the volume of data holds significance in GNNs for PD,
as a larger dataset often translates into enhanced model generalization and improved
performance. Nonetheless, accumulating substantial data quantities can prove arduous,
particularly in the healthcare domain, where ethical and privacy concerns loom large.
Hence, striking an equilibrium between data quality and quantity emerges as a fundamental
endeavor to effectively harness the potential of GNNs in PD research.

In summation, the utility of GNNs in PD research is heavily reliant on the caliber
and volume of available data. Factors such as data accuracy, consistency, relevance, and
ethical considerations within the healthcare domain collectively influence the success of
the research. Achieving the right balance between data quality and quantity serves as a
linchpin for attaining meaningful and precise outcomes in PD research employing GNNs.

Model Selection and Validation: GNNs are a powerful but intricate tool, and choos-
ing the appropriate ontology model for a specific dataset and application can be challenging.
Additionally, ensuring the reliability of GNN performance through robust and standardized
validation procedures is crucial.

In the context of PD research, selecting and validating GNN models are pivotal for
accurate and dependable results. Model selection aims to identify a model capable of
capturing the inherent relationships within PD data, especially concerning graph structures
and node interactions.

Once a GNN model is chosen, rigorous validation is essential to gauge its generaliz-
ability to new, unseen data. Various techniques like cross-validation, holdout validation,
and bootstrapping serve this purpose. Cross-validation involves dividing the data into
subsets for iterative model training and evaluation. Holdout validation partitions the data
into training and validation sets, with the model trained on the former and evaluated on the
latter. Bootstrapping, a resampling method, repeatedly samples from the original dataset
for training and evaluation. In summary, GNNs offer substantial potential in PD research,
but their complexity demands careful model selection and comprehensive validation. Es-
tablished techniques such as cross-validation, holdout validation, and bootstrapping are
instrumental in this process, ensuring the trustworthiness of research outcomes.

When evaluating a GNN model, it is imperative to assess both its accuracy and
robustness. Accuracy is typically measured through common metrics like precision, recall,
and the F1-score, which provide insights into the model’s performance. However, in
addition to accuracy, it is crucial to evaluate the model’s robustness in handling missing or
noisy data. Furthermore, assessing the model’s generalizability to new, unseen data can be
achieved through techniques like transfer learning.
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In summary, the selection and validation of GNN models in the PD research domain
play a pivotal role in ensuring the accuracy and reliability of outcomes. These evaluations
should focus on the model’s capacity to grasp the intricate relationships within PD data and
its adaptability to novel, unobserved data. The performance assessment should encompass
a blend of precision and reliability metrics.

Integration with Electronic Healthcare Records: EHRs are pivotal in PD research,
containing essential patient data encompassing demographics, medical history, and treat-
ment outcomes. Nevertheless, harmonizing these data with GNNs presents a challenge,
underlining the necessity for standardized protocols and data integration tools to facilitate
their effective utilization in PD research.

In the realm of PD research, the fusion of EHRs with GNNs holds profound signif-
icance for tailoring personalized treatment strategies and guidelines. This integration
empowers the analysis of a patient’s comprehensive health dossier, encompassing demo-
graphic particulars, symptomatology, medication chronicles, and diagnostic findings. This
amalgamation furnishes the groundwork for an integrated knowledge graph, capitalizing
on GNN capabilities to scrutinize and fathom PD data.

For the seamless integration of EHRs with GNNs within the PD domain, multifaceted
technical and non-technical considerations merit attention. Factors including data privacy
and security take precedence as the collected data may encompass sensitive health details.
Interoperability is equally pivotal as EHRs are frequently archived in disparate formats,
often necessitating conversion and standardization for GNN compatibility.

Moreover, ensuring the quality and quantity of collected EHR data is imperative to
underpin the development of effective GNN models. Equally pivotal are the steps of model
selection and validation in the amalgamation of EHRs with GNNs, as the chosen model
significantly influences result accuracy and reliability.

In conclusion, the integration of EHRs with GNNs within the PD domain harbors sub-
stantial potential for advancing our comprehension of PD and facilitating the formulation of
tailored treatment strategies and guidelines for PD patients. Nevertheless, it is imperative
to confront technical and non-technical obstacles, encompassing data privacy, security,
interoperability, data quality and quantity, as well as model selection and validation, to
realize a successful integration.

Privacy and Confidentiality: The utilization of GNNs in PD research introduces
paramount concerns regarding privacy and confidentiality, primarily due to the analysis
of sensitive patient data. Safeguarding the privacy and confidentiality of these data is
of utmost importance, necessitating the implementation of robust privacy and security
protocols, as well as comprehensive data protection measures. Within the realm of PD
research, the application of GNNs gives rise to substantial privacy and confidentiality
considerations. This stems from the acquisition, retention, and processing of medically
sensitive information pertaining to patients. Inadequate handling of such data could po-
tentially result in security breaches, unauthorized access, and identity theft. To effectively
mitigate these concerns, it is imperative to establish stringent privacy and security measures
that ensure the safeguarding of patients’ personal information. This can be accomplished
through the adoption of encryption techniques, access control mechanisms, and secure data
storage practices. Additionally, adherence to pertinent data protection regulations, such
as the General Data Protection Regulation (GDPR) [62], Health Insurance Portability and
Accountability Act (HIPAA) [63], and the Personal Information Protection and Electronic
Documents Act (PIPEDA) [64], is essential. Furthermore, the collection of medical infor-
mation should only proceed with informed consent from patients, with data utilization
strictly confined to the intended purpose. To uphold the confidentiality and privacy of PD
patients’ information, it is advisable to implement a multifaceted approach encompassing
both technical and organizational measures.

In summary, the incorporation of GNNs in PD research introduces a spectrum of
complexities and unresolved matters that warrant further exploration. The paramount im-
portance of data quality and quantity cannot be overstated, as it fundamentally underpins
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the efficacy of GNN models. Striking the right equilibrium between these factors holds
significant implications for the attainment of precise and substantive outcomes. Further-
more, the meticulous selection and validation of models are pivotal steps in ensuring the
resilience and broad applicability of GNN models. It is advisable to employ a fusion of
accuracy and robustness metrics when assessing a model’s performance.

The potential integration of EHRs offers a promising avenue for harnessing substantial
clinical data resources in PD research. However, it is imperative to acknowledge and
address the pertinent concerns of privacy and confidentiality. Upholding responsible data
handling practices is indispensable for cultivating trust and upholding ethical standards
within healthcare research. In conclusion, the effective implementation of GNNs in PD
research hinges on the resolution of these ongoing issues and challenges. Such endeavors
are instrumental in advancing our capacity to devise more efficacious treatments for
individuals afflicted by PD.

6. Proposed Approach

The proposed approach designed for PD employing GNNs primarily aims at the
extraction of valuable insights to facilitate PD monitoring and alert systems. This approach
emphasizes the integration of heterogeneous and disparate data from external sources,
such as sensor data collected from wearables and EHRs, into a GNN-based framework.

The initial step of this proposed approach encompasses data retrieval and pre-processing,
including the collection of raw data from external sources. In our experimental data collec-
tion, a Samsung Galaxy watch (46 mm SM-R800) was utilized, in conjunction with a custom
application developed on the Tizen 4.0 OS and deployed on the watch [30]. The sensor
data collected from the application on the watch undergo a series of preparatory steps to
render them suitable for subsequent analysis. This preparatory step encompasses tasks
such as data standardization, normalization, and the removal of superfluous or irrelevant
information. This entails initial data standardization to ensure uniformity, normalization to
bring data within a consistent scale, and the application of noise reduction techniques to
eliminate any outliers or irrelevant information. Following the ontology-based semantic
annotation and integration of the available data, the resulting knowledge graph serves as
the foundation for the creation of the ultimate GNN model tailored for PD. This final GNN
model comprises several integral components, including a GCN, a GAT, and a GRN.

These interconnected networks collaborate to systematically analyze the data and
derive meaningful insights to bolster PD research and facilitate the creation of personalized
treatment strategies. It is essential to underline that the proposed architectural framework
must also effectively address privacy and confidentiality concerns, given that the data being
collected and analyzed may encompass sensitive information. Implementing safeguards
such as encryption and secure data storage becomes imperative to uphold patient privacy
and maintain the confidentiality of their information.

As previously mentioned, the current method of monitoring and signaling medication
dosing in PD relies on fixed-time alerts scheduled through smart devices, using DDIs
entered by either the patient or their healthcare provider. However, this approach lacks
real-time integration of critical health data, such as immediate symptoms or the patient’s
condition, relying solely on patient actions. This limitation can lead to deviations from the
prescribed treatment plan, resulting in suboptimal treatment adherence and effectiveness.
To address this challenge and ensure the security and privacy of collected data, our pro-
posed solution involves the development of an innovative edge-device-based application
with robust data protection mechanisms. This system operates by continuously collecting
and analyzing the personal health data of PD patients in real-time or near-real-time while
adhering to stringent data security standards and patient privacy regulations. Utilizing a
combination of symptom analysis, including factors such as bradykinesia and tremor, our
approach accurately identifies instances of missed medication doses. By scrutinizing these
subtle events, the application promptly detects deviations from the treatment plan and
promptly alerts the patient. Our solution is designed to prioritize data security and patient
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privacy, incorporating encryption, access controls, and compliance with data protection
regulations. This approach ensures that sensitive health data are handled with the utmost
care and security.

In conclusion, the proposed architecture for PD monitoring and alerting, based on
the utilization of GNNs, constitutes a comprehensive and systematic approach that not
only harnesses the capabilities of GNNs to scrutinize and comprehend PD-related data but
also places a strong emphasis on data security and privacy. Through the amalgamation
of data from diverse sources and stringent data protection measures, this framework has
the potential to usher in transformative changes in PD research and provide invaluable
support for the formulation of personalized treatment regimens and guidelines tailored to
PD patients while safeguarding the confidentiality of sensitive patient information.

To harness the full potential of GNNs in PD research, there is a need for the adoption
of a comprehensive and cohesive approach to GNN construction and utilization. The
proposed approach is underpinned by a series of structured steps, as illustrated in Figure 3.
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1. Data collection: The initial step involves the acquisition of data from diverse origins,
encompassing wearable devices and individual healthcare documentation. The col-
lected data encompass a range of information, including patient-reported outcomes,
imaging records, and electronic healthcare documentation, among other sources.

2. Data pre-processing: The collected data necessitate preliminary processing and con-
version into a knowledge graph. This process entails the retrieval of pertinent data
from various sources, as well as the cleaning and standardization of the data to achieve
a uniform format, ultimately resulting in their incorporation into a knowledge graph.

3. Data analysis: Subsequently, the knowledge graph undergoes a thorough analysis
employing data analysis techniques to rectify interconnected data. This process may
encompass the utilization of graph theory principles and ML algorithms to discern
patterns and associations within the data, thereby providing valuable insights into
the fundamental mechanisms of PD.

4. Knowledge graph creation: The knowledge graph is subsequently leveraged to
construct a comprehensive representation tailored for healthcare professionals and
policymakers. This process may encompass the application of graph visualization
techniques to present the data in an intuitive and comprehensible manner, facilitat-
ing the creation of personalized treatment strategies and guidelines for individuals
affected by PD.

An innovative approach to enhancing the construction of GNNs in PD research in-
volves the development of a comprehensive system that integrates diverse data sources,
including sensor data, wearable technology data, and EHRs. This system would leverage
advanced algorithms and DP techniques to extract and amalgamate information from
these various sources, ensuring the resulting dataset’s accuracy, consistency, and relevance.
Furthermore, it would incorporate robust strategies to safeguard data privacy and con-
fidentiality while facilitating their availability for research and analysis purposes. This
innovative solution, by improving both the quality and quantity of data accessible for
GNNs, holds the potential to yield more precise and dependable outcomes in PD research
and contributes to the advancement of more efficacious treatments.

One promising strategy for enhancing the integration of EHRs with GNNs involves
the establishment of a standardized data structure that is universally compatible with
various EHR systems. This endeavor may entail the creation of a common data model
that standardizes the representation of pertinent data fields and their relationships, stream-
lining the processes of data aggregation and analysis. Furthermore, the development of
dedicated ML algorithms tailored for EHR data could address challenges such as missing
or inconsistent data, potentially elevating the quality and quantity of data accessible for
GNN analysis. These advancements have the potential to contribute to more precise and
reliable outcomes in PD research.

Within the domain of knowledge graph creation, a potential avenue for innovation,
aimed at addressing privacy and confidentiality concerns, involves the formulation of a
privacy-preserving pre-processing technique tailored for GNNs. This technique could adopt
a differential privacy framework, which introduces controlled noise into the data before they
are employed for model training. This approach serves to safeguard the privacy of sensitive
data while still enabling GNNs to derive insights from the pre-processed data. Additionally,
the pre-processing step may encompass data anonymization procedures, such as hashing
or tokenization, further bolstering the protection of sensitive information. In summation,
the development of a privacy-preserving pre-processing technique holds the promise of
ensuring the responsible and ethical utilization of GNNs within the healthcare context.

Furthermore, the application of automated ML (AutoML) techniques holds the poten-
tial to bring about a transformation in the domain of model selection and validation within
GNNs. This transformation arises from the automation of the processes involved in choos-
ing the most suitable model architecture and hyperparameters. Such automation offers the
significant advantage of substantial reductions in time and resources that would otherwise
be required for manual tuning. Through the utilization of AutoML, researchers gain the
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capability to efficiently evaluate numerous models and hyperparameters, ultimately select-
ing the one that demonstrates superior performance for the specific task at hand. Moreover,
AutoML has the potential to mitigate the risk of overfitting by automatically implementing
essential measures, including cross-validation and regularization, thereby ensuring the
model’s capacity for robust generalization to new and unseen data sources.

To enhance the precision of characterizing and categorizing patient data associated
with PD, a comprehensive approach will be employed. This approach entails the collection
and integration of data from both sensors and electronic health records (EHRs) into an
ontology structure. This central ontology will be augmented with inputs and connections
from pertinent supplementary ontologies. The primary objective is to derive a knowledge
graph that effectively represents the intricate relationships among various variables and
patterns of symptoms associated with PD.

Following the extraction of the knowledge graph, multiple stages of data analysis
will be systematically applied. The overarching aim is to derive a GNN capable of more
accurately classifying and categorizing patient data. This GNN will harness the information
encapsulated within the knowledge graph to uncover previously undisclosed interdepen-
dencies among diverse variables. This innovative approach is anticipated to substantially
enhance accuracy in detecting underlying patterns and trends pertaining to PD.

The process involved in the development of a GNN comprises several essential stages,
each contributing to the refinement of the model. These stages encompass data pre-
processing, feature extraction, network architecture design, and training and testing. Data
pre-processing entails the meticulous cleaning and preparation of data, ensuring its suit-
ability for subsequent analysis. Feature extraction focuses on the identification of the most
pertinent features for analysis. Network architecture design entails the specification of
the GNN’s structure, encompassing factors like the number of layers and nodes. Subse-
quently, the training and testing phases involve the propagation of data through the GNN,
necessitating the adjustment of network weights and biases to enhance accuracy.

The culmination of this rigorous process yields a GNN with heightened accuracy in
the characterization and categorization of patient data associated with PD. This heightened
accuracy holds the potential to significantly enhance the management of PD symptoms
and ultimately lead to improved patient outcomes. In summary, the proposed approach to
GNNs in PD research revolves around the creation of an all-encompassing and integrated
knowledge graph. This knowledge graph harnesses the capabilities of GNNs to scrutinize
and comprehend PD-related data. Through the constructive collaboration of data analysis
and knowledge graph construction, this approach has the potential to catalyze innovations
in PD research and facilitate the development of individualized treatment strategies and
guidelines for PD patients.

7. Conclusions

GNNs have demonstrated substantial promise in the realm of PD research, offering
novel insights and methodologies for comprehending this intricate medical condition. This
survey has offered a comprehensive examination of the current state of the art in applying
GNNs to PD research. It has encompassed a wide array of data sources, pre-processing
techniques, and data analysis methodologies employed to delve deeper into the intricate
mechanisms underlying PD. Despite the challenges and ongoing issues in this domain,
our proposed GNN approach to PD monitoring and alerting has the potential to initiate
a substantial transformation in PD research. This approach is poised to drive substantial
progress, facilitating the development of highly tailored treatment strategies, and ultimately
enhancing the quality of life for individuals grappling with PD. The primary aim of this
research endeavor is to leverage the computational capabilities inherent in GNNs for a
comprehensive analysis and understanding of PD-related data.

Looking ahead, our future research endeavors will seek to further elucidate and
expand the horizons of GNN applications in the realm of PD. Specifically, we intend to
explore several specific research directions, including:
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• Semantic data integration: We will delve deeper into the effective integration of
diverse PD-related data sources using ontologies, including wearable sensor data
and EHRs. This involves optimizing data processing techniques and ensuring se-
mantic data interoperability. Efficient scalable reasoning strategies and rules will be
also examined.

• Advanced algorithm development: We will concentrate on the development of ad-
vanced GNN algorithms tailored to the unique requirements of PD research, empha-
sizing volume, variety, velocity, and veracity of data. This entails the creation of novel
approaches for modeling intricate relationships within the data.

• Validation and clinical implementation: We will embark on efforts to validate the
practicality of our GNN-based approach in clinical settings. Our research will involve
collaborating with healthcare practitioners and policymakers to gauge the real-world
impact of our methodology on PD diagnosis and treatment.

• Ethical and privacy considerations: As the usage of personal health data is central
to our approach, we will thoroughly explore the ethical and privacy concerns sur-
rounding the utilization of sensitive patient information. We intend to establish robust
ethical guidelines for the responsible use of such data.

These future research directions are expected to guide our ongoing work, ensuring that
the paradigm of GNNs in PD research is realized in practical applications. Our commitment
to advancing our understanding of this complex medical condition and enhancing the care
and outcomes for PD patients remains unwavering.
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PD Parkinson’s disease
ML Machine learning
DL Deep learning
NNs Neural networks
GNNs Graph neural networks
MRI Magnetic resonance imaging
AI Artificial intelligence
PSL Probabilistic soft logic
ILP Inductive logic programming
EDA Exploratory data analysis
DDIs Drug–drug interactions
GCN Graph convolutional networks
MV-GCN Multi-view graph convolutional network
FC Functional connectivity
ROI Regions of interest
DTI Diffusion tensor imaging
DMFM Deep multi-modal fusion model
PPMI Parkinson’s Progression Markers Initiative
ST-GCN Spatial–temporal graph convolutional network
GAT Graph attention networks
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M-GCN Multimodal graph convolutional network
EHR Electronic healthcare records
MF-GCN Multimodal fusion graph convolutional network
ConvLSTM Convolutional long short-term memory
TAM Temporal attention mechanism
GRN Graph recurrent networks
GTN Graph transformer networks
L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno
GAE Graph autoencoders
DD-GCN Dynamic directed graph convolutional network
SLMGAE Structure-preserved low-rank graph autoencoders

HLSFSGU
Hessian–Laplacian-based SSFS (space-saliency fingerprint selection)
framework using generalized uncorrelated constraint

GGN Graph generative networks
GRLN Graph reinforcement learning networks
DQN Deep Q-network
GDPR General Data Protection Regulation
HIPAA Health Insurance Portability and Accountability Act
PIPEDA Personal Information Protection and Electronic Documents Act
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53. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
54. Anicet Zanini, R.; Luna Colombini, E. PD EMG data augmentation and simulation with DCGANs and style transfer. Sensors 2020,

20, 2605. [CrossRef] [PubMed]
55. Cai, R.; Chen, X.; Fang, Y.; Wu, M.; Hao, Y. Dual-dropout graph convolutional network for predicting synthetic lethality in human

cancers. Bioinformatics 2020, 36, 4458–4465. [CrossRef] [PubMed]
56. Shams, S.; Platania, R.; Zhang, J.; Kim, J.; Lee, K.; Park, S.J. Deep Generative Breast Cancer Screening and Diagnosis.

In Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI
2018), Granada, Spain, 16–20 September 2018; Volume 11071. [CrossRef]

57. Wang, D.; Lu, Z.; Xu, Y.; Wang, Z.; Santella, A.; Bao, Z. Cellular Structure Image Classification with Small Targeted Training
Samples. IEEE Access 2019, 7, 148967–148974. [CrossRef] [PubMed]

58. Wu, K.; Zhang, D.; Lu, G.; Guo, Z. Learning acoustic features to detect PD. Neurocomputing 2018, 318, 102–108. [CrossRef]
59. Sheikhpour, R.; Berahmand, K.; Forouzandeh, S. Hessian-based semi-supervised feature selection using generalized uncorrelated

constraint. Knowl.-Based Syst. 2023, 269, 110521. [CrossRef]
60. Talo, M.; Baloglu, U.B.; Yıldırım, Ö.; Acharya, U.R. Application of deep transfer learning for automated brain abnormality

classification using MR images. Cogn. Syst. Res. 2019, 54, 176–188. [CrossRef]
61. Stember, J.; Shalu, H. Deep reinforcement learning to detect brain lesions on MRI: A proof-of-concept application of reinforcement

learning to medical images. arXiv 2020, arXiv:2008.02708.
62. GDPR. Available online: https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu_en (accessed on 1

September 2023).
63. HIPAA. Available online: https://www.hhs.gov/hipaa/index.html (accessed on 1 September 2023).
64. PIPEDA. Available online: https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-

protection-and-electronic-documents-act-pipeda/ (accessed on 1 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/096228020000900404
https://doi.org/10.1155/2023/1493676
https://doi.org/10.1038/s41598-023-43956-4
https://www.ncbi.nlm.nih.gov/pubmed/37821485
https://doi.org/10.1016/j.media.2017.07.005
https://www.ncbi.nlm.nih.gov/pubmed/28778026
https://doi.org/10.3390/s20092605
https://www.ncbi.nlm.nih.gov/pubmed/32375217
https://doi.org/10.1093/bioinformatics/btaa211
https://www.ncbi.nlm.nih.gov/pubmed/32221609
https://doi.org/10.1007/978-3-030-00934-2_95
https://doi.org/10.1109/ACCESS.2019.2940161
https://www.ncbi.nlm.nih.gov/pubmed/32832309
https://doi.org/10.1016/j.neucom.2018.08.036
https://doi.org/10.1016/j.knosys.2023.110521
https://doi.org/10.1016/j.cogsys.2018.12.007
https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu_en
https://www.hhs.gov/hipaa/index.html
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/

	Introduction 
	Background Knowledge 
	Research Methodology 
	State-of-the-Art in GNNs for PD 
	Graph Convolutional Networks (GCNs) 
	Graph Attention Networks (GATs) 
	Graph Recurrent Networks (GRNs) 
	Graph Transformer Networks (GTNs) 
	Graph Autoencoders (GAEs) 
	Graph Generative Networks (GGNs) 
	Graph Reinforcement Learning Networks (GRLNs) 

	Discussing Open Issues and Challenges 
	Proposed Approach 
	Conclusions 
	References

