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Abstract: Reinforced Concrete Structures (RCS) are a fundamental part of a country’s civil infrastruc-
ture. However, RCSs are often affected by rebar corrosion, which poses a major problem because it
reduces their service life. The traditionally used inspection and management methods applied to
RCSs are poorly operative. Structural Health Monitoring and Management (SHMM) by means of
embedded sensors to analyse corrosion in RCSs is an emerging alternative, but one that still involves
different challenges. Examples of SHMM include INESSCOM (Integrated Sensor Network for Smart
Corrosion Monitoring), a tool that has already been implemented in different real-life cases. Never-
theless, work continues to upgrade it. To do so, the authors of this work consider implementing a
new measurement procedure to identify the triggering agent of the corrosion process by analysing the
double-layer capacitance of the sensors’ responses. This study was carried out on reinforced concrete
specimens exposed for 18 months to different atmospheres. The results demonstrate the proposed
measurement protocol and the multivariate analysis can differentiate the factor that triggers corrosion
(chlorides or carbonation), even when the corrosion kinetics are similar. Data were validated by
principal component analysis (PCA) and by the visual inspection of samples and rebars at the end of
the study.

Keywords: reinforced concrete structures; corrosion; structural health monitoring; structural
management; sensors; corrosion monitoring; multivariate analysis

1. Introduction

Civil engineering structures play an extremely important role in a country’s socio-
economic activities [1]. In addition, these infrastructures are generally the most expensive
national investment and an asset of any country [2]. In most cases, reinforced concrete
is chosen to build them [3] for different reasons: easily obtainable raw materials and a
relatively simple manufacturing process [4]. In addition, its application covers a wide
variety of works thanks to its versatility, workability, properties, and aesthetic possibilities,
which confer it a very high potential [5–7]. Another characteristic of reinforced concrete that
distinguishes it from other building materials is durability, which is defined as its ability to
resist any deterioration process to maintain its original form, quality, and serviceability [8].
Yet this material is not as durable as once thought [9].

Since the 1990s, one of the main causes to be detected to affect reinforced concrete
structures (RCS) durability is rebar corrosion [10–14]. This means that the end of the lifespan
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of many civil infrastructures is prematurely reached [15,16]. Hence, the deterioration
analysis of concrete infrastructure and the service life predictions of these constructions are
some of the greatest civil engineering challenges that the developed world faces [17,18].

On embedded steel corrosion, it is well known that a passive layer initially appears
on rebars thanks to the high alkalinity of the cementitious matrix, which allows corrosion
to be initially considered negligible [19,20]. However, some situations, such as chlorides
reaching metal or concrete carbonation, induce corrosion in an active state in RCSs [21,22].
Knowing the rebar corrosion level is fundamental to avoiding damage, costly repair work,
or, in some extreme cases, even fatalities.

This situation has resulted in an obligation to set up protocols to evaluate RCSs. For
example, both the Spanish Structural Concrete Instruction (EHE-08) and the current Struc-
tural Code (the new Spanish Standard to regulate concrete, steel, and mixed concrete/steel
structures for building and civil engineering purposes) [23,24] indicate that project design-
ers must devise a maintenance strategy along with the building project. Both documents
indicate that evaluation and maintenance protocols must be defined by project designers
and carried out by the property developer throughout the structure’s service life. These
stakeholders are not completely familiar with the particular problems of RCSs and, more
specifically, with the corrosion process of embedded rebars.

Visual inspection methods are still a tool that predominates in the monitoring and
control programmes of these constructions [25], although previous works have cited their
limitations [26]. This is a complex task that is restricted to detecting damage to parts’
exteriors and depends on the subjectivity of the worker who makes the inspection [27,28].
It is also a costly and time-consuming methodology that often involves staff displacements
and having to stop the structure being used, which makes its operation poor [26]. We must
also bear in mind that it is limited to accessible structural elements and ignores having to
analyse buried or immersed elements, which cannot be studied. Another disadvantage of
visual inspection methods is later corrosion process detection. The corrosion phenomenon
becomes visible on structural elements’ exteriors once corrosion damage is quite advanced
when rust stains or cracks can be seen [29,30]. Therefore, it reduces the reliability of the
results obtained by this evaluation protocol.

To face these drawbacks, on-site measurement (OSM) tools are one of the most widely
used alternatives and can be classified into two main groups: qualitative and quanti-
tative. In qualitative terms, measurements tend to be taken to study the cover layer’s
resistivity [31–33] and to supplement the information that an analysis of rebars’ corrosion
potential contributes [34–36]. Other authors have proposed using more sophisticated tools
to measure the cover layer’s permeability [37] or to detect faults in concrete by means of
electromagnetic radar or GPR (ground-penetrating radar) [38,39]. However, all these tests
only serve to determine the risk of corrosion existing on rebars. Corrosion rate measure-
ments are virtually the sole viable means of assessing rebar corrosion without removing the
concrete cover [40]. To analyse it, several tools based on the guard ring and galvanostatic
pulse exist [41–50]. Some of them are able to analyse corrosion with an analysis of cover
layer resistivity, even with no electrical connection with rebars but simply supporting the
measurement equipment on the surface [51]. Such equipment is used to analyse the RCS’
corrosion on-site and to ensure good reliability. However, they are expensive and must be
managed by qualified personnel, who must travel to the structure to conduct the study. For
structures protected with cover layers or paint, these protective measures must be removed,
which implies aesthetic damage. Moreover, such equipment cannot be used to analyse
inaccessible elements, such as buried or submerged pieces.

All these aspects are crucial because it is not easy to establish protocols for periodic
inspections owing to the cost and drawbacks associated with staff displacements and
accessibility conditions. These limitations require embedded monitoring systems for
structure evaluation and management to be developed and implemented [25]. In the RCS
corrosion area, Structural Health Monitoring and Management (SHMM) using embedded
sensors has progressed to increase safety and provide cost-effective maintenance programs
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for new and existing RCSs [25]. Another advantage of these systems is premature corrosion
detection, which facilitates immediate intervention. Figure 1 shows the comparative outline
of the different SHMM strategies in the RCS corrosion field.
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Many authors have proposed qualitative sensors to monitor parameters related to
corrosion in RCSs, for instance, fibre optics [52,53] or fibre bragg grating sensors [54].
Nonetheless, systems that provide a numerical value of rebar corrosion are required,
that is, quantitative tools. Some examples of such are those presented by Andrade and
Martínez [55] and Pereira et al. [56]. They are based on small 3-electrode cells embedded
in concrete. Xu et al. [57] proposed a similar example, but one with cells found on dif-
ferent concrete covers, to study how chlorides or carbonation can advance. Authors like
Broomfield et al. [58] opted for a design that includes bigger elements mounted onto a
frame, which is fitted to the rebar cage. Karthick et al. [59] proposed embedding only the
working electrode in concrete, while other measurement cell elements (counter electrode
and reference electrode) remain on the mounted surface. Duffó and Farina [60] designed a
small-sized multisensor to analyse other parameters like temperature, oxygen availabil-
ity, the presence of chlorides, or concrete resistivity in parallel with the corrosion rate
study. This approach has also been applied by other authors who have proposed their own
models [61,62]. Attempts have been made to detect carbonation advances or chloride pene-
tration by means of potentiometric [63,64] or galvanic sensors [65,66]. However, their result
interpretation is not easy because minor changes in humidity or temperature significantly
affect the taken measurements. Besides, these sensors’ stability has been studied only for
relatively short periods [67].

Despite all the existing examples, implementing embedded corrosion sensors in real
structures is still quite scarce. This is because embedded monitoring systems for corrosion
analysis in RCSs still pose some challenges to being considered a tool of generalised use that
can replace conventional visual inspections and on-site corrosion measurement techniques.
These challenges can be summarised as follows:

• Implementing sensor networks in real-world structures is still a difficult task. The
aforementioned examples have been individually validated by laboratory testing. Nev-
ertheless, as monitoring a structure requires many control points to analyse different
zones, it is necessary to generate sensor networks that work in a coordinated manner
rather than isolated elements;

• These systems must be autonomous. This involves having to implement central units
that manage the data collected by the sensors distributed all over the structure and
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are capable of processing it to offer clear data directly and automatically. As other
authors have pointed out, this includes data transfer, processing, plotting, and even
websites to store data and present results [1,68]. This requirement also implies making
hardware and system communication investments;

• The stakeholders who intervene in developing and building civil infrastructure still
need to be made aware of the importance of embedded monitoring systems. More
often than not, there are still no concerns at all about structure maintenance, and
standards do not significantly highlight the importance of structure management;

• The method to set up systems in real work and its integration with the other tasks to
be performed while building works. Embedded monitoring systems must be set up
simply and quickly with no maintenance requirements to considerably lower their
cost. For this purpose, the durability and robustness of the employed components
(durability longer than the structure’s foreseeable service life) must also be taken into
account. Some authors point out that the main constraints of these systems are still
linked to sensors’ durability and stability over time [69];

• The economic aspect. It is fundamental to be competitive compared with traditional
evaluation and management systems, such as visual inspection or on-site corrosion
measurements.

One of the examples that has attempted to respond to these challenges is the INESS-
COM (Integrated Sensor Network for Smart Corrosion Monitoring) monitoring system.
This tool appears in previous works [70–72]. It is a smart system composed of control
points located in different areas of the analysed structure. A corrosion sensor is embedded
at each control point. Sensors are made using steel with the same properties as embedded
rebars, which reduces their cost. In addition, an innovative measurement method for
corrosion analysis is used. It is defined as Pulse Step Voltammetry (PSV). This technique
has been previously validated [71,73–76]. The advantages that distinguish the PSV method
from other techniques are that it allows work to be done with 2-electrode cells and that
its processing can be automated. Thanks to these advantages, this tool has already been
implemented in real structures and works autonomously [70], although the authors are still
working on upgrading and refining it [77,78].

Therefore, this study aims to update the INESSCOM system so that it is able to not
only measure rebar corrosion intensity but can also autonomously determine the triggering
agent of corrosion by studying complementary parameters, in this case, the sensor’s
electric double-layer capacitance. To do so, it proposes implementing a new measurement
procedure on the sensors based on the voltammogram study (∆I − ∆E) obtained after
applying cyclic sweep voltammetry (CSV). This implies making a major contribution to the
INESSCOM system and SHMM methods for representing a new improvement that centres
on these tools’ autonomous work. The system will not only be able to detect rebar corrosion
but will also provide information about the factors that have triggered the process. This
will be key for RCSs evaluation and management to detect corrosion early, and it will
help to determine the most suitable type of repair needed to mitigate such processes in
the future. To do so, this work presents an experimental plan to analyse the corrosion
of 27 concrete samples in which corrosion sensors like those employed by INESSCOM
are embedded. These samples were previously exposed to different atmospheres for
18 months. The corrosion intensity analysis and sensors’ double-layer capacitance allowed
the triggering agent of corrosion processes to be autonomously identified, even when
the recorded corrosion kinetics were similar. This study was validated with different
corrosion intensity measurement techniques, by a principal component analysis (PCA) of
the obtained results, and by the visual inspection of samples and sensors when finishing
the experimental plan.
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2. Materials and Methods
2.1. Test Specimens

As depicted in Figure 2, 27 cylindrical specimens (Ø50 mm × 100 mm height) were
manufactured. On the central axis of each sample, one sensor was embedded (steel B
500 SD), whose surface in contact with concrete was limited to 50 linear mm (1571 mm2).
To go about this, the sensor was partially protected with PVC piping and filled with epoxy
paint. The top part was left uncovered to make an electric connection, but it was protected
with Vaseline to prevent corrosion. The upper sample face of the test specimens was also
protected with epoxy paint. The sensors’ concrete cover layer measured 20 mm.
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2.2. Materials

To manufacture samples, micro-concrete with a w/c ratio of 0.8 was employed. The
applied concrete mixture is shown in Table 1. This mix goes beyond the standard limits
for structural concrete but was designed to achieve a high porosity degree, accelerate
the diffusion of aggressive agents, and obtain high corrosion levels in a short time. The
employed cement was CEM I 52.5 R/SR.

Table 1. Concrete mixture proportions (kg/m3).

Cement Water Sand (0/2) Sand (2/4) Gravel (4/6) w/c Ratio

250 220 735.5 735.5 638 0.8

2.3. Exposure Conditions

After the casting process, samples were stored in a curing chamber (20 ± 2 ◦C with
a relative humidity (RH) higher than 95%) until they reached the age of 28 days. The
specimens were then divided into three groups (A, B, C) with nine samples each. Group
A was subjected to accelerated carbonation. Based on the phenolphthalein tests and the
weight control carried out on other similar samples, it took 42 days to completely carbonate
the test specimens. Furthermore, groups A and B were immersed in a 35 g/L NaCl solution
(pH≈ 7), while Group C was placed in a saturated Ca(OH)2 solution (pH≈ 13). Specimens
were left under these conditions for 18 months, and subsequently, electrochemical tests
were conducted. To obtain the variation coefficients of the different measurement methods
employed, each specimen was tested five times by distinct techniques, as later described.

2.4. Testing Procedure

The testing processes undertaken in this stage were:

• First, the corrosion potentials (ECORR) of sensors were measured by a high-impedance
voltmeter (multimeter Keithley 2000) using a calomel reference electrode (SCE of
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Radiometer Analytical XR110) following Standard ASTM C876 [79]. The reference
electrode was partially immersed in the exposure solution, depending on each group.
The value was recorded 3 min after measurements commenced to ensure that the
recorded signal was stable enough;

• Second, the corrosion rate (iCORR) of each sensor was determined by the linear polar-
isation resistance (LPR) technique. In this method, Stern and Geary’s expression is
used to determine iCORR−LPR by estimating polarisation resistance (Rp) according to
Equation (1):

iCORR−LPR =
B

A·Rp
(1)

where A is the surface of the working electrode (1571 mm2) and parameter B can adopt
values within a range from 13 to 52 mV [80]. In this case, the average value (26 mV)
was used, with 2 being the maximum error factor of the prediction [81,82]. Firstly, the
corrosion potential (ECORR) of the working electrode was recorded when the ∆V/∆t
variation reached a value that equaled or was less than 0.03 mV/s. Furthermore, a
linear voltammetric scan (LVS) was applied from ECORR − 20 mV to ECORR + 20 mV at
a scanning speed of 0.2 mV/s to obtain Rp [83,84]. This measurement was taken with
an Autolab PGSTAT 100 Potentiostat, and the Nova 1.11 software was used for signal
processing. The measurement cell configuration was a 3-electrode one; each sensor
was the working electrode. A stainless-steel piece partially immersed in the exposure
solution was employed as the counter electrode. The reference electrode was an SCE
(Radiometer Analytical XR110), which was also partially immersed in solution.

• Later, the corrosion rate of each sensor was determined by the Potential Step Volmame-
try (PSV) method (iCORR−PSV). This technique, which is used by the INESSCOM sys-
tem, was introduced in previous works and has been previously validated [71–74,76].
This measurement was also taken with an Autolab PGSTAT 100 Potentiostat, and the
Nova 1.11 software was used for signal processing. The measurement cell configura-
tion was also a 3-electrode one;

• In addition, the sensors’ double-layer capacitance (CDL) was determined from the
voltammogram (∆I − ∆E) obtained after applying CSV, ECORR ± 50 mV × 2 cycles at
a sweep speed of 1 mV/s. This procedure, previously used by other authors in the
corrosion field [21,22,85], consists of determining the intensity increase corresponding
to the voltammeter width in ECORR (∆IECORR ) and replacing it in Equation (2) together
with the applied sweep speed (v), which allows to calculate CDL.

CDL =
∆IECORR

2·v (2)

The double-layer capacitance of the steel embedded in concrete is a parameter that has
scarcely been valued in studies into the corrosion of RCSs, but its interest as a diagnostic
tool is highlighted in this work.

• Finally, the corrosion rate was also determined by the Tafel Extrapolation (TE) method
(iCORR−TE) as a reference technique [86]. To do this, the polarisation curves (log|∆i|
vs. ∆E) were obtained by applying a linear potential sweep at a sweep speed of
0.2 mV/s [86]. Initially, the sweep was applied in a positive direction from ECORR to
ECORR + 140 mV. Subsequently, a 24 h period was used to ensure that ECORR returned
to the initially recorded values (with a difference of ±5 mV), and then the scan was ap-
plied in a negative direction from ECORR to ECORR − 140 mV [87,88]. Later, iCORR−TE
was determined by extrapolating the straight sections (from ECORR ± 59 mV) of the
anodic and cathodic curves to ECORR according to [89];

• To complement and compare the information obtained from the sensors by the elec-
trochemical methods described above, a visual inspection of the test specimens was
also carried out to visually detect any appreciable corrosion symptoms. To be able
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to inspect the sensor state, three test specimens from all three groups (A, B, C) were
broken once the study was completed.

The statistical analyses of the data obtained from the test specimens were carried
out with the R-18 software of R-Project for Statistical Computing. Initially, a univariate
analysis of each registered electrochemical parameter (ECORR, CDL, iCORR−LPR, iCORR−PSV ,
iCORR−TE) was performed. The average value for each group of samples (A, B, C) was de-
termined, as were the 95% confidence intervals and the corresponding standard deviations.
The ANOVA method allowed for the determination of the p-value to verify the existence of
statistically significant differences among those groups, for which the graphic analysis was
not sufficiently enlightening.

A multivariate analysis of the sensors’ responses to the CSV described above was run.
This type of scan allows information to be obtained relatively quickly and without signifi-
cantly altering the sensors’ original ECORR. For all 27 sensors, 1312 current density values
were recorded. With this raw data, a matrix was defined, where each row corresponds to
a sensor (27 sensors) and the columns contain the current density data obtained by CSV
(1312 measurements). Therefore, the dimension of the raw data matrix (X) is 27× 1312, and
the sample space will be composed of 1312 variables. These variables correlate with one
another, which makes it difficult to analyse them with a univariate approach, and this is
why it is necessary to perform a multivariate statistical analysis. The PCA allows the wide
set of the original variables to be narrowed to a set of new variables or main components
(PCs) that do not correlate with one another. Each PC is a linear combination of the original
variables to maximise the variance of the projected data [90]. Therefore, the original matrix
X can be decomposed as depicted in Equation (3) [91].

X = S·L + E (3)

The score matrix (S) displays the position of the samples in the new coordinate system.
The loadings matrix (L) describes how the new axes have been constructed from the original
variables, and E is the matrix of error. As there are only a few samples, the “Leave-One-Out-
Cross-Validation” (LOOCV) method was used to calibrate and validate the PCA model.
The k-means method was followed to identify the resulting groupings by representing the
samples in the new coordinate system. The system was composed of the first two main
components that collected the most variance (PC1-PC2). Each sample is considered to
belong to the group whose average value is closer [92]. The relation between the resulting
groupings and the responses of the sensors in the different environments was analysed.

3. Results

Table 2 shows the values obtained by the different techniques described in Section 2.4.

Table 2. Values of the corrosion parameters obtained in the test specimens.

Exposure
Condition Sample ECORR vs.

SCE (mV)
CDL

(µF/cm2)
iCORR−LPR
(µA/cm2)

iCORR−PSV
(µA/cm2)

iCORR−TE
(µA/cm2)

Group A
(Carbonation +

Chlorides)

1 −604 473 0.527 0.559 0.515
2 −470 459 0.553 0.530 0.465
3 −580 456 0.545 0.578 0.514
4 −465 490 0.461 0.478 0.603
5 −538 455 0.546 0.559 0.549
6 −482 400 0.519 0.548 0.531
7 −532 492 0.531 0.556 0.622
8 −552 445 0.412 0.454 0.485
9 −505 533 0.552 0.548 0.508

Mean −525 467 0.52 0.53 0.53
CoV 1 9.0% 7.9% 9.6% 7.7% 9.4%
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Table 2. Cont.

Exposure
Condition Sample ECORR vs.

SCE (mV)
CDL

(µF/cm2)
iCORR−LPR
(µA/cm2)

iCORR−PSV
(µA/cm2)

iCORR−TE
(µA/cm2)

Group B (Chlorides)

1 −514 835 0.517 0.569 0.582
2 −515 848 0.623 0.663 0.795
3 −514 759 0.518 0.641 0.706
4 −595 781 0.605 0.584 0.487
5 −607 757 0.620 0.630 0.560
6 −564 722 0.608 0.674 0.584
7 −579 734 0.630 0.612 0.505
8 −585 791 0.661 0.655 0.526
9 −615 799 0.576 0.629 0.464

Mean −565 781 0.59 0.629 0.58
CoV 1 7.3% 5.5% 8.5% 5.6% 18.9%

Group C (Saturated
Ca(OH)2 solution)

1 −230 554 0.132 0.075 0.099
2 −240 576 0.116 0.087 0.106
3 −251 494 0.111 0.123 0.093
4 −308 567 0.067 0.0937 0.114
5 −245 580 0.062 0.090 0.093
6 −309 495 0.107 0.128 0.142
7 −272 485 0.099 0.115 0.146
8 −274 577 0.107 0.141 0.187
9 −258 585 0.140 0.148 0.161

Mean −265 546 0.11 0.112 0.13
CoV 1 10.6% 7.7% 27.3% 23.5% 23.1%

1 CoV: Coefficient of Variation.

3.1. Corrosion Potential and Corrosion Rate

Figures 3 and 4 show the results obtained for each group: the corrosion potential
(ECORR) and the corrosion rate (iCORR), respectively. The thresholds defined in Standard
ASTM-C876 [79] and the RILEM TC 154 EMC recommendation [93] to classify the corro-
sion risk according to ECORR and the corrosion level according to iCORR are respectively
identified in these two figures.
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Figure 4. Corrosion rate (iCORR) values (iCORR−LPR, iCORR−PSV and iCORR−TE). Interval plot, which
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The corrosion potentials of the samples in groups A and B (aggressive environment)
went from −450 to −600 mV, which denotes a high risk of undergoing active corrosion
processes, in accordance with ASTM-C876 [79]. For the samples in group C (immersed in
saturated Ca(OH)2 solution for 18 months), the values fell between −225 and −300 mV,
which denotes a medium-low corrosion risk [79].

For the specimens from Group C (non-aggressive environment), values corresponding
to negligible corrosion (close to 0.1 µA/cm2) were recorded [93]. These data indicate that
samples remained under passive conditions. Conversely, with the specimens in groups A
and B, which corresponded to aggressive environments, the average values lay between
0.5 and 0.6 µA/cm2. According to the RILEM recommendation [93], these values indicate
that samples were under moderate corrosion conditions. In addition, Figure 4 shows no
significant difference between groups A and B. In fact, when iCORR−LPR, iCORR−PSV and
iCORR−TE were represented together (Figure 5a,b), only two differentiated groups were
observed: one with the samples in a non-aggressive environment (group C) and the other
with all the samples in aggressive environments (groups A and B). The value of the slope
of the regression line in both figures (Figure 5a,b) demonstrates the deviation that both
techniques (LPR and PSV) present compared with the reference Tafel Extrapolation (TE)
method. These values (0.904 and 0.895) indicate that the corrosion kinetics are slightly
overestimated when calculating the iCORR of both the LPR and PSV techniques in relation
to the TE method, with a deviation close to 10%.

3.2. Double-Layer Capacitance

Figure 6 shows the CDL average values and their respective 95% confidence intervals
for each group of samples.
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In this case, there was a considerable difference in the groups of sensors. Of the
two groups subjected to aggressive environments (A and B), group B had a higher CDL
average (close to 800 µF/cm2). This can be explained by the type of agent that triggers the
corrosion process. As group B was subjected exclusively to chlorides, corrosion occurred
locally in the form of pitting. In Group A (carbonated specimens + chloride exposure), steel
corrosion took place uniformly on the surface of the steel. In this case for chloride-induced
corrosion, where localised pitting was caused, the microcells that were generated in these
zones were supported by the currents that were brought about in the nearby regions still
in the passive state (i.e., macrocells), as previous works have revealed [75,94]. Different
authors have demonstrated that this produces a pseudocapacitance effect that favours an
increase in CDL [95,96]. Conversely, the samples in Group A were firstly carbonated, and
although they were later exposed to a solution with chlorides, the corrosion process was
uniform over the entire rebar surface. In this case, macrocells were negligible because the
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whole rebar anodically acted, which favoured the obtained CDL results being lower. These
data were validated later by means of visual inspection.

The capacitance values of Group C in the passive state came close to 550 µF/cm2.
These values were slightly higher than those obtained for Group A (≈470 µF/cm2) in
the active state (Figure 6). This phenomenon, which has also been observed by other
authors [85], comes about because the passive layer that protects metal from corrosion
(group C) is formed by compact oxides, which homogeneously cover the entire surface.
Conversely, in Group A, there was a similar oxide layer, but it was caused by a uniform
corrosion process. To evaluate the differences between groups A and C, which are next
to each other in Figure 6, an ANOVA of the CDL results was performed. The obtained
p-value was 6.3 × 10−4, which indicates statistically significant differences between groups
A and C.

3.3. Visual Inspection

After taking the different measurements, the test specimens were subjected to visual
inspection. No corrosion symptoms were observed in the Group C samples. In groups A
and B, cracks and some rust spots were detected on the surfaces of the specimens (Figure 7).
To support the ECORR and iCORR results, several samples from each group were broken. The
inspection of the surface of the sensors revealed that corrosion in Group A was practically
homogeneous, whereas there was pitting in Group B, which caused oxide stains in specific
areas (Figure 7).
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These data confirmed that the Group C samples remained in the passive state, while
those in groups A and B, subjected to aggressive environments, displayed advanced
corrosion states.

3.4. Statistical Analyses

Chemometric techniques were applied to analyse the information collected by sensors.
Multivariate analyses of the experimental data were used to obtain a statistical model
capable of clearly differentiating samples based on the dominant corrosion process type
(carbonation + chlorides, chlorides, or passivity).

For this purpose, the obtained CDL data were used by applying the 2-cycle CSV
(ECORR ± 50 mV), as Section 2.4 described. These measurements served to construct a
matrix. The analysed matrix consisted of 27 rows (number of sensors) and 1312 columns
(one for each current density value recorded every 0.3048 s during the test). After centring
and scaling the data matrix, the PCA analysis was performed to generate a new set of
uncorrelated variables, or principal components (PCs). The corresponding eigenvalues
and their respective variances are shown in the screen plot of Figure 8. Although there is
no general criterion for selecting a number of eigenvalues, in this study, the eigenvalues
corresponding to the first three PCs were selected because their cumulative variance
was over 99%. In addition, the mean square error of the cross-validation (RMSECV)
remained practically constant from the third retained component (RMSECV = 1.54), which
confirmed the PCA model’s validity. The first main component (PC1) explained 68.67% of
the variance, while the second (PC2) accounted for 25.06%. Both PCs together explained a
high percentage of the total variance (93.73%).
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Figure 8. Screen plot of the extracted principal components. The fraction of total variance represented
by each principal component is also noted.

Figure 9 shows the clustering that resulted from plotting samples in the new PC1-PC2
coordinate system after applying the k-means algorithm. Three clearly differentiated
clusters are observed, and each corresponds to a different group of samples (A, B, C).

To understand the nature of the different groups, the contribution of the original
variables in PC1 and PC2 is shown in Figure 10a, a graph of the rescaled loadings obtained
by multiplying the loadings of each variable in PC1 and PC2 by their corresponding
standard deviation. In addition, to facilitate the understanding, the original variables are
represented on the x axis as the increase in potential (∆E) applied in CSV. The weight of the
variables furthest from ECORR (+35/+50 and −35/−50 mV) is considerable in PC1. These
variables correspond to the linear sections of the ∆I − ∆E curve associated with the faradic
current of the oxidation-reduction processes from which the parameter RP was obtained
(Figure 10b). The section corresponding to the anodic part of the curve has a positive weight
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in PC1, while the corresponding cathodic section has a negative weight. Therefore, the
samples with positive values in PC1 present high values in the faradic intensity associated
with the anodic or cathodic process. These results fall in line with the obtained corrosion
rate (iCORR) results because the samples with high iCORR values (groups A and B) have
positive values in PC1, and those with low iCORR values (Group C) show negative values.
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Figure 10. (a) Standardised loadings of the original variables for PC1 and PC2 (b), the position of
which has the highest loadings on one of the polarisation curves (∆I − ∆E).

The variables close to ECORR (−16/−4 and +15/+3 mV) are those with the greatest
weight in PC2. These variables correspond to the end of the non-linear sections of the
∆I − ∆E curve, associated with the charging and discharging processes of the double-layer
capacitor (CDL) generated at the steel-concrete interface. The corresponding variables of the
anodic part of the curve have a positive weight in PC2, while those of cathodic character
have a negative weight. Therefore, the results indicate that component PC2 is related
mainly to parameter CDL and PC1 is associated with iCORR.

The PCA is a very useful analysis method because it includes many variables. How-
ever, it is difficult to understand because, as indicated, the axes do not refer to a given
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parameter. To understand this approach, Figure 11 presents a graph that compares the
obtained iCORR−PSV and CDL values to offer a simpler interpretation of the data.
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The graph in Figure 11 shows a classification that is somewhat similar to that obtained
by the PCA, but now the parameters of each axis are known. As depicted in Figure 4
(iCORR−PSV) and Figure 5 (CDL), the analysis of the independent parameters per se does
not allow groups to be differentiated. For example, groups A and B have similar corrosion
rates, and groups A and C have extremely similar capacitances, which does not allow a
suitable classification to be made. On the contrary, when both parameters are represented
in a 2-axis system, the three study scenarios are clearly distinguished, but with a more
user-friendly representation than that obtained with the PCA.

These data indicate the suitability of implementing and analysing other parameters,
like CDL in the INESSCOM monitoring system, because they would help to understand the
phenomena that occur internally in RCSs from the rebar corrosion point of view.

4. Conclusions

The tests carried out in this research work allow us to draw the following conclusions:

• Obtaining the ECORR, CDL, and iCORR allows for monitoring the kinetic activity of the
embedded sensors in RCSs. Nevertheless, analysing these parameters independently
can lead to mistaken interpretations;

• Conversely, the analysis performed by multivariate tools (PCA) of sensors’ (CDL and
iCORR) responses allows a classification that distinguishes the different study scenarios;

• To facilitate PCA understanding, this work also proposes using comparative graphs of
both parameters (CDL and iCORR) to distinguish the three study scenarios, but with
a much clearer representation in which each axis corresponds to a given parameter,
unlike the PCA;

• The obtained results demonstrate that implementing a new measurement protocol in
INESSCOM to, in this case, analyse CDL, would be extremely useful for simply and
quickly determining the precursor corrosion agent, even when the recorded corrosion
kinetics are similar.

The results presented in this study were obtained using test specimens under labora-
tory conditions. In the second part of this study, the double-layer capacitance analysis was
also implemented while monitoring the scaled elements exposed to different aggressive
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environments to analyse the triggering agent of corrosion processes. In this case, the results
were also validated by means of visual inspection and a multivariate analysis.
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