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Abstract: In the production process of progressive die stamping, anomaly detection is essential
for ensuring the safety of expensive dies and the continuous stability of the production process.
Early monitoring processes involve manually inspecting the quality of post-production products
to infer whether there are anomalies in the production process, or using some sensors to monitor
some state signals during the production process. However, the former is an extremely tedious and
time-consuming task, and the latter cannot provide warnings before anomalies occur. Both methods
can only detect anomalies after they have occurred, which usually means that damage to the die
has already been caused. In this paper, we propose a machine-vision-based method for real-time
anomaly detection in the production of progressive die stamping. This method can detect anomalies
before they cause actual damage to the mold, thereby stopping the machine and protecting the mold
and machine. In the proposed method, a whole continuous motion scene cycle is decomposed into a
standard background template library, and the potential anomaly regions in the image to be detected
are determined according to the difference from the background template library. Finally, the shape-
and size-adaptive descriptors of these regions and corresponding reference regions are extracted
and compared to determine the actual anomaly regions. The experimental results demonstrate that
this method not only achieves satisfactory accuracy in anomaly detection during the production
of progressive die stamping, but also attains competitive performance levels when compared with
methods based on deep learning. Furthermore, it requires simpler preliminary preparations and does
not necessitate the adoption of the deep learning paradigm.

Keywords: stamping progressive die; anomaly detection; shape- and size-adaptive descriptor;
machine vision

1. Introduction

The progressive die is a stamping device that efficiently produces parts through con-
tinuous stamping of metal sheets, utilizing a press machine and a mold, based on the
deformation theory of metal thin plates [1,2]. Smaller sheet metal parts that are needed
in large quantities are typically manufactured using progressive dies due to the process’s
stability, high production rate, and automation. Progressive dies have multiple stations,
each performing one or more stamping operations [3]. The multi-station stamping progres-
sive die is a type of advanced and efficient processing equipment for forming sheet metal
parts, which can complete punching, bending, forming, and other stamping processes,
and is widely used in modern industrial production. A characteristic of the production
process of stamping progressive dies is periodic motion, which ensures highly stable pro-
duction quality. However, the state of the progressive die often includes anomalies such
as residual processing waste and foreign object splashes on the production line, as well
as contamination and severe deformation of the workpiece [4,5]. If these anomalies occur
at the stations of the progressive die and stamping continues, these anomalies may cause
damage to the expensive mold and even pose a threat to production safety. Therefore,
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real-time monitoring of these stations and pausing the machine when anomalies occur at
the stations are essential for protecting the mold and ensuring the normal operation of the
processing process.

The early traditional approach involved workers constantly monitoring the products
being manufactured on the production line. Upon detecting any anomalies in the products,
the workers would immediately halt production and inspect the machinery. However, this
was an extremely tedious and time-consuming process. Furthermore, the workers’ attention
could potentially be diverted, leading to a delay in the detection of any abnormalities. To
improve quality, state-of-the-art sensors are being used to replace visual inspections [6].
More recent methods for stamping process monitoring are based on the analysis of status
signals derived from sensors installed on the processing equipment, which use the tonnage
signature, acoustic signature, vibration signature, pressure signature, thermal signature,
and other signatures as health indicators to determine the working condition of stamping
progressive dies. Sah and Mahayotsanun et al. [7,8] used an array of tooling-integrated force
sensors to measure contact pressure distribution across the sheet metal tooling interface
for stamping process monitoring. Xu et al. [9] combined sensing techniques and the
hidden Markov model to develop a fault diagnosis system, which enables adaptability
and flexibility in monitoring industrial manufacturing processes. Li et al. [10] proposed
an audio signal processing approach to inspect manufacturing equipment for tool wear.
Kim et al. [11] integrated the principal component analysis technique and tonnage sensing
system to perform stamping process inspection. These methods can identify an abnormal
status in stamping equipment when malfunctions happen and, to some extent, avoid greater
economic losses. Unfortunately, the biggest obstacle in the actual production process is the
inability to monitor anomalies in real time, that is, to detect anomalies when they occur
but have not yet caused a failure, and to immediately stop the operation of the machine.
Currently, signal changes can only be detected when a failure has already occurred, which
does not allow for taking measures in advance to limit the failure of processing equipment.

Machine vision technology can be employed for inspection purposes. Its fundamental
principle involves the use of industrial cameras to continuously capture images of the target
area, also known as the Region of Interest (ROI). Suitable algorithms are then applied to an-
alyze the captured images to ascertain whether the target meets the requirements. Methods
based on machine vision can achieve low-cost, high-precision, real-time inspection of target
objects, without exerting any external influence on the production process [12]. Traditional
computer vision techniques were often employed to detect surface defects in early studies.
Ghorai et al. [13] employed wavelet features combined with a support vector machine to
localize steel surface defects. Xie et al. [14] proposed an approach based on data augmenta-
tion and a support vector machine to detect defect patterns in noisy images. Liu et al. [15]
proposed a model to project the local texture distribution into the low-dimension space,
and an adaptive threshold was chosen to distinguish defects from the background. Truong
and Kim [16] improved Otsu’s method via an entropy weighting scheme to segment small
defect regions. Substantial research has been conducted on vision-based manufacturing
process monitoring approaches. Martinez et al. [17] compared the information extracted
from an industrial camera placed on top of a steel framing machine prototype with the
manufacturing information available from the building information model to perform the
pre-inspection of steel frame manufacturing. Lin [18] introduced a new adaptive vision-
based method combining discrete wavelet transform-based feature extraction and support
vector machine classification for automated inspection in manufacturing. Liu et al. [19]
developed a product quality classifier based on a sparse multikernel least squares support
vector machine to enable the supervision of assembly production lines. Gamage et al. [20]
investigated possible defect detection methodologies and subsequently proposed a system
capable of the real-time monitoring of defects in the cast extrusion manufacturing process.

So far, few vision-based methods have been proposed for online stamping process mon-
itoring. The vision-based detection techniques related to stamping progressive dies mainly
focus on offline workpiece quality monitoring, such as threshold-based methods [21,22],
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edge-based methods [23], and template matching-based methods [24], and these methods
were compared in [25]. Stamping workpiece quality monitoring methods are mainly used
for offline defect detection.

Although automatic surface defect detection via computer vision techniques has
shown good performance in detecting specific surface defects, these methods could be
further improved, since the complex feature extraction methods are often carefully designed
based on the human experience.

In contrast, deep-learning-based automatic feature extraction methods have a strong
pattern recognition ability, without requiring manual extraction of features. Researchers
applied deep learning to surface defect detection, achieving greater accuracy than con-
ventional methods. Networks such as VGG [26], GoogLeNet [27], and ResNet [28], which
achieved high accuracy in natural image classification, have been applied to industrial
images for classification [29–32] or feature extraction [33,34]. As a result, deep-learning-
based defect detection methods have gained increasing popularity with applications in
various industrial settings. Supervised methods are usually preferred when diversified and
adequate defective samples can be easily collected and labeled. Yin [35] utilized Yolo V3 to
detect damage defects in sewage pipelines and obtained 85.37% mean average precision
(mAP). Feng [36] proposed an improved encoding–decoding network based on feature
image fusion to detect cracks in hydroelectric dam images acquired by an unmanned
aerial vehicle (UAV). Xiao [37] introduced a hierarchical-feature-based convolution neural
network (H-CNN) model to detect oil leaks in freight trains. Due to the high level of
standardization in industrial processes, instances of labeled damage patterns are seldom
available. Infrequent deviations from normal conditions make it extremely challenging
to gather an adequate number of labeled examples that accurately depict representative
types of defects [38]. Manual delineation of the rectangular frame, as well as pixel-by-pixel
segmentation, requires significant effort and assets, making collecting numerous defective
samples and covering all defect types strenuous. A self-supervised learning strategy is ca-
pable of addressing these issues. Detone et al. [39] introduced a self-supervised framework
for training interest point detectors that are applicable to multi-view geometry problems.
In this framework, a homographic adaptation approach is proposed to generate pseudo-
ground-truth interest points for self-supervised training. Araslanov and Roth [40] devised
a data augmentation technique within a self-supervised framework that is trained on co-
evolving pseudo labels, eliminating the need for cumbersome additional training rounds.
Pautrat et al. [41] further expanded the self-supervised learning method in [39] to detect
line segments. Xu [42] proposed SEDD, where a self-supervised learning strategy is utilized
to address the scarcity of defective samples. Tasi et al. [43] proposed a reconstruction model
based on convolutional autoencoders for the rapid and reliable detection of defects. These
defects are trained using unsupervised learning strategies, which classify test images as
defective or flawless but are unable to achieve pixel-level defect detection. Chow et al. [44]
achieved good results in detecting concrete defects through the use of convolutional au-
toencoders to detect defects in concrete structures. Sean Givnan and colleagues applied
autoencoders for anomaly detection in industrial motors [45]. Mishra et al. [46] proposed a
novel transformer-based anomaly detection method that combines reconstruction-based
methods with patch embedding. Wu et al. [47] proposed a self-supervised framework for
comparison and recovery, which aims to learn generalized representations from unmarked
defect images and improve the performance of various defect detection methods.

Dynamic motion scene abnormality monitoring methods are more suitable for stamp-
ing process monitoring. At present, dynamic scene modeling is used to detect moving
objects in complex motion scenes. Common feature dynamic scene modeling methods
include the hybrid Gaussian modeling algorithm, the Bayesian background modeling
algorithm, the non-parametric kernel density estimation method, and the ViBe scenario
modeling method [48–50]. However, the aforementioned modeling methods are not appli-
cable when the entire Region of Interest (ROI) is in motion. This is because they all utilize
the principle of residuals to subtract the pre-established background from the captured
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image in order to identify the moving regions. Consequently, they cannot detect deviations
caused by loose parts in the device, nor can they protect the processing equipment with
high accuracy.

In summary, the following issues exist in the monitoring process of the progressive
die stamping production: (1) most equipment undergoes cyclical rather than static changes;
(2) anomalies are sporadic and non-prior; (3) the workpiece will produce elastic deformation
image differences; and (4) the pre-training of methods based on deep learning is time-
consuming. To solve these problems, a shape- and size-adaptive descriptor (SSAD) is
constructed, which is robust to all possible types of interference, to ensure high detection
accuracy and thus ensure the normal operation of the machine.

The organization of this article is as follows. In Section 2, the methods applied
to anomaly detection in the stamping process are described. Section 3 describes the
comparative experiments conducted to verify the effectiveness of this method, where we
compare our method with another descriptor and several popular deep-learning-based
anomaly detection methods. The conclusions are described in Section 4.

2. Materials and Methods

Considering that the region of stamping production lines to be inspected is a periodic
motion scene and the occurrence of anomalies is contingent and non-transcendental, a
novel method for detecting anomalies in periodic scenes was developed in this study. The
method consists of three main steps: (1) image segmentation, (2) SSAD construction, and
(3) t-distribution-function-based anomaly region determination. This method was briefly
introduced in our earlier work [51], and this paper will provide a more detailed description
of our approach.

2.1. Image Segmentation

The first stage of image segmentation involves building the standard template image
library by decomposing the periodic motion scene of the stamping production line, using
the method proposed by Wang et al. [52].

Assuming that the camera position and shooting angle are fixed, a continuous series
of images of the station captured at continuous variable time t, Im(x, y, t), is defined as its
continuous motion scene. As suggested by Cutler and Davis [53], if the continuous motion
scene of a station Im(x, y, t) satisfies the equation

Im(x, y, t) = Im(x, y, t + P), (P > 0), (1)

where P is a constant period, then the continuous motion scene is defined as a periodic
motion scene.

To decompose the continuous motion scene into a discrete series of images, it is
sampled with a constant sampling period T. If T satisfies the Shannon sampling theorem,
the continuous motion scene information can be completely saved in a discrete series of
images. The procedure for this can be mathematically described as multiplying Im(x, y, t)
by the sampling function δT(t) and then integrating the resulting product with respect to t:

Im(x, y, nT) =
∫ +∞

0
Im(x, y, t)δT(t− nT)dt, (n = 0,±1,±2 . . .). (2)

When a stamping cycle is sampled, P
T images of the stamping production line,

Im(x, y, nT)
(

n = 1, 2 . . . P
T , and in the following, Im(x, y, nT) is marked as Imn

)
, are ob-

tained. These images are defined as the standard template image library and can approxi-
mately replace Im(x, y, t). Once the standard template image library has been constructed,
the next step is to select the best matching image for the image to be detected, Imwt, which
is captured during production and is used to inspect the stamping production line for
anomalies.
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A clustering strategy is utilized to accelerate the matching step. It starts from the
image with the smallest subscript picked among standard template images that do not yet
fall within a cluster and then calculates the similarity measure, Sim, between this image
and the image with the smallest subscript in the last cluster. Sim can be computed using
the following formula:

Sim =
1

1 + ∑M
x=1 ∑N

y=1|Im1(x, y)− Im2(x, y)|
(3)

where Im1 and Im2 represent images, and M and N are the size of the image. If the similarity
measure is larger than a given threshold, this image will be assigned to the last cluster.
Otherwise, we build a new cluster with it. We proceed this way until every image belongs
to a cluster. By first computing the similarity measure between the image Imwt and the
images with the smallest subscript of every cluster, we can find the cluster most similar
to Imwt. We further calculate the similarity measure between Imwt and every standard
template image in this cluster and define the image that causes the similarity measure to
take the maxima as the best matching image of Imwt.

The similarity curve of the periodic motion scene Im(x, y, t) and the image Imwt is
shown in Figure 1.
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The curve takes the maximum value at t0, and ts = ts−1 + T, ts+1 = ts + T. However,
the template image corresponding to t0 is often not available because the standard template
image library is a discrete series of images. In practice, the image Ims corresponding to ts
that is closest to to is determined as the best matching image for Imwt. A time interval tg(
0 ≤ tg < T

)
exists between the image Imwt and standard template image Ims, in which a

certain translation occurs between the two images in the spatial domain.
The image pair is calculated by matching the image Imwt to the standard template

image library. Thereafter, image registration is carried out to align this image pair. The
geometric transformation model between the standard template image Ims and image Imwt
can be approximated as the affine transformation model:u

v
1

 =

a11 a12 t1
a21 a22 t2
0 0 1

x
y
1

. (4)

Considering that the feature-based image registration method offers relatively high
accuracy and efficiency [54] and that SURF features exhibit certain robustness to noise and
affine transformation [55,56], the features of images Ims and Imwt are extracted using the
method developed by Bay et al. [55]. Thereafter, by means of feature matching, calculation
of the affine transformation model parameters, image transformation, and resampling
steps, the image pair is registered [57].
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The registered image Imrgs is obtained by transforming the image Imwt into the
standard template image Ims. Then, the difference image Imd f can be calculated using the
following formula:

Imd f (x, y) =
{

1,
∣∣Imrgs(x, y)− Ims(x, y)

∣∣ ≥ Thgr
0,

∣∣Imrgs(x, y)− Ims(x, y)
∣∣ < Thgr

(5)

where Thgr is the Otsu threshold. To enhance the robustness to high-frequency detail
interference, a combination of spatial and morphological filtering is performed. (1) Prior to
the threshold step, spatial filtering is conducted on

∣∣Imrgs − Ims

∣∣with a Gaussian filter. The
purpose is to filter out the high-frequency detail interferences contained in Imd f . (2) Once
the difference image is obtained, we filter out the 8 small connected regions in Imd f as they
can be considered as interferences that step (1) failed to remove.

The obtained difference image may contain connected regions representing anomalies
and/or interferences. All possible types of interference regions and the cause of their
presence in the difference image Imd f are discussed in detail:

(a) As the actual production environment is versatile and complicated, the collected
images often contain local bright spots owing to the partial reflection of the workpiece
(see region A1 in Figure 2). These local bright spots also cause the generation of
interference regions in the difference image (see region A2 in Figure 2).

(b) Local elastic deformation of the workpiece owing to external forces during produc-
tion and inherent errors in image registration methods may lead to a complex local
transformation between certain regions in Imrgs and their corresponding regions in
Ims, which may result in interference regions, such as region B2 in Figure 2. The
transformation model between the region pairs is simplified as a translation model
when the high-order distortion terms can be omitted.

(c) The background exposed through the hole structure on the workpiece may also result
in interference regions in the difference image (see Figure 3). A background image of
the workpiece is captured to remove such an interference region.
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Figure 3. The hole structures in the workpiece (A1–D1) and corresponding interferences in the
difference image (A2–D2).

Due to the constraints of the real scene in the production of stamping progressive
dies, it is difficult for the camera to shoot from directly above the stamping parts to
achieve the highest resolution and reduce image distortion, thereby achieving the minimum
information loss according to the Shannon sampling theorem. In practice, shooting can only
occur from the side of the stamping parts. The geometric modeling [52] of the experimental
scene is shown in Figure 4. It is assumed that the target’s movement speed is V, and the
direction of speed is shown in the figure. The camera shoots at a downward angle of β
degrees, and L is the distance from the lens to the target point. Therefore, in this model,
the theoretical maximum viewing angle change θ in the image to be measured and the
corresponding background library is calculated as shown in Formula (6).

θ = arc tan
V·T
2L

(6)
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When the height of an object in the scene is h, then the maximum occlusion pixel pt
caused by the perspective change due to side shooting along the direction of motion is
calculated as shown in Formula 7.

pt =
h·tanθ

sinβ
·r = hVT

2Lsinβ
·r (7)

In this model, pt represents the maximum error, and r denotes the image resolution.
Given that β is small, sinβ can be approximated as 1, and since L is significantly larger than
VT, the value of pt tends to be small. This implies that the error introduced by pt is within
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a tolerable range and can be further minimized through subsequent morpho-logical steps.
Consequently, the equivalent diameter (in pixels) for anomaly detection is as follows:

d =

√
(pt + evib + ereb)

2·sinβ (8)

In this context, evib represents the error attributed to vibration, while ereb signifies the error
resulting from registration. Utilizing this method can substantially streamline the scene
and address the issue at hand.

2.2. SSAD Construction

As previously discussed, there are often interference regions in Imd f , necessitating
further investigation to ascertain whether the connected regions in the difference image
represent actual anomalies. Based on the fact that there are two corresponding regions
in Imrgs and Ims (candidate region and reference region) for a connected region in Imd f ,
we compare the descriptors describing the candidate regions with those describing the
reference regions to complete this task. However, the existing feature descriptors are for
image features, and they are of fixed shapes and sizes. If these descriptors are utilized
directly to describe the characteristics of anomalies, information other than that of anomalies
will be included. If the scale of the anomaly is small, its information that is reflected in
the descriptor will be reduced relative to the total information contained in the descriptor.
Therefore, descriptors of fixed sizes and shapes are less distinctive when describing the
characteristics of anomaly regions. To overcome this issue, we propose a distinctive SSAD
for the connected region. By calculating the matching distances between the SSADs of
candidate and reference re-gions, we can identify connected regions that contain anomalies.

To construct the SSAD, we identified the left vertical tangent and top horizontal
tangent of a connected region. A rectangle was then formed with the intersection point of
the two tangents as a vertex. This rectangle, which could contain the connected region and
sides in the vertical or horizontal direction, had a size that was an integer multiple of 3s.
Here, s was the sampling step, which depended on the area of the connected region A and
was determined as follows

s =
[

A
4A0

]
+ 1 (9)

We propose a method where the rounding function is denoted as [], and we suggest a
constant A0, typically set to 30 in this paper. We further partitioned the rectangle into
square sub-regions of 3 s size in a regular manner. Sub-regions whose centers did not fall
within the connected region were eliminated, as depicted in Figure 5. The sample points
from the connected region were derived by identifying a grid of 3× 3 sample points in each
remaining sub-region. Given the existence of a corresponding connected region in Imd f for
both the candidate and reference regions, from which the SSADs were to be extracted,
and the definite positional relationship among these connected regions, we computed the
sample points for each connected region in Imd f . This allowed us to obtain the sample
points of their corresponding connected regions.
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Figure 5. Sketched map depicting splitting of connected region into 3 × 3 square sub-regions:
(A) connected region, (B) rectangle, and (C) remaining sub-region.

The above-mentioned procedures allocated sample points to the connected region. The
next phase involved applying a Gaussian smoothing filter (σ = 0.01 × A) to the connected
region, followed by determining the response at each sample point using the Haar wavelet
filter, as shown in Figure 6. We denoted the operator response in the x-direction as dx and
that in the y-direction as dy. Subsequently, we aggregated the responses dx and dy and
their absolute values across each sub-region to yield ∑ dx, ∑|dx|, ∑ dy, ∑|dy|, as depicted
in Figure 7. For each sub-region, ∑ dx, ∑|dx|, ∑ dy, ∑|dy| formed a 4D vector α

α =
(
∑ dx, ∑|dx|, ∑ dy, ∑|dy|

)T . (10)

To counteract the influence of local bright spots, the 4D vector v was converted into a
unit vector e:

e =
α

||α|| (11)

The SSAD was computed by amalgamating the 4D vectors from all sub-regions of a
connected region into an extended vector, β. If a connected region comprised n sub-regions,
its SSAD, which was composed of the 4D vector extracted from each of its sub-regions, was
a 4nD vector.
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There are several reasons for choosing the aforementioned sampling steps for the
connected regions of different areas and performing smoothing filtering when constructing
the SSAD. Firstly, the cost of calculation of descriptor extraction can be decreased. Secondly,
the lower resolution of the connected region of a larger area means it ignores certain noise
details, and this increases the stability of the algorithm.

As mentioned previously, the error of the image registration and local elastic defor-
mation may result in a spatial offset between two connected regions in Imrgs and Ims
corresponding to a region on the workpiece. The translation of the reference region is
undertaken to compensate for such an offset. The key to solving this problem is to identify
the translation quantity. SURF uses the method proposed by Brown and Lowe [58] to
determine the interpolated locations of the points of interest. Their approach uses the
Taylor expansion of the scale-space function, D(x, y, σ):

D(X) = D +
∂DT

∂X
X +

1
2

XT ∂2D
∂X2 X, (12)

where the origin of D(x, y, σ) is at the sample point, and X = (x, y,σ) is the offset from the

origin.
∼
X is obtained by calculating the derivative of D and setting it to zero, yielding

∼
X = −∂2D−1

∂X2
∂D
∂X

, (13)

where
∼
X is the offset from the sample point to the point of interest. If all elements of

∼
X are

greater than 0.5, the point of interest is near another sample point. The location of the point

of interest is determined by adding the offset
∼
X and the sample point location. According

to Brown’s method [58], the theoretic error of the point-of-interest location is less than 0.5
in any dimension. The maximum registration error is obtained by substituting (0.5, 0.5, 0)T

into Equation (4), yielding

∇Xrgs = (0.5a11 + 0.5a12, 0.5a21 + 0.5a22)
T . (14)

The maximum reference region translation quantity, XIt, is obtained by substituting
∇Xrgs into the following equation:

XIt =
1
ρ

Xt +∇Xrgs, (15)

where ρ is the realistic length represented by a pixel, and Xt is the equivalent local
translation quantity of the local elastic deformation quantity. The smallest step of the
reference region translation is set to one. In particular, the translation quantities of
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the translated connected regions with respect to the original reference region can make
up the set ST :{ (u, v)|−xIt − 1 ≤ u ≤ xIt + 1 , −yIt − 1 ≤ v ≤ yIt + 1, u, v ∈ Z}, where
(xIt, yIt)

T = XIt. Following the reference region translation operation for the set of the
connected regions, the SSAD of each connected region should be calculated. The key to
this problem is to identify the sample points of each connected region. The coordinate of
the sample point of the connected region X is expressed as the sum of the original reference
region, Xr, and the translation quantity:

X =

(
u
v

)
+ Xr (u, v) ∈ ST . (16)

For a reference region, a set of SSADs (reference descriptor set) can be obtained after
calculating the SSAD of each connected region produced thereby.

To remove the interference regions in Imd f caused by the hole structures, for the
connected region in Imd f , we compare the characteristics of the two corresponding regions
in Imrgs and the background image. For this purpose, we calculate the SSAD of the
corresponding region in the background image (background descriptor) of the connected
region in Imd f . This involves the same steps as the construction of the SSAD of the
candidate region and reference region. Note that the connected region in Imd f and its
corresponding region in the background image have different areas, shapes, and even
positions. The coordinate of the sample point of its corresponding regions, (u, v), can be
obtained by substituting the coordinate of the connected region point in Imd f , (x, y), into
the following formula: u

v
1

 = T−1

x
y
1

, (17)

where T is the transformation matrix from Imwt to Ims.

2.3. t-Distribution-Function-Based Anomaly Region Determination

The previous operation constructed one candidate descriptor, one reference descriptor
set, and one background descriptor for a connected region in Imd f . The next step is to
infer the formula for anomaly region determination. The notation βcan

i can be utilized to
represent the candidate descriptor corresponding to the i’th connected region in Imd f and
βrob

ij , the j’th reference descriptor corresponding to the i’th connected region in Imd f , or the
corresponding background descriptor (i = 1, 2, . . ., I, and j = 1, 2, . . ., J + 1; I is the number
of connected regions in Imd f , and J is the number of reference descriptors corresponding to
a connected region in Imd f ). In particular, βrob

ij0
corresponding to index j0 represents the

reference descriptor describing the connected region with a translation quantity of 0.
Since the majority of offsets between two connected regions in Imrgs and Ims cor-

responding to a region of the workpiece are negligible, let random variable Yij0k be the
matching distance between the k’th 4D vector of βcan

i and its corresponding 4D vector of
βrob

ij0
. According to the law of large numbers, Yij0k obeys normal distribution:

Yij0k ∼ N
(

µ, σ2
)

, (18)

where∼ represents “obey”. Let Y = 1
n ∑I

i=1 ∑Ki
k=1 Yij0k, and S =

√
1

n−1 ∑I
i=1 ∑Ki

k=1

(
Yij0k −Y

)2
.

Then, Formula (19) is obtained by theoretical derivation:

Y− µ
S√
n

=

Y−µ
σ√
n√

S2·(n−1)
σ2·(n−1)

∼ t(n− 1), (19)
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where t(n− 1) means t-distribution with a degree of freedom of n − 1; thus,

P

∣∣∣∣∣∣Y− µ
S√
n

∣∣∣∣∣∣ < t α
2
(n− 1)

 = 1− α. (20)

By substituting the sample value of Yij0k, yij0k, and the sample value of Y, y, into
Equation (20), Equation (21) is obtained:

µ <
1√
n

√
1

n− 1 ∑I
i=1 ∑Ki

k=1

(
yij0k − y

)2
·t α

2
(n− 1) + y, (21)

where n is the total number of 4D vectors in the image to be detected; Ki is the number of
4D vectors in βcan

i ; α is a confidence coefficient; and t α
2
(n− 1) is the t-distribution upper

α
2 fractile.

Use the average matching distance over a connected region in Imd f to approximately
replace µ in Formula (21), and the formula for anomaly region determination is obtained. Given
that the descriptor vector of the connected region is comprised of the 4D vectors of its sub-
regions at varying positions, and these sub-regions hold different levels of significance, these 4D
vectors are weighted using a Gaussian value (σ = 1.5 s) at the center of the connected regions
during the computation of the average matching distance:

Eij =
1
h∑Ki

k=1 yijk·exp
[
−1

2
(
Xij −Xcent

i
)T

Λ−1(Xij −Xcent
i
)]

, (22)

where Xij is the center coordinate of the j’th sub-region of the i’th connected region in

Imd f ; Xcent
i is the center coordinate of the i’th connected region in Imd f ; Λ =

(
σ2 0
0 σ2

)
is a

diagonal matrix; yijk is the sample value of the matching distance of the k’th 4D vectors,
respectively, in βcan

i and βrob
ij ; Eij is the average matching distance over the i’th connected

region in Imd f that is calculated from βcan
i and βrob

ij . Lastly h is a normalization factor. This
factor is introduced to counteract the influence of the Gaussian weight and standardize the
matching distances of SSADs of varying sizes. The calculation of h is as follows

h = ∑Ki
k=1 exp

[
−1

2
(
Xij −Xcent

i
)T

Λ−1(Xij −Xcent
i
)]

. (23)

For a connected region in Imd f , we obtain a set of average matching distances,
Ei,1, Ei,2 . . . Ei J , Ei,J+1. Let Emin

ij = min
{

Ei,1, Ei,2 . . . Ei J , Ei,J+1
}

. According to theoretical

derivation, if the i’th connected region in Imd f does not represent an anomaly region, Emin
ij

should satisfy the following equation:

Emin
ij <

1√
n

√
1

n− 1 ∑I
i=1 ∑Ki

k=1

(
yij0k − y

)2
·t α

2
(n− 1) + y (24)

Equation (24) is a theoretical formula. In order to increase its robustness and filter out
interference, it should be further optimized. For that reason, another important parameter,
known as the translation change rate (TCR), is introduced. The TCR cri is obtained using
the following formula:

cri =
Ei,j1 + Ei,j2
2

J+1 ∑J+1
j=1 Eij

(25)

where Ei,j1 and Ei,j2 are the maximum average matching distance and the second maximum
average matching distance, respectively. The matching distance of the actual anomaly is
almost constant when the translation quantity changes. Consequently, an actual anomaly
has a small cr value. The matching distance of the normal region has the minimum value
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on the optimal translation quantity and increases sharply when the translation quantity
deviates from the optimal translation quantity; thus, the normal region has a large cr value.
This characteristic can be utilized to optimize Formula (24) by adding self-suppression.

In Formula (24), a few yij0k values come from the anomaly region. In order to reduce
their impact on the accuracy of Formula (24), yij0k values from normal regions should be
given a larger weight than those from anomaly regions. For this purpose, Formula (24) can
be inferred:

1√
n

√
1

n− 1 ∑I
i=1 ∑Ki

k=1

(
yij0k − y

)2
·t α

2
(n− 1) + y =

√
1

n− 1

(
y2 − y2

)
·t α

2
(n− 1) + y (26)

where y2 = 1
n ∑I

i=1 ∑Ki
k=1 Yij0k

2. At the same time, two weight coefficients are defined:

Wight1
i =

cri

∑I
i=1 cri

(27)

and

Wight2
i =

(cri)
2

∑I
i=1(cri)

2 . (28)

y and y2 in Equation (26) are optimized as

z =
1
n∑I

i=1 ∑Ki
k=1 Yij0kWight1

i (29)

and
z2 =

1
n∑I

i=1 ∑Ki
k=1 Yij0k

2Wight2
i (30)

respectively. By using t-distribution and self-suppression optimization, the interference
regions’ impact is eliminated while determining the actual anomaly, which doubly enhances
the robustness and accuracy of the method for anomaly detection.

Finally, through combining Equations (24), (26), (29), and (30), the formula for anomaly
determination is obtained:

Emin
ij <

√
1

n− 1

(
z2 − z2

)
·t α

2
(n− 1) + z, (31)

That is, if a connected region in Imd f does not satisfy Formula (31), it is an anomaly region.

3. Comparative Experiments

In this section, we validate the advantages of our proposed method in the monitoring
of progressive die stamping production through comparative experiments. Firstly, the
experimental implementation is introduced in Section 3.1. In Section 3.2, we compare our
proposed descriptor with a widely used descriptor, demonstrating the advantages of our
method among non-learning methods. In Section 3.3, we compare our method with several
popular deep-learning-based anomaly detection methods. The experimental results show
that our method has competitive advantages compared to deep-learning-based methods.

3.1. Implementation of Proposed Method

The 800 T multi-station progressive die, a sophisticated and productive stamping die
capable of executing stamping, bending, drawing, forming, and turning within a single die
set, was utilized as the test subject to validate the aforementioned algorithm. This die can
effectively produce a variety of complex parts. The ROI of the 800 T multistation progressive
die production line can be considered a periodic motion scene. The manufacturing process
is often plagued by anomalies such as foreign body splashes (processed scraps, spitballs,
stains) and machine part loosening, leading to damaged workpieces, waste products, and
even equipment damage and malfunction, resulting in substantial economic losses. As a
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result, monitoring for anomalies in processing equipment has emerged as a crucial strategy
for maintaining normal operations.

The hardware of the detection system consists of a CMOS camera, a computer (Win-
dows system), a planar light source, an auxiliary control system, and corresponding support
equipment (see Figure 8). The core program of the detection system runs on the MATLAB
9.6.0 system. The camera is capable of producing 1.3 megapixel 60 fps grayscale images.
The camera lens has a focal length of 25 mm, and the working distance L in this experiment
was approximately 1.8 m. Four stations were chosen for detection from the collected imag-
es, with a detection area of 851 × 371 pixels and a field of view of approximately 0.65 × 0.8
m2. Due to the scene’s space constraints, the camera’s tilt angle β is relatively small, withβ
approximately equal to 21◦ in this experiment. In this scenario, the geometric relationship
between pixels and reality on the X-axis and Y-axis is shown in Equation (32):

X-axis: 650 mm/851 pixel ≈ 0.76 mm/pixel
Y-axis: sin(21◦) × 800 mm/371 pixel ≈ 0.77 mm/pixel

(32)
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At this focal length, the corresponding relationship between the pixels of the focal
image and the actual geometric size is ~0.8 mm per pixel. At this specific focal length,
the pixel-to-actual geometric size correspondence in the focal image is approximately
0.8 mm per pixel. The camera is capable of capturing 30 images per second, with an
interval of roughly 35 ms between each image and an exposure time of 3 ms. The detection
environment, being a closed space, exhibits high resilience to changes in illumination.

The sheet metal workpiece to be processed is shown in Figure 9. Figure 9a displays a
part of the entire sheet metal processing process, where three states appear simultaneously
in Figure 9a: Figure 9b is the workpiece to be punched, Figure 9c is the state after punching,
and Figure 9d is the bending state. The sheet metal workpiece moves to the right as a whole
during processing, and the overall processing process is cyclical.
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Figure 9. Progressive die stamping production process. (a) displays a part of the entire sheet metal
processing process (b) is the workpiece to be punched, (c) is the state after punching, and (d) is the
bending state.

As discussed in Section 2, the construction of the standard template image library should
precede the detection work. Image acquisition and detection are only possible when the die is
open, limiting the detection to the time frame when a detectable image can be captured. The
multi-station progressive die has an operating cycle of 3.5 s, and the effective image acquisition
time is 1.4 s. Due to the fact that the detected area is completely stationary at the beginning
and end of this cycle, and the camera exposure time is 3 ms, blur caused by vibration during
shooting can be omitted. During this time, 30 images are captured with equal time intervals,
then pre-processed, and finally saved as a standard template image library. Figure 10 illustrates
part of the standard template image library.
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3.2. Comparative Experiments with SURF

The SURF algorithm, short for Speeded-Up Robust Features, is an improvement over
the SIFT operator. While it retains the excellent performance characteristics of SIFT, it
addresses the high computational complexity and long computation time associated with
SIFT. The SURF algorithm enhances the extraction of interest points and their feature vector
descriptions, thereby speeding up computation. The specific steps of the SURF algorithm
include constructing the Hessian matrix and calculating the eigenvalue α, building a
Gaussian pyramid, locating feature points, determining the main direction of feature
points, and constructing the feature descriptor. These steps ensure that SURF maintains the
robustness of SIFT while significantly improving computational efficiency.

In the experiments, our descriptor is compared to the SURF descriptors of different
sizes, and performance evaluation is carried out on the die image set. Due to the lack of
abnormal samples, we manually added external objects of different sizes to the progressive
die and then took photos of the stamped parts with the foreign objects on them, to eval-
uate the distinctiveness of these descriptors. Anomalous sources may introduce foreign
objects through various means, including but not limited to, the dispersion of extraneous
materials, the spillage of waste, the de-tachment of components, the inclusion of pollutants
in raw materials, and significant plastic deformation of the raw materials. Throughout
the stamping process, the com-ponents consistently exhibited minor deformations. The
distinctiveness scores of the different descriptors are shown in Figure 11a. This score is
the ratio of the average matching distance of the anomaly region to ten times the average
matching distance of the normal region. We also carried out experiments for detection
rate and misdetection rate evaluation on the die image set, comparing our method to the
SURF-based method presented in [51]. The results are illustrated in Figure 11b,c.

Our method clearly outperforms the SURF-based method in detecting anomalies
when the size of anomalies is less than 20 pixels. These very good performances can be
explained by the fact that the SSAD contains less additional information and has a higher
distinctiveness score. The SURF-based method has a relatively high misdetection rate. This
can be traced back to its subpar performance in eliminating hole interferences, as illustrated
in Figure 12. The figure presents four rows: the first row displays the workpiece under
inspection, the second row shows the differential image with the interference area, the third
row depicts the differential image post interference area filtering using the SURF-based
method, and the fourth row presents the image after interference area filtering using our
method. It is evident that the SURF-based method struggles with filtering out interference
outside the hole.
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Figure 11. Comparison of methods applied on the die image set. Distinctiveness scores when
increasing the sizes of foreign objects (a). Our descriptor’s score is greater than 80% for different
sizes. Detection rate and misdetection rate for foreign objects of different sizes (b,c). Our method
outperforms the SURF-based method when the foreign objects are relatively small.
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The error check rate arises from the theoretical error introduced using the rigid body
translation model to approximate the local elastic deformation and by using the affine
transformation model to approximate the perspective transformation model. Furthermore,
the discrete integer translation step is utilized to compensate for the registration error and
elastic deformation, which introduces a discretization error. This type of error is a different
source of the error check rate. The detection accuracy of this algorithm is affected by factors
such as image resolution, camera tilt angle, and focal length. The resolution of the image is
fixed and depends on the camera and lens selection. Because of factors such as registration
error (about 1 pixel), machine vibration error (up to about 3 to 5 pixels), and the inherent
error of the method (less than 1 pixel according to Equation (7)), according to Equation (8),
the equivalent diameters detected under these conditions are√

(1 + 1 + 4)2·sin 21◦ ≈ 3.6 pixel ≈ 3 mm (33)

As mentioned previously, five images were collected for testing in one cycle, and the
detection of these five images should be completed before the next cycle to avoid production
accidents caused by anomalies, whereby the effective detection time was 1.4 s. Therefore,
the detection time of each image should be controlled within 280 ms. The algorithm had a
detection time of 32 ms for an image without any optimization. The computer had an Intel
i7-10700 CPU processor (Intel, Oregon, USA) with a clock speed of 2.9 GHz, 32 GB of RAM,
and a 64-bit operating system. The core program ran under MATLAB 9.6.0, and the image
resolution was 851 × 371 pixels; therefore, real-time detection was realized.

3.3. Comparison with the Methods Based on Deep Learning

We established a dataset that includes 500 images without anomalies and 10 images
with anomalies, where the pixel positions of the anomalies have been manually annotated.
We applied random rotation, cropping, and flipping to augment the data. After data
augmentation, the number of images without anomalies reached 4000. The dataset also
includes 500 images with anomalies and manually annotated pixel-level labels for training.
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For training, we employed a batch size of 32 for training and an Adam optimizer with
an initial learning rate of 0.0005. The cosine annealing strategy was utilized to adjust the
learning rate, with the penalty parameter β set to 0.1.

The proposed approach was implemented using Pytorch 1.7.0 and executed on a
computer equipped with 32 GB of RAM, an Intel i7-10700 2.9 GHz CPU, an NVIDIA RTX
3080 GPU, and an Ubuntu 20.04 operating system.

We trained four standard segmentation and defect detection methods, namely Seg-
Net [59], U-Net++ [60], MobileNetV2+DeepLabV3 [61], and PGA Net [62]. After the
training was completed, the four learning-based methods were compared with our method
on the same dataset. The test dataset consists of a total of 2000 images, of which 1987
are without anomalies, and 13 are anomalous. We used accuracy, miss rate, and time
consumption to measure various methods. Accuracy refers to the proportion of correctly
identified images to the total number of images, miss rate refers to images that were judged
as normal but were actually abnormal, and time consumption refers to the time required to
process a single image. The comparison results are shown in Table 1.

Table 1. Comparison of test results using different methods.

Method
Number of Images Judged as

Normal
Number of Images Judged as

Abnormal Accuracy
(%)

Miss Rate
(%)

Time
Consumption (%)

TRUE FALSE TRUE FALSE

Ours 13 3 1984 0 99.85 0.00 32
SegNet 10 4 1983 3 99.65 0.15 57

U-Net++ 13 5 1982 0 99.75 0.00 37
MobileNetV2
+DeepLabV3 11 4 1985 0 99.8 0.00 33

PGA Net 11 3 1980 6 99.55 0.30 52

From the results, it can be seen that our method has achieved a high detection accuracy
rate compared to several deep-learning-based methods, and our method has a miss rate of 0.
In terms of time, all methods can achieve real-time monitoring in the stamping progressive
die production process. However, the difference is that our method only needs 30 images
in the image library to achieve extremely high accuracy monitoring.

Figure 13 a visualization of the comparison of various methods. Our method identifies
anomalies through differential filtering with the proposed descriptor, while other methods
do so through semantic segmentation. The first, second, and third columns display three
types of anomalies, i.e., different foreign objects appearing on the workstation. The fourth
column displays normal images.

Therefore, the monitoring method we proposed exhibits superior performance in
scenarios with strong periodic characteristics such as stamping progressive die production,
compared to deep-feature methods based on neural networks. This is because it requires
a small image library that is easy to prepare and does not need to undergo the data
processing and training processes required by deep learning paradigms. Moreover, it meets
the demands of production in terms of accuracy and real-time performance.
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4. Conclusions

This paper proposes a method for detecting anomalies in periodic motion scenes,
which can be widely applied to production lines with these types of scenes. The proposed
method has the following characteristics:

(1) The proposed SSAD for region description breaks the inherent mode of the traditional
descriptor. Its adaptability to the shape and size of the anomaly region makes sure
it is more distinctive. In constructing the SSAD, adaptive resolutions are used to
describe the anomaly region, which reduces the computational cost of the feature
extraction calculation, ignores high-frequency noise interferences, and improves the
signal-to-noise ratio of the descriptor.

(2) This study introduced a novel method based on t-distribution for anomaly detection,
which abandoned the traditional empirical theoretical threshold, showing a higher
robustness. Meanwhile, self-suppression optimization based on TCR was used in this
study, which drastically reduced the misdetection rate.

(3) The maximum translation quantity was inferred to filter out local elastic deforma-
tion, and the background descriptor was constructed to eradicate the impacts of
backgrounds exposed through holes, reducing the misdetection miss rate to 0.0%.

(4) The proposed method outperforms the deep-feature method as it necessitates only a
minimal number of images to construct an image library, and the level of detection can
achieve results comparable to those of prevalent neural networks. At the same time,
our method does not require paradigms such as knowledge transfer, pre-training, and
fine-tuning of neural networks, making the preprocessing process simpler.

In this study, we used a progressive die to test this method. The experimental results
show that the proposed algorithm can achieve comparable or even superior performance in
terms of the anomaly detection rate compared to its counterparts and is superior in terms of
the misdetection rate. Generally, processing equipment with periodic motion scenes, such
as dynamic injection molds and printing machines, can be monitored using this method:
first, a standard template image library is constructed during the periodic motion process
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of the mold, then the descriptor is constructed, and finally an anomaly region is determined
based on the T-distribution function.

The focus of future work should be on conducting online monitoring tests of the
method we proposed in the production of various processing equipment with periodic
motion scenes. This will be the work of the next stage.
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