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Abstract: JPEG is the international standard for still image encoding and is the most widely used
compression algorithm because of its simple encoding process and low computational complexity.
Recently, many methods have been developed to improve the quality of JPEG images by using deep
learning. However, these methods require the use of high-performance devices since they need to
perform neural network computation for decoding images. In this paper, we propose a method to
generate high-quality images using deep learning without changing the decoding algorithm. The
key idea is to reduce and smooth colors and gradient regions in the original images before JPEG
compression. The reduction and smoothing can suppress red block noise and pseudo-contour in
the compressed images. Furthermore, high-performance devices are unnecessary for decoding. The
proposed method consists of two components: a color transformation network using deep learning
and a pseudo-contour suppression model using signal processing. The experimental results showed
that the proposed method outperforms standard JPEG in quality measurements correlated with
human perception.

Keywords: pre-processing; image compression; image enhancement; deep learning; JPEG; signal
processing

1. Introduction

Image compression is crucial for high-speed data transfer and reduces memory usage.
The international standard for still image coding, JPEG [1], is still widely used because of
its simple coding process and low computational complexity. However, JPEG images often
deteriorate. Thus, JPEG image enhancement is an essential technique.

Many deep-learning-based methods have been developed in the field of image pro-
cessing. They enhanced image quality significantly. For example, the methods in refer-
ences [2–7] enhanced JPEG-coded images using neural networks. However, they required
substantial computational resources to generate high-quality images since a large neural
network model needs to be performed. Thus, only limited devices can use such image
enhancement. In other words, smartphones are unavailable.

Image compression with pre-processing has been studied to avoid post-processing for
artifact reduction in compressed images. The methods aim to reduce compression artifacts
through pre-processing [8–12]. Broadly, the pre-processing methods can be divided into
two approaches: hand-crafted and learned pre-processing, respectively. Human experts use
a non-linear diffusion filtering [8] and pre-processing optimized to the display device [9].
The learned pre-processing methods are developed using a neural network [10–12]. Both
pre-processing approaches successfully improve the visual quality of compression images.

The motivation of this work is to enhance the visual quality of JPEG compressed
images using pre-processing. The advantage of pre-processing is that a huge computation
is required only for the image encoder. Therefore, lightweight devices can obtain high-
quality JPEG images in the same way as they would a standard JPEG image. We aim to
mitigate degradation, such as red block noise and pseudo-contour. These degradations
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are the main reason for deteriorating visual quality. Our observation and analysis (the
details are described in Section 3) show that low saturation and low-frequency regions
cause the degradation. Thus, we use a color transformation and a smoothing model to
alleviate the degradation.

The contribution of this work is the pre-processing of color reduction and smoothing
for JPEG image enhancement. We propose a pre-processing method composed of the
learned and hand-crafted approaches. Specifically, a learned neural network model reduces
colors to alleviate red block noise. Furthermore, an artifact of pseudo-contour is suppressed
using a smoothing algorithm. Figure 1 shows the strategies of standard JPEG coding
and the proposed method. As with pre-processing methods [8–12], any modifications are
not required by a compression algorithm such as JPEG. Only the encoder devices need
pre-processing computation. Therefore, lightweight devices can obtain high-quality JPEG
images in the same way as the standard JPEG image. The proposed method is a substitute
for a JPEG encoder. Thus, an example application is an image compression module used in
an image streaming server, such Unsplash, Instagram, etc.

Encoding Decoding

Original

Original Color
reduction

JPEG
coding

JPEG�image

Standard
method

Proposed
method

JPEG�image
Pseudo-contour
suppression

Figure 1. Strategies of standard JPEG coding and the proposed method.

We conducted numerical and subjective experiments to verify the effectiveness of
the proposed method. The results showed that the proposed method improved JPEG
image quality.

2. Related Work

Image enhancement aims to produce better-quality images for human vision. Specifi-
cally, there are applications such as JPEG artifact removal, denoising, and super-resolution.
In these tasks, many learning-based methods have been developed in recent years.

For JPEG artifact removal, Dong et al. [2] developed the first deep learning method
based on a super-resolution network, SRCNN [13]. Zhang et al. [14] used batch normal-
ization [15] and residual learning [16] to facilitate the training process and improve the
performance of image enhancement tasks. Fu et al. developed a deep convolutional
sparse coding network that combines model-based methods and deep learning [3]. Other
methods [4–7] trained convolutional networks to exploit redundancy in both pixel and
DCT domains. Ehrlich et al. utilized quantization tables as prior information to train
the network [17]. Also, a flexible blind convolutional neural network [18] used quality
factor attention blocks to correct artifacts. However, these methods require a decoder with
sufficient computational resources, which are not daily used devices.

There is also the task of soft color segmentation, which decomposes an image into
multiple RGBA layers containing only specific colors. Various methods have been devel-
oped [19–21]. Akimoto et al. optimized decomposed layers for image reconstruction [20].
The method consists of three parts: palette selection, α-layer estimation, and residual color
estimation. The palette selection extracts representative colors from the image and gener-
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ates a color palette for each color. The module of α-layer estimation calculates α values of
the generated color palette. After processing the α-layer, the residual color estimation esti-
mates the residual colors between the colors of the original and the color palette. For each
pixel in the final RGBA layer, the RGB value is the sum of the color palette and its color
residuals at that pixel. The α value is obtained from the generated α-layer. The decomposed
RGBA layers can be used for image editing, such as recoloring or compositing.

Inspired by the method of reconstructing images from specific colors [20], we produce
a JPEG compressed image from an input image, the colors of which are reduced through pre-
processing. Furthermore, color reduction can suppress red block noise in the compressed
images. Thus, we can enhance the visual quality of the JPEG images. We stress that the
decoding does not involve any neural network computation and can be handled in the
same way as ordinary encoded images.

3. Motivation and Analysis of JPEG Images

We analyze JPEG images to reveal the main causes of degradation. Specifically, we
used images of the publicly available dataset, CLIC2021 (http://clic.compression.cc/2021
/tasks/index.html, accessed on 1 February 2023). The images are high-quality images of
natural scenes, buildings, animals, etc. Thus, we applied JPEG compression to the images
with a quality value of 10. Then, we manually divided the images into good and poor visual
groups and investigated their characteristics. Figure 2 shows images of good and poor
groups with their color distributions in u’v’ uniform chromaticity diagrams. The images in
the good group tend to have clear colors, high saturation, and abundant high-frequency
components. On the other hand, the poor group contains low color saturation and few
high-frequency components. There are degradations, such as unnatural tints caused by red
block noise appearing in low-saturation images. Furthermore, pseudo-contours occur in
the images with a few high-frequency components.

(a)

(b)

Figure 2. Images manually divided into good and poor visual groups and their color distributions in
u′v′ uniform chromaticity diagrams. (a) Good visual group; (b) Poor visual group.

3.1. Discussion of Red Block Noise

In JPEG-coded images, block noise is generated by dividing an image into 8× 8 pixels
and applying a discrete cosine transform. Since human vision is sensitive to the red

http://clic.compression.cc/2021/tasks/index.html
http://clic.compression.cc/2021/tasks/index.html
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component, block noise, especially in the red component, has a significant impact on the
visual quality of the image.

As shown in Figure 2, we illustrate color distribution in u′v′ uniform chromaticity dia-
grams to visualize the color distribution. The center of the diagram, (u′, v′) = (0.20, 0.47), is
called the neutral point, which represents the achromatic color (pure white). The saturation
increases if a color moves outward from the neutral point. The distribution of the good
visual group is located in the outer part of the diagram, indicating that the images contain
many highly saturated colors. In contrast, the poor group squeezes colors at the neutral
points. Thus, the images are composed mainly of colors with low saturation.

Figure 3 shows the color distributions of an uncompressed image and its JPEG image,
in which red block noise occurs. The color distribution moved outward after JPEG compres-
sion. More precisely, the colors were densely squeezed at the achromatic colors before JPEG
coding and then dispersed to the outside after JPEG coding. Considering the color change
after JPEG coding in the image domain, colors were the same for human perceptions before
compression. However, the colors become independent after compression, resulting in
color block noise. Furthermore, a color changes along the u′ axis and becomes red block
noise in the image domain.

(a) (b)

Figure 3. Color distributions before and after JPEG coding. (a) Before; (b) After.

A solution for suppressing red block noise is color reduction before JPEG compression.
Color reduction replaces colors with representative colors. Thus, color distribution sup-
presses the effect of JPEG compression. Figure 4 shows JPEG images with and without color
reduction. Red block noise was reduced using color reduction. However, color reduction
affects the diversity of colors, resulting in the loss of detail colors, as shown in Figure 4b.
Therefore, we propose estimating the residual colors between images with and without
color reduction to complement the color diversity appropriately.

(a) (b)

Figure 4. Effect of color reduction for red block noise in JPEG images. (a) Without color reduction;
(b) With color reduction.
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3.2. Discussion of Pseudo-Contour

In JPEG-compressed images, pseudo-contours mainly occur in the Y channel of YCbCr
color space. Especially in the low-frequency region where luminance varies smoothly,
pseudo-contouring is significantly noticeable since the quantization of JPEG coding restricts
the gradation, resulting in locally discontinuous steps. In this work, we further divide
the low-frequency region into texture and gradient regions. The texture region is low-
frequency, and luminance changes greatly. In contrast, luminance changes smoothly in
a low-frequency region. Figures 5 and 6 show examples of texture and gradient regions,
respectively. In the texture region, no noticeable pseudo-contour is observed even after
JPEG compression while, in the gradient region, unnatural pseudo-contours are observed
in the landscape image. Therefore, in order to suppress the pseudo-contour, we propose a
signal-processing model that homogenizes only the gradient region of the Y channel.

(a) (b) (c)

Figure 5. Y channels of an image containing a textured region. (a) Original image; (b) JPEG image;
(c) Luminance values on red line.

(a) (b) (c)

Figure 6. Y channels of an image containing gradient region. (a) Original image; (b) JPEG image;
(c) Luminance values on red line.

4. Materials and Methods

The proposed method consists of a color transformation network and a pseudo-
contour suppression model, focusing on unnatural tints and pseudo-contours, which
are the main causes of the degradation of JPEG-compressed images. Figure 7 shows an
overview of the proposed method. The input image is processed in the RGB color space
for the color transformation network and in the YCbCr color space for the pseudo-contour
suppression model.

Figure 7. An overview of the proposed method.
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4.1. Color Transformation Network

As we discussed in Section 3.1, color reduction from the original image can significantly
suppress block noise in the red component, which is sensitive to human vision. Therefore,
in this paper, we propose a neural network that extracts representative colors from an
image and reconstructs the image using the representative colors.

The details of the color transformation network are shown in Figure 8. Firstly, we
extract N representative colors using a Gaussian mixture model. Then, we generate a
color-reduced image consisting of the N representative colors. Subsequently, we esti-
mate the color residuals of the original and color-reduced images using a neural network.
The proposed method adopts the U-Net architecture [22], shown in Table 1. Finally, we
add the color-reduced image and color residuals to generate an image pre-processed for
suppressing red block noise.

Figure 8. Details of the color transformation network.

Table 1. The architecture of U-Net used in this paper.

Components Input Size Output Size Output Name

Conv2d(3,1), ReLU, BN H ×W × 6 (H/2)× (W/2)× 32 Conv-1
Conv2d(3,1), ReLU, BN (H/2)× (W/2)× 32 (H/4)× (W/4)× 64 Conv-2
Conv2d(3,1), ReLU, BN (H/4)× (W/4)× 64 (H/8)× (W/8)× 128 -
Deconv2d(3,1), ReLU, BN (H/8)× (W/8)× 128 (H/4)× (W/4)× 64 Deconv-1
Concatnate(Deconv-1, Conv-2) - (H/4)× (W/4)× 128 -
Deconv2d(3,1), ReLU, BN (H/4)× (W/4)× 128 (H/2)× (W/2)× 32 Deconv-2
Concatnate(Deconv-2, Conv-1) - (H/2)× (W/2)× 64 -
Deconv2d(3,1), ReLU, BN (H/2)× (W/2)× 64 H ×W × 32 Deconv-3
Concatnate(Deconv-3, Input image) - H ×W × 35 -
Conv2d(3,1), ReLU, BN H ×W × 35 H ×W × 6 -
Conv2d(3,1), tanh H ×W × 6 H ×W × 3 -

We train the color transformation network by calculating a loss value using the original
image with a Gaussian filter applied (filter size 3× 3). The bit rate increases when we
calculate the loss using the original image. The network learns to compensate for the extra
high-frequency components. Therefore, we use a Gaussian-filtered image to reduce the
bit rate.

The loss functions are L1 loss, a multi-scale structural similarity loss (MS_SSIM) [23],
and perceptual loss using a VGG trained on ImageNet (VGG loss) [24]. The total loss is
defined using Equation (1). We used L1 loss since it can be expected to train the model to
generate images close to the original images. Secondly, we were inspired by the work [25]
of Zhao et al., and artifacts in low-frequency regions were alleviated using the L1 and
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MS_SSIM loss functions. Thus, we also used MS_SSIM in this work. Thirdly, we experi-
mentally found that VGG loss improved visual quality.

LTOTAL = L1 + LSSIM + LVGG (1)

We use Adam [26] as the learning optimizer. The number of learning epochs is 100.
The initial learning rate is 1× 10−4. The learning rate decreases to 1/10 for every 20 epochs.
We use differentiable JPEG coding [27] during training. We heuristically determined the
parameters in this work. Specifically, the size of a Gaussian filter, initial learning rate,
and epochs are selected according to values of training loss. The thresholds of the Canny
filter were determined by observing the effects of the Pseudo-contour Suppression Model
on the training samples.

4.2. Pseudo-Contour Suppression Model

The details of the pseudo-contour suppression model of the proposed method are
shown in Figure 9. The input image is converted from RGB color space to YCbCr color
space. We process only the Y channel of the image.

Figure 9. Processing flow of pseudo-contour suppression model.

We obtain low-frequency regions using the first and second steps described in Figure 9.
We use a median filter to remove noise. Then, we detect edges using the Canny method [28].
The two threshold values are set to Thmin = 20 and Thmax = 30, respectively. Subsequently,
we extract high-frequency regions by applying the closing operation to the extracted edges.
Finally, the low-frequency region is the bit inversion of the high-frequency region.

The third step determines the gradient regions among the low-frequency regions to
homogenize it. We detect edges from the low-frequency regions using a median filter
and the Canny method with the threshold values Thmin = 0 and Thmax = 10. We set the
thresholds more sensitive to detect changes in the brightness of textured regions. Then, we
determine the regions as the gradient regions if the number of pixels at the edges is less
than 3% of the total pixels in a low-frequency region. In addition, since pseudo-contours are
especially noticeable in wide gradient regions in landscape images, we added the condition
that the number of pixels in each region must be more than 10% of the total number of
pixels in the image to be processed. We homogenize the gradient regions using the averages.
However, the homogenized regions become unnatural in the boundaries of the regions.
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Therefore, we apply a guided filter [29] to the homogenized gradient regions to reduce the
unnaturalness of the boundaries.

5. Results

We conducted experiments to verify the effectiveness of the proposed method. We
compiled a dataset by collecting high-quality images from the publicly available website,
Unsplash (https://unsplash.com/, accessed on 1 February 2023). The training images
are created by cropping 128-pixel square images from the CLIC2021. The test images are
high-quality images collected from Unsplash. We selected 50 images of natural scenes, in-
door scenes, animals, and buildings, since they caused red block noise and pseudo-contour
through JPEG compression. Note that the training and test images are independent. Differ-
entiable JPEG coding [27] was used only for training, and OpenCV JPEG encoder and de-
coder were used for testing. We trained Gaussian mixture models to extract N = {4, 8, 16}
representative colors.

The machine used in the experiments has a Xeon E5-2620, 64 GB memory, and a GTX
1080 graphics processing unit. We used Python 3.6 and PyTorch 1.10 to implement the
software of the proposed method. We used the machine for pre-processing, compression,
and decoding. However, we stress that powerful resources are necessary to apply the pre-
processing methods to images. Decoding the pre-processed JPEG images can be performed
on weak resources.

5.1. Numerical Evaluation

We compressed the test images using the proposed method and the standard JPEG.
We set the JPEG quality to 10. The evaluation metrics were PSNR, SSIM, BRISQUE [30],
LPIPS [31], and LIQE [32], which are considered to have a relatively high correlation with
human perception. BRISQUE uses basic statistics, such as mean and variance of luminance
values. LPIPS uses features extracted using image classification models, such as AlexNet.
LIQE estimates the human perception of image quality without any reference information.
BRISQUE and LPIPS are better if their values are small. Bigger values are better LIQE.

We carried out the parameter search with three values of N representative colors used
in the color transformation. The numerical results are shown in Table 2. The standard JPEG
obtained better PSNR and SSIM. Note that PSNR and SSIM do not represent perceptional
quality since the algorithm is intentionally changing the input images. Thus, PSNR and
SSIM do not represent perceptual performance. In contrast, the proposed method outper-
formed JPEG in BRISQUE and LPIPS when N = 4, 8, and 16. Thus, the proposed method
focused on enhancing the visual quality related to human perception. Also, different values
of N obtained the best results at each metric in Table 2. Specifically, N = 4 achieved the
best values at BRISQUE and LPIPS. The best LIQE was obtained at N = 16. The difference
between N = 4 and N = 16 is 0.016, which is a slight value. Thus, the proposed method is
effective when N = 4.

Table 2. Results of the numerical evaluation. N is the number of representative colors used in the
color transformation. ↑ represents better value if it is larger, and vice versa for ↓. The bold and
underline are the best and the second best, respectively.

PSNR(↑) SSIM(↑) BRISQUE(↓) LPIPS(↓) LIQE(↑)

JPEG 28.095 0.8745 51.588 0.2956 1.292
Proposed (N = 4) 26.924 0.8689 51.097 0.2884 1.339
Proposed (N = 8) 27.239 0.8681 51.373 0.2907 1.355
Proposed (N = 16) 26.884 0.8572 51.371 0.2959 1.345

The results show that the LPIPS value of the proposed method is almost equivalent
to JPEG when N = 16. Thus, further evaluations are unnecessary, such as N = 32. In this
paper, we focus on pre-processing. Thus, post-filtering methods are out of scope. The
comparison with JPEG is the most important for evaluation. Furthermore, we added the

https://unsplash.com/
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comparison with a pre-processing method, LearnedJPEG [11]. The details are described in
Section 5.7.

As shown in Figure 10, the standard JPEG coding generated block noise and pseudo-
contour. Specifically, the left result had red block noise and separated colors in the back-
ground. There were pseudo-contours in the center and the right results. On the other hand,
the proposed method successfully suppressed block noise and pseudo-contour, resulting in
more natural-looking images.

0.3682/45.1078 0.2582/61.0945 0.1720/46.2559
(a)

0.3592/44.9425 0.2331/57.2845 0.0846/44.7680
(b)

Figure 10. Examples of the compressed test image with LPIPS and BRISQUE values. (a) The standard
JPEG; (b) The proposed method.

An artifact occurred in the right image of Figure 10b. The artifact was a pseudo-
contour caused by our pseudo-contour suppression model. Comparing the right image
in Figure 10a, the artifact was suppressed by the proposed method. Even though artifacts
remained, the proposed method enhanced the visual quality of the standard JPEG images.
The artifacts may depend on the content of a specific image. The pseudo-contour sup-
pression model is extremely effective for the image content of the sky. Thus, we show the
results of the sky contents in Figure 11. The pseudo-contours are suppressed using the
proposed method. Furthermore, the LPIPS and BRISQUE values are improved.

5.2. Subjective Evaluation

We conducted a subjective evaluation to measure the quality of the compressed test
images. Eleven participants evaluated images compressed using the standard JPEG and
the proposed method with N = 4. More precisely, a participant selected one answer from
three questionnaires: (1) the standard JPEG is better, (2) the proposed method is better,
and (3) similar quality. We determined a final answer for each test image by majority voting.
For example, a test image will be answer (1) if six participants select answer (1).
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0.3295/47.8046 0.2750/50.7300 0.2001/47.6677
(a)

0.3254/47.0590 0.2509/46.6174 0.1959/45.9928
(b)

Figure 11. Results of sky image with LPIPS and BRISQUE values. (a) The standard JPEG; (b) The
proposed method.

Furthermore, we evaluated the final answers using statistical hypothesis testing. We
set up a null hypothesis that the proportions of the three answers would be the same,
i.e., one-third. Then, we rejected the null hypothesis at the significance level of 5%.

Table 3 shows the results. The proposed method was superior to the standard JPEG in
human visual perception. The statistical hypothesis testing also verified the effectiveness of
the proposed method. As shown in Figure 10, the proposed method successfully suppressed
red block noise and pseudo-contour. However, there were cases where the standard JPEG
was better. We showed one example in Figure 12. Although there was red block noise in
the standard JPEG image, the proposed method overly homogenized the background.

Table 3. Results of subjective evaluation. The values are the number of images for each answer.

Which Is Better? Majority Voting Statistical Hypothesis Testing

The proposed method 30 25
The standard JPEG 13 8
Similar quality 7 4

(a) (b)

Figure 12. A JPEG better example in the subjective evaluation. (a) JPEG; (b) Proposed.
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5.3. Effect of the Color Transformation Network

We applied the color transformation network to the original and JPEG images to
analyze its effect. We show u′v′ uniform chromaticity diagrams in Figure 13. Comparing
the original and JPEG images, red component data increased in the JPEG image and became
red block noise. On the other hand, after we applied the color transformation network,
the distribution of colors was shifted toward the negative u′ axis by the neural network.
Thus, we reduced the red component data and red block noise.

(a) (b) (c) (d)

Figure 13. Chromaticity diagrams before and after being transformed by the color transformation.
(a) Original image; (b) JPEG image; (c) Transformed original; (d) Transformed JPEG.

We measured the LPIPS and BRISQUE to show the effectiveness of the color transfor-
mation. As shown in Figure 14, there is red block noise in the JPEG image. In comparison,
the color transformation alleviated the noise. Furthermore, better LPIPS and BRISQUE
values were obtained. Therefore, the effectiveness of the color transformation was verified.

JPEG : 0.231/53.9 The color only : 0.222/53.0

JPEG : 0.144/52.5 The suppression only : 0.127/51.5

Figure 14. Effectiveness of the color transformation and the pseudo-contour suppression model.
The values are LPIPS and BRISQUE.

5.4. Effect of the Pseudo-Contour Suppression Model

We applied the pseudo-contour suppression model to the original and JPEG images.
Figure 15 shows the luminance values in the gradient regions. The JPEG images had
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discontinuous steps caused by the quantization in the compression, and the steps became
pseudo-contours. On the other hand, the proposed method homogenized the discontinuous
steps, and pseudo-contours were eliminated. As shown in Figure 13, the pseudo-contour
suppression model obtained better LPIPS and BRISQUE than JPEG. Therefore, the effec-
tiveness of the pseudo-contour suppression model was evaluated.

(a) (b) (c)

(d) (e) (f)

Figure 15. Luminance values on the red line before and after applying the pseudo-contour suppres-
sion model. (a) Original image; (b) JPEG image; (c) Values on the red line; (d) Applied original;
(e) Applied JPEG; (f) Values on the red line.

5.5. Impacts of JPEG Compression Quality

We conducted additional experiments using JPEG qualities 10, 15, 20, 25, 30, 35,
and 40. We used LPIPS to evaluate the impacts of the JPEG qualities on the visual quality
of compressed images. The results are shown in Figure 16. The proposed method was
superior to JPEG at a quality value of 10. However, LPIPS deteriorated more than the
standard JPEG from the quality of 20 and above, since red block noise and pseudo-contour
occurred occasionally. We show the LPIPS values at various JPEG qualities in Figure 17.
The results show that the proposed method was significantly effective at a quality of 10.
Also, the values of LPIPS were improved using the proposed method. Also, LPIPS at the
other qualities were improved using the proposed method.

Figure 16. Average LPIPS at JPEG quality values.
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q = 10, q = 15 q = 20 q = 25 q = 30 q = 35 q = 40

0.1720 0.1559 0.1223 0.1052 0.0788 0.0538 0.0417
(a)

0.0846 0.0947 0.1038 0.0699 0.0546 0.0383 0.0355
(b)

Figure 17. LPIPS values at various JPEG qualities q. (a) JPEG; (b) Proposed.

5.6. Evaluation Using KODAK Dataset

The degradation of red block noise and pseudo-contour often happens in images of
natural scenes, buildings, animals, etc. Thus, we developed our dataset for evaluating the
performance of the proposed method, especially in the degraded images.

We conducted experiments using the KODAK (https://r0k.us/graphics/kodak/, ac-
cessed on 1 September 2023) dataset, which is used in other pre-processing methods [10–12].
The results are shown in Table 4. JPEG obtained better PSNR and SSIM than the proposed
method. In comparison, the proposed method outperformed in terms of the BRISQUE,
LPIPS, and LIQE, which are metrics for human visual perception. Therefore, the effective-
ness of the proposed method is demonstrated.

Table 4. Results of KODAK dataset. ↑ represents better value if it is larger, and vice versa for ↓.

PSNR(↑) SSIM(↑) BRISQUE(↓) LPIPS(↓) LIQE(↑)

JPEG 26.7 0.832 53.7 0.1549 1.1641
Proposed 26.4 0.828 53.6 0.1537 1.1663

5.7. Comparison with the Other Pre-Processing Method

We compared the results of the proposed method with another pre-processing method.
We used LearnedJPEG [11] for comparison since this was the only project publicly making
the source codes available. Specifically, we trained LearnedJPEG using our training data.
The test images were compressed using the LearnedJPEG. The bitrates of the compressed
images are larger than the proposed method. Thus, we compressed the results of the
LearnedJPEG, using the standard JPEG at quality 10, for fair comparison. Note that the
quality value cannot be used in LearnedJPEG.

The comparison results are shown in Table 5. The proposed method outperformed
LearnedJPEG in all the criteria. Moreover, we compared visual quality in Figure 18. There
are red block noise and pseudo-contours in LearnedJPEG. The proposed method success-
fully suppressed the artifacts. Thus, the visual quality in the compressed images was
improved using the proposed method. Therefore, the results show the effectiveness of the
proposed method.

Table 5. Comparison results with the LearnedJPEG [11]. ↑ represents better value if it is larger, and
vice versa for ↓.

PSNR(↑) SSIM(↑) BRISQUE(↓) LPIPS(↓) LIQE(↑)

LearnedJPEG [11] 19.565 0.6836 51.681 0.4505 1.022
Proposed 26.924 0.8689 51.097 0.2884 1.339

https://r0k.us/graphics/kodak/
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(a) (b)

Figure 18. Visual comparison with the pre-processing method, LearnedJPEG [11]. (a) Learned-
JPEG [11]; (b) Proposed.

6. Conclusions

In this paper, we proposed a method for generating higher-quality JPEG images with-
out changing the JPEG decoding algorithm. We especially tackled suppressing unnatural
colors and pseudo-contours, which deteriorate the visual quality of JPEG images. We
proposed pre-processing to reduce colors using a color transformation network. Further-
more, we developed a pseudo-contour suppression model using signal processing. We
obtained enhanced JPEG images from input images pre-processed using the proposed
method. The experimental results showed that the proposed method generated images
favorable to human visual perception. The subjective results showed the superiority of
the proposed method. Also, the numerical results verified the competitive quality of the
proposed method. In particular, the proposed method is effective for images including
natural landscapes, indoors, and buildings, which are considered to be highly degraded in
standard JPEG.

An essential future work is comprehensive research into the training of the proposed
method using various loss functions. There are various loss functions for image quality
assessment. The performance of the proposed method can be improved using other
loss functions.
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