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Abstract: Global navigation satellite systems (GNSSs) became an integral part of all aspects of
our lives, whether for positioning, navigation, or timing services. These systems are central to a
range of applications including road, aviation, maritime, and location-based services, agriculture,
and surveying. The Global Positioning System (GPS) Standard Position Service (SPS) provides
position accuracy up to 10 m. However, some modern-day applications, such as precision agriculture
(PA), smart farms, and Agriculture 4.0, have demanded navigation technologies able to provide
more accurate positioning at a low cost, especially for vehicle guidance and variable rate technology
purposes. The Society of Automotive Engineers (SAE), for instance, through its standard J2945 defines
a maximum of 1.5 m of horizontal positioning error at 68% probability (1σ), aiming at terrestrial
vehicle-to-vehicle (V2V) applications. GPS position accuracy may be improved by addressing the
common-mode errors contained in its observables, and relative GNSS (RGNSS) is a well-known
technique for overcoming this issue. This paper builds upon previous research conducted by the
authors and investigates the sensitivity of the position estimation accuracy of low-cost receiver-
equipped agricultural rovers as a function of two degradation factors that RGNSS is susceptible
to: communication failures and baseline distances between GPS receivers. The extended Kalman
filter (EKF) approach is used for position estimation, based on which we show that it is possible to
achieve 1.5 m horizontal accuracy at 68% probability (1σ) for communication failures up to 3000 s
and baseline separation of around 1500 km. Experimental data from the Brazilian Network for
Continuous Monitoring of GNSS (RBMC) and a moving agricultural rover equipped with a low-cost
GPS receiver are used to validate the analysis.

Keywords: RGNSS; communication failure; baseline separation; positioning accuracy; precision
agriculture; moving rover

1. Introduction

Over the last several decades, global navigation satellite systems (GNSSs) [1,2] have
become the dominant approach for personal and vehicular (terrestrial or aerial) naviga-
tion [3–8]. GNSSs are “position-fixing” systems that allow a position and timing solution
to be computed from synchronized ranging signals broadcast by satellites [9,10]. They
provide three types of measurements, known as observables [9,11–13]: pseudoranges
(coarse distances between satellites and receivers during the transmission and reception of
GNSS signals), Doppler shifts (associated with the relative speed of the satellite-receiver
pairs), and carrier phases (fine distances between the satellites and receivers expressed
in the unit of cycles of the carrier wave). The GNSS navigation solution can meet many
application specifications using low-cost receivers, and the resulting position errors are
bounded. However, standalone GNSS (SGNSS) does not meet the necessary performance
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requirements of position accuracy and reliability in the new generation of applications (e.g.,
connected autonomous vehicles (CAVs), vehicle-to-vechicle (V2V) communication, driver’s
assistance, precision agriculture (PA), smart farms, and Agriculture 4.0) [14–17], since their
signals have low power and, consequently, are vulnerable to numerous types of errors.

In the field of PA, the acquisition of precise position data for the effective control and
analysis of a huge amount of geospatial information is of paramount importance [18,19].
This is an approach to farm management that uses information technology to deal with the
spatial variability present in farmland, ensuring that crops and soil receive exactly what
they need for optimum health and productivity [20]. GNSS-based applications in precision
farming are largely being used for farm planning, field mapping, soil sampling, tractor
guidance, crop scouting, variable rate applications, and yield mapping [21–26].

Currently, GNSSs comprise four constellations [9,12]: the Global Positioning System
(GPS), the oldest and most popular system, which has been operating with full operational
capability (FOC) since 1995 under the government of the United States of America [27];
GLONASS, the Russian system with FOC dated from late 1990s [28]; BeiDou, the Chinese
constellation which reached FOC in 2020 [29]; and Galileo, the European constellation and
a unique system that is under civilian control [30].

Pseudorange measurements (the main GNSS observables) are primarily corrupted by
two categories of errors [27,31,32]:

• Common-Mode Errors (CME): These are spatially and temporally correlated errors (i.e.,
they comprise propagation and temporal systematic errors that are experienced by all
receivers in the same vicinity and time span). Among them, ephemeris error, satellite
clock bias, intersignal biases, and ionospheric and tropospheric delays stand out.

• Non-Common-Mode Errors (NCME): Unlike CMEs, NCMEs are different for each receiver,
mainly comprising receiver clock bias, multipath error, and receiver tracking noise.

The GPS Standard Position Service (SPS) provides horizontal and vertical accuracy of
9 m and 15 m, respectively [33]. However, specifications such as the J2945 standard [34],
proposed by the Society of Automotive Engineers (SAE), which is aimed at vehicle-to-
vehicle (V2V) applications, require horizontal and vertical accuracy of 1.5 m and 3 m,
respectively, with 68% probability. Common-mode errors are the main errors responsible
for deterioration of the SGNSS position accuracy, and therefore advanced GNSS techniques
are required for achieving such a level of accuracy. A number of solutions focused on
mitigating the effect of common-mode errors on GNSS position estimation are available
in the literature [35–39]. The differential GNSS (DGNSS) approach is a well-known tech-
nique which has been largely employed and researched by the civilian community since
the beginning of the GNSS era (while selective availability was still activated) [40–44].
Put simply, the technique involves accurately measuring the errors in the pseudoranges
observed by a receiver at a known time and location, namely a reference station, and
broadcasting these corrections to a rover receiver at an unknown and possibly changing
position in the reference base’s vicinity. These “differential corrections” are then applied to
the pseudoranges measured by the second receiver so that any errors which are common
to the two receivers are eliminated.

As another option for GNSS common-mode error mitigation, relative GNSS (RGNSS)
positioning has also been employed in the last few years, boosted by cutting-edge commu-
nication technologies supporting high-speed and low-latency data dissemination between
GNSS receiver networks [45–49]. The RGNSS technique is based on the sharing of GNSS
pseudorange measurements observed in a reference station (i.e., raw observables) with a
rover in the vicinity in such a way that these raw data are differentiated from the moving
GNSS receiver’s own measurements. In sequence, the rover uses such differentiated obser-
vations thorugh position estimation algorithms, aiming at computing its position relative to
the reference station. As the reference station location is generally known at the millimeter
level, accurate computation of the rover’s absolute position is straightforward.

In GNSS systems that rely on reference stations, such as RGNSS and DGNSS, two
primary factors contribute to position accuracy impairment [50]. These factors are failures
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in communication, which obligates the rover to use outdated corrections (in the case of
DGNSS) or raw observables (in the case of RGNSS), and the baseline separation (i.e., the
physical distance between receivers). Communication failures in RGNSS position esti-
mation accuracy were investigated in [49] for a static reference station equipped with a
high-performance GNSS receiver, demonstrating that RGNSS positioning performance is
insensitive (i.e., the position accuracy remains submetric) to failures up to 1500 s. In [48] the
effects of baseline separation on RGNSS position accuracy (again for a static reference sta-
tion equipped with a high-performance GNSS receiver) were in turn investigated, showing
that horizontal position errors remain submetric (1σ) for baseline distances up to 2100 km.
Similar investigations, devoted to moving (especially agricultural) rovers equipped with
low-cost GNSS apparatuses, however, are still rare in the literature [51].

Given these open issues, this paper aims at analyzing the aforementioned degrading
factors (i.e., the effect of communication failures and baseline separation on relative GPS
(RGPS)) position estimation accuracy for moving agricultural rovers equipped with a
low-cost GNSS receiver. The main contribution of this work is a comprehensive analysis
concerning the maximum communication failure time and maximum distance between
the rover and reference station that allows RGNSS horizontal position accuracy based
on a low-cost receiver to achieve the J2945 standard specifications. This work focuses on
the results from the GPS constellation only. Hence, the terms GPS and GNSS are used
interchangeably hereinafter.

The remainder of this paper is organized as follows. Section 2 reviews the SGNSS
and RGNSS approaches, defines the appropriate notation, and presents the corresponding
algorithms for position estimation using pseudorange measurements. Section 3 describes
the experimental data acquisition set-up, while Section 4 presents the results for the com-
munication failure and baseline separation effects on position accuracy. Lastly, Section 5
summarizes the paper and presents final thoughts and conclusions.

2. GNSS Position Estimation

The pseudorange measurement between a rover a and a satellite s, taking into account the
errors cited in Section 1, can be modeled as (time index t is omitted for the sake of simplicity):

ρs
a = ras + δρa

c − δρs
c + δρs

I,a + δρs
T,a + δρs

E + δρs
M,a + ws

p,a, (1)

where the term δρa
c represents the receiver clock bias, δρs

c is the satellite clock bias, δρs
I,a

is the ionospheric delay, δρs
T,a is the tropospheric delay, δρs

E is the ephemeris error, δρs
M,a

is the multipath error, ws
ρ,a is a white Gaussian-like measurement noise representing the

lumped effects of tracking noise and unmodeled residual errors, and ras is the true range
(Euclidean distance) from the Earth-centered, Earth-fixed (ECEF) position of a satellite s
(re

es) to the ECEF position of a rover a (re
ea), which is defined as

ras =
∥∥∥CI

ere
es − re

ea

∥∥∥, (2)

where CI
e is the coordinate transformation matrix (CTM) that compensates for the Sagnac

effect during GNSS signal propagation [9]. In this paper, the ECEF frame is represented by
the superscript e and is defined with its ze axis pointing along the Earth’s axis of rotation,
with the xe axis pointing from the center of Earth to the intersection of the equator with the
Greenwich meridian and the ye axis completing the right-hand orthogonal set.

The least squares (LS) estimator is a well-known approach commonly used for receiver
position computation based on pseudoranges [52–54]. On the other hand, a more robust
approach for estimating position solutions is provided by a Kalman filter-based estimation
algorithm, which incorporates information obtained from previous measurements. Among
these filters, the extended Kalman filter (EKF) is widely employed in such applications due
to its reliability and relatively low computational requirements [9,12,13,48,55,56]. When
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utilizing an EKF algorithm for SGNSS positioning estimation, the following state vector is
commonly defined:

xe
S = [(re

ea)
T , (ve

ea)
T , δρa

c , δρ̇a
c ]

T ∈ Rn, (3)

where the subscript S denotes SGNSS, n = 8, ve
ea is the rover velocity, and δρ̇a

c is the receiver
clock drift.

The propagation of the states in Equation (3) over time is governed by the following
dynamic model:

ṙe
ea = ve

ea,
∂

∂t
δρa

c = δρ̇a
c

v̇e
ea = 0,

∂

∂t
δρ̇a

c = 0
(4)

The primary factors contributing to increased uncertainty in the state estimates are the
user motion, random walk in the receiver clock drift, and phase noise affecting the clock
bias. The acceleration power spectral density (PSD) matrix that drives the rover velocity
random walk is

Se
a = (Cn

e )
T

SaH 0 0
0 SaH 0
0 0 SaV

Cn
e , (5)

where Cn
e is the ECEF to the north, east, and down (NED) CTM and SaH and SaV are the

horizontal and vertical acceleration PSDs, respectively. In this paper, the NED frame is
represented by the superscript n and is defined with its origin at the center of mass of the
rover, with its xn, yn, and zn axes pointing in the north, east, and down directions, respec-
tively. The system noise is inherently context-dependent. For a scenario encompassing
a moving agricultural rover (low-dynamic application), for instance, SaH and SaV can be
tuned as 1 m2s−3. The receiver clock frequency drift PSD and clock phase drift PSD, in
turn, can be tuned as Sa

c f ≈ 0.04 m2s−3 and Sa
cφ ≈ 0.01 m2s−1, respectively [9].

Equations (4) and (5) represent the dynamic model of the EKF that governs the predic-
tion step of the SGNSS navigation filter. For the update step, the following measurement
vector (for m satellites tracked) can be defined as follows:

zS = [ρ1
a,C, ρ2

a,C, ..., ρm
a,C]

T , (6)

where the subscript C indicates that the pseudoranges have been partially corrected for
common-mode errors, using, for instance, the Klobuchar model [57] to mitigate ionosphere
delay, the UNB3 model [10] for tropospheric delay, and satellite clock corrections transmit-
ted in the GPS navigation message [58]. Nevertheless, it is important to acknowledge that
the pseudorange measurements mentioned above may still contain residual components
of common-mode errors that have not been entirely compensated for by the previously
described models.

The SGNSS EKF processes the measurement innovations δz−S,k as follows:

δz−S,k = zS,k − hs(x̂−S,k), (7)

where hs is the nonlinear function that maps the predicted (superscript -) state vector x̂−S,k
into the estimated (hat symbol) pseudoranges between the rover and satellite, namely

hs(x̂−k ) = [ρ̂1−
a,C, ρ̂2−

a,C, ...ρ̂m−
a,C ]T , (8)

with
ρ̂s−

a,C,k =
√
[CI

e r̂e
es − r̂e−

ea,k]
T [CI

e r̂e
es − r̂e−

ea,k] + δρ̂a−
c,k , (9)

where k is the iteration index, r̂e
es is the estimated satellite position, r̂e−

ea,k is the estimated
rover position, and δρ̂a−

c,k is the estimated receiver clock bias.
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The measurement matrix is defined as follows:

He
S =


−ue

a1,x −ue
a1,y −ue

a1,z 0 0 0 1 0
−ue

a2,x −ue
a2,y −ue

a2,z 0 0 0 1 0
...

...
...

...
...

...
...

...
−ue

am,x −ue
am,y −ue

am,z 0 0 0 1 0

, (10)

where ue
as ≈

re
es−re

ea
‖re

es−re
ea‖

and s ∈
{

1, ..., m
}

is the unit line-of-sight vector from rover a to
satellite s.

To weight the uncertainties on the pseudorange observables, the EKF measurement
noise covariance matrix can be set to

RS =


σ2

ρ1 0 · · · 0
0 σ2

ρ2 · · · 0
...

...
. . .

...
0 0 · · · σ2

ρm

, (11)

with

σ2
ρs =

σ2
ρZ

sin2(θas
nu)

, (12)

where θas
nu is the satellite s’s elevation angle and σ2

ρZ is a constant empirical value for the
pseudorange uncertainty when the latter is at zenith, which for a 1 Hz EKF update interval
is typically around (1–5) m2 [9].

Utilizing the aforementioned system and measurement models, the SGNSS EKF can
be implemented using the conventional discrete equations found in the standard literature.
For additional details, please refer to [9,12,13,59].

Relative GNSS Position Estimation

As mentioned in Section 1, to compute the position using the RGNSS approach, the
rover needs to access raw observables provided in a timely manner from an available
nearby reference station. Similar to Equation (1), the pseudorange taken at the reference
station r can be modeled as

ρs
r = rrs + δρr

c − δρs
c + δρs

I,r + δρs
T,r + δρs

E + δρs
M,r + ws

ρ,r, (13)

where rrs is the true range from the ECEF position of satellite s (re
es) to the ECEF position of

the reference station (re
re).

In the generic case where at least m ≥ 4 satellites are in view of the reference station
and rover antennae and are tracked by single-frequency GNSS receivers to which each
is connected, the same number m of pseudoranges is expected to be tracked. Single-
differenced (SD) pseudoranges may be obtained by subtracting the observables of the
reference station r from those received by the rover a in the following equation:

∆ρs
ra = ρs

a − ρs
r, (14)

Integrating Equations (1) and (13) into Equation (14) yields the following SD pseudor-
ange model for m satellites in view [9]:

∆ρ1
ra = ρ1

a − ρ1
r = [−ue

a1]
Tre

ra + ∆ρra
c + ∆ρ1

M,ra + ∆w1
ρ,ra

...
∆ρm

ra = ρm
a − ρm

r = [−ue
am]

Tre
ra + ∆ρra

c + ∆ρm
M,ra + ∆wm

ρ,ra

(15)
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where ue
as, s ∈

{
1, ..., m

}
is the unit line-of-sight vector from satellite s to the antennae and

∆ρra
c = δρa

c − δρr
c, ∆ρs

M,ra = δρs
M,a − δρs

M,r, and ∆ws
ρ,ra = ws

ρ,a − ws
ρ,r are the SD receiver

clock delay, and multipath and white Gaussian-like measurement noise for satellite s,
respectively. The GNSS antennae r and a are considered to be close enough that their
line-of-sight vectors to each satellite are parallel.

It should be noticed in Equation (15) that the SD pseudorange measurements are
linearly related to the ECEF-resolved baseline vector (re

ra = re
ea − re

er) and that they are no
longer corrupted by the common-mode errors ((δρs

c, δρs
I,i, δρs

T,i, δρs
E), i ∈

{
a, r
}

), which were
expected to be canceled out during the differentiation process. However, this cancellation
is valid solely when the the rover is able to access the reference station measurements is in
a delimited time span (of minutes, typically) and when the physical separation (baseline)
between both antennae is within a certain range. The investigation of both effects on
moving agricultural rovers equipped with low-cost GNSS receivers is the main focus of
this work.

The following state vector (comprising n = 8 states) can be defined for the EKF-based
SD RGNSS positioning estimation algorithm:

xe
R = [(re

ra)
T , (ve

ra)
T , ∆ρra

c , ∆ρ̇ra
c ]T ∈ Rn, (16)

where the subscript R denotes the RGNSS, ve
ra is the rover velocity relative to the reference

station, and δρ̇ra
c is the rover clock drift, which is also relative to the reference station.

The dynamic model that describes how the states in Equation (16) are propagated
forward in time and the associated process noise PSDs are the same as in Equations (4)
and (5). Concerning the EKF update step, in turn, the measurement vector (for m satellites
tracked) comprises the SD pseudoranges; in other words, we have

zR = [∆ρ1
ra, ∆ρ2

ra, ..., ∆ρm
ra]

T , (17)

Similar to Equation (7), the measurement innovations vector that is effectively pro-
cessed by the EKF is

δz−R,k = zR,k − hr(x̂−R,k), (18)

with
hr(x̂−R,k) = [∆ρ̂1−

ra , ∆ρ̂2−
ra , ..., ∆ρ̂m−

ra ]T , (19)

where the SD pseudorange estimates can be computed as follows:

∆ρ̂s−
ra =

∥∥∥CI
e r̂e−

es − r̂e−
ea

∥∥∥− ∥∥∥CI
e r̂e−

es − r̂e−
er

∥∥∥+ ∆ρ̂ra−
c . (20)

The SD measurement matrix He
R, which is the geometric matrix that characterizes the

user-satellite geometry, is defined as in Equation (10). Lastly, the measurement noise covariance
matrix, which is used to weight the uncertainties of the SD pseudorange observables, is

RR = 2RS, (21)

where the factor 2 arises from the SD process.

3. Material and Methods

In order to analyze the influence of communication failure and baseline separation
(between the rover and reference station) on the RGNSS position accuracy, an experimen-
tal test was performed. The test consisted of equipping a radio-controlled agricultural
rover with a u-blox C102-F9R application board connected to a u-blox antenna (model
ANN-MB-01), which was attached to the roof of the rover as illustrated in Figure 1. De-
spite being a multi-band, multi-constellation receiver, in the test, C102-F9R only acquired
single-frequency (L1) coarse acquisition (C/A) pseudorange measurements from the GPS
constellation, as these are the sole signals that the majority of mass market low-cost GNSS
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equipment is currently able to track. Embedded into the rover were also a notebook for
collecting the C102 module data via u-center software v22.07 , a pair of lithium polymer
(LiPo) batteries, electric motors, and electronic speed controllers (ESC) to propel the rover,
and a radio control receiver to remotely guide the latter.

Figure 1. Agricultural rover equipped with u-blox C102-F9R application board and ANN-MB-01
antenna (black box in the gray area over the robot’s roof) used in the experimental test.

3.1. Experimental Data Acquisition

The test was conducted in an experimental coffee plantation composed of young
coffee trees with a height of about 1.5 m located at the Federal University of Lavras (UFLA).
The rover (Figure 1) was guided through the corridors of the coffee plantation, which
are approximately 130 m long, (The planned and executed path is illustrated in Figure 2)
collecting and saving, in a personal computer, GPS raw data at a tracking interval of 1 s so
that the data could be post-processed (aiming at the rover’s position computation) using
the following two algorithms developed in the MATLAB® environment:

1. An EKF-based standalone GNSS approach using pseudorange measurements. This
approach will be referred to as SGNSS in the ensuing text for the sake of brevity.

2. EKF-based relative GNSS using single-differentiated pseudorange measurements.
Conversely, this approach will be referred to as RGNSS hereinafter.

For RGNSS position estimation, the selection of the corresponding reference sta-
tion was based on the Brazilian Network for Continuous Monitoring of GNSS (RBMC),
which is operated and maintained by the Brazilian Institute of Geography and Statistics
(IBGE). The RBMC is renowned as the most precise geodetic reference infrastructure in
Brazil, comprising 147 geodetic stations strategically distributed across the country, all
meticulously positioned with high-precision coordinates. Each station is equipped with
a high-performance receiver that continuously collects and stores GNSS observables and
navigation data. The RBMC offers GNSS data in three different formats: real-time data are
available through the Networked Transport of RTCM via Internet Protocol (NTRIP) “caster”
server [60]; post-processed data are provided in Receiver Independent Exchange (RINEX)
format (versions 2 and 3) at 15 s tracking intervals; and post-processed data at 1 s tracking
intervals are available in RINEX 3-only format [61]. These datasets are freely accessible
to all users via the IBGE website [62]. Although some of these bases are equipped with
multi-frequency, multi-constellation receivers, only L1 C/A pseudorange measurements
from the GPS constellation were used for state estimation during the experimental tests.



Sensors 2023, 23, 8835 8 of 16

Figure 2. Planned and executed path for data acquisition at coffee plantation located at Federal
University of Lavras.

3.2. Performance Assessment Criteria

In order to determine the reliable ground truth values for the rover position (so that
the corresponding estimates could be compared against them), precise real-time kinematics
(RTK) positioning using dual-frequency wide-lane carrier phase observables (from both
the rover and the closest RBMC station) was determined, whose integer ambiguities were
solved and fixed using the least squares ambiguity decorrelation adjustment (LAMBDA)
method proposed in [63,64].

We considered three criteria for assessing the position estimation performance: the in-
dividual channel position error (eick ), defined in Equation (22); the horizontal position error
(ehk

), defined in Equation (23); and the total position error (etk ), defined in Equation (24):

eick ,N,E,D = rn
ea,N,E,D − r̂n

eak ,N,E,D, (22)

ehk,l
=

∥∥∥∥[1 0 0
0 1 0

]
(rn

ea − r̂n
eak

)

∥∥∥∥, (23)

etk,l =
∥∥∥(rn

ea − r̂n
eak

)
∥∥∥, (24)

where rn
ea is the NED-resolved ground truth position of the rover and r̂n

eak
is the correspond-

ing estimate.

4. Experimental Results

This section presents the results and discusses the experimental position estimation
performance of a low-cost GNSS receiver-equipped moving agricultural rover, considering
the degradation effects of communication failure and baseline separation between the latter
and the reference station.

4.1. Sensitivity to Communication Failure

The first goal was to verify the extent to which the RGNSS estimation algorithm
was able to achieve a horizontal accuracy level of 1.5 m at 1σ, as required by the SAE
J2945 standard [34]. The EKF algorithm processed the entire batch of GNSS measurements
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collected during the test (k = 1, ..., Nd; Nd = 800 epochs, where 1 epoch corresponds
to 1 s) as if they were occurring in real time (i.e., incrementally) to estimate the state
vector at each time index k for a given value of communication failure l, which is also in
seconds, using the SD pseudorange ∆ρs

ra(k; k− l). The experiment was repeated for values
of l = 0, ..., 6000 epochs, which corresponded to a communication failure of up to 100 min.
In this extreme situation, the rover used data from a reference station collected 100 min
earlier in order to compute its own position at the current epoch.

For comparative purposes, the rover position estimated using the SGNSS approach
was also included in the analysis. The reference station chosen for RGNSS position estima-
tion was the MGLA base station, which is part of the RBMC and situated at UFLA’s campus.
This particular base station supplied the rover with raw pseudorange measurements. These
measurements were utilized to deploy common mode error cancellation during the rover’s
own position estimation process. The baseline separation between the rover and the MGLA
reference station (i.e., the distance between the base station and the coffee plantation where
the test was performed) was estimated to be approximately 1 km. For each fixed value of
communication failure l, the mean and standard deviation of eick,l ,N,E,D, ehk,l

, and etk,l were
computed from the experimental data by averaging the last (Nd − lmax) epochs, where
lmax is the maximum value for communication failure (6000). Table 1 summarizes the
mean and standard deviation of the position error criteria defined in Equations (22)–(24)
for communication failure l = 0 s (i.e., RGNSS rover position estimation computed using
reference station’s pseudorange measurements received at the same epoch as the rover
∆ρs

ra(k; k)). For comparison purposes, the position error statistics for the SGNSS approach
are also included in Table 1.

Table 1. Position error statistics for SGNSS and RGNSS approaches.

SGNSS RGNSS
Mean

(m)
Std. Dev.

(m)
Mean

(m)
Std. Dev.

(m)

North 1.0501 0.498 0.528 0.351
East 0.459 0.371 0.395 0.308
Down 1.293 1.014 1.121 0.866
Horizontal 1.202 0.505 0.713 0.381
Total 1.883 0.925 1.432 0.779

As one can see in Table 1, in the absence of communication failure, the RGNSS
approach presented improved performance in all error criteria if compared with the SGNSS
technique since the mean errors of the former were closer to zero, aside from presenting
smaller standard deviations. One can also notice that the SGNSS approach was not able to
comply with the SAE J2945 standard position accuracy requirements, while RGNSS was.
This is an indication that the common mode errors were effectively mitigated.

The analysis that follows investigates the detrimental effect of communication failures
between the rover and reference station data, where incremented time delays (in accessing
the reference station’s raw data) were purposely added in the position estimation process.
Figure 3 shows the mean error along with the plus and minus one standard deviations
(indicated by the vertical bars in each point) as a function of the communication failure.
The first point (in purple) is the rover position estimation error performed by the SGNSS al-
gorithm, whereas the remaining points (in red) are the position estimation error performed
by the RGNSS algorithm.

As can be noticed in Figure 3, the RGNSS performance was better than that of SGNSS,
which is in agreement with [49,65,66]. Another outcome from Figure 3 is that the RGNSS
horizontal position accuracy remained under 1.5 m at 1σ for communication failures up to
3000 s, which is sufficient to meet the SAE J2945 standard specifications. After this value of
time delay, the RGNSS performance became similar to that of SGNSS and became even
worse as the communication failure increased, indicating that the common mode error
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cancellation was no longer valid. For l = 6000 s, for instance (i.e., when the rover position
estimation was computed using the reference station’s pseudorange measurements received
6000 epochs earlier ∆ρs

ra(k; k− 6000)), the mean horizontal and total position errors were
1.726 m and 4.996 m, becoming 242% and 349% larger than the corresponding errors when
there was no communication failure, respectively. The standard deviation also became
larger as l was incremented. When l = 0 s, the standard deviation for the mean position
error in the horizontal channel was σ = 0.381 m, whereas for l = 6000 s, the standard
deviation became σ = 0.713 m, which was almost two times larger. This shows that the
dispersion in the position uncertainties became wider as communication failures increased,
which were due to the increasingly incorrect common mode error cancellation (due to the
time correlation of the common mode errors).

Figure 3. Mean error of horizontal (A) and total (B) position as function of communication failure.
The first plotted data refer to the position estimation performed by the SGNSS algorithm (highlighted
by the arrow in purple), and the remaining data (red dots) refer to the RGNSS algorithm.

Table 2, in sequence, summarizes some selected measures of the position accuracy for
the horizontal position error, with the communication failure l = 0, 1500, and 3000 epochs.
Column 1 shows the failure in terms of epochs. Column 2 shows the mean error, defined in
Equation (23). Column 3 displays the standard deviation. Column 4 reports the maximum
value for the horizontal position error. Finally, columns 5 and 6 report the percent of
samples that had position errors less than 1 m and 1.5 m, respectively. A recent work by
the authors investigated the effects of communication failure on the position estimation
accuracy for a static rover [49], and the results showed that a position accuracy of 1 m at
1σ was achievable for failures up to 1500 s. Compared with the results presented herein
(Figure 3 and Table 2), one can see that such accuracy at 1σ could not not be achieved, at
least not for failures of 1500 s. It is important to highlight, however, the fact that in [49], the
position estimation was made using a high-performance GNSS receiver mounted on a static
base, while here, a low-cost receiver was employed, mounted on a moving agricultural
rover. Those factors have a significant impact on the position accuracy since they affect the
quality of the data collected, as suggested in [67].
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Table 2. Horizontal position performance for RGNSS as a function of communication failure.

Failure Mean Std. Dev. Max. Probability (ehk
)

(epochs) (m) (m) (m) Err < 1 m Err < 1.5 m
(%) (%)

0 0.713 0.381 2.039 77.32 96.43
1500 0.952 0.471 2.295 56.18 86.24
3000 1.115 0.494 2.961 42.80 79.36

4.2. Sensitivity to Baseline Separation

The second purpose of the experimental test was to analyze the degradation effect of
baseline separation on the RGNSS positioning accuracy. As in Section 4.1, the main goal
was to identify the maximum baseline separation between the rover and reference station
that still allowed the horizontal position accuracy to remain at 1.5 m (1σ).

The same GNSS dataset collected in the coffee plantation test was used, and the rover
position was again estimated by using the SGNSS and RGNSS approaches. For the latter,
20 RBMC bases were selected to be the reference stations, which provided raw pseudorange
measurements for the rover so that the common mode errors could be canceled out during
its position estimation process. The reference stations were selected according to their
baseline separations from the coffee plantation located at UFLA so that the distances
gradually increased in the range from 1 km to 2150 km. Since this was a dynamic test with
a moving agricultural rover, the distance between the rover and the reference station was
defined using the home point of the experiment (highlighted by the red circle in Figure 2).
The chosen bases were MGLA, MGV1, CHPI, MGIN, SPBP, POLI, SPS1, MGUB, SJRP,
NEIA, SPFE, UFPR, GOJA, SCCH, RSPE, RSAL, PIFL, MTLA, MTJI, and ROJI, which are
displayed in Figure 4. During the experiment, the rover’s trajectory was defined as being
toward the MGLA station so that the greatest distance between the latter and the rover for
this specific situation was 1 km (rover at the home point).

To analyze the sensitivity of the position estimation accuracy with respect to the
baseline separation, the rover position was estimated using the SGNSS and RGNSS al-
gorithms. Each algorithm processed the same set of the rover’s GNSS measurements
(k = 1, ..., Nd; Nd = 800) as if they were occurring in real time (i.e., incrementally) to esti-
mate the state vector at each time index k. For the RGNSS approach, the rover’s position
was estimated by considering the selected reference stations. The error criteria defined in
Equations (22)–(24) were used to asses the performance of both algorithms.

Figure 5 depicts the mean horizontal and total position error (red squares) as a function
of the baseline distances between the receivers. It also displays the standard deviation
(vertical bars) of the mean estimated position errors. The first point in the graph (in blue) is
the error obtained by using the SGNSS algorithm, whereas the remaining points are the
mean errors obtained by using the RGNSS algorithm with different reference stations. As
expected, Figure 5 indicates an improvement in the horizontal and total position estimation
of RGNSS over SGNSS. The former presented a horizontal position accuracy slightly over
1 m at 1σ when using the first two reference stations (baseline separation of 1.184 km and
60.038 km, respectively), whereas the latter presented a position accuracy of about 1.7 m.

Another interesting outcome from Figure 5 is that the RGNSS approach presented
improved performance over SGNSS for the reference stations with a baseline distance of
up to 1441 km. For the remaining reference stations (located further away), the position
error increased, making the RGNSS performance worse than that of SGNSS. Moreover, the
very same reference station with a baseline distance of 1441 km proved to be the limit to
which the RGNSS technique was able to comply with the J2945 standard specifications for
horizontal position accuracy.

Finally, Table 3 shows the individual distances between the rover and the different
reference stations and also summarizes the mean and standard deviations of the horizontal
error criteria. A quantitative analysis shows that the mean error increased by 50% (from
0.921 m to 1.377 m) when the reference station was changed from base RSAL to PIFL,
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located 1441.826 km and 1619.417 km away from the coffee plantation, respectively. This
indicates that from this point on, common mode error cancellation was no longer valid,
which significantly impacted the position estimation accuracy (a proof of the common
mode error spatial correlation).

Figure 4. RBMC stations used in the experiment with different baseline distances. The MGLA base
station, which corresponds to the location where the test was conducted, is identified by pinpoint 1.

Figure 5. Horizontal position error as function of baseline separation for the RGNSS approach. For a
distance of 0 km, the plotted data refer to the position estimation performed by the SGNSS algorithm
(highlighted by the arrow in blue).
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Table 3. Horizontal position error statistics for each reference station used by the RGNSS approach.
The first row is the position estimation metrics obtained with the SGNSS algorithm.

Baseline
Separation

(km)

Mean Error
(m)

Std. Dev.
(m)

SGNSS Does not apply 1.202 0.505
MGLA 1.184 0.713 0.381
MGV1 60.038 0.692 0.357
CHPI 162.245 0.696 0.503
MGIN 185.908 0.782 0.416
SPBP 248.682 0.789 0.501
POLI 316.228 0.763 0.362
SPS1 355.443 0.881 0.426
MGUB 429.269 0.703 0.341
SJRP 459.137 0.875 0.412
NEIA 519.199 1.012 0.517
SPFE 558.059 0.976 0.457
UFPR 640.374 0.790 0.400
GOJA 800.357 0.950 0.442
SCCH 1015.505 0.754 0.406
RSPE 1389.495 0.851 0.405
RSAL 1441.826 0.921 0.448
PIFL 1619.417 1.377 0.729
MTLA 1658.773 2.430 0.572
MTJI 1825.606 2.849 0.576
ROJI 2148.614 2.752 0.627

5. Conclusions

This paper addressed the effect of two common degradation factors of the position
accuracy of a relative global navigation satellite system (RGNSS): the baseline separation
and communication failure between the rover and reference station receivers. A radio-
controlled agricultural robot was equipped with a low-cost GNSS receiver to evaluate the
performance of the RGNSS technique in a dynamic scenario. A comprehensive review of
the main common mode errors that corrupt the GNSS signals was given, as well as an
in-depth analytical description of how the RGNSS approach mitigates them.

As with most important verifications from the comprehensive analyses of the effect of
communication failures and baseline separation between the rover and reference station,
the accuracy of the position estimation with RGNSS was shown to improve in comparison
to with the standalone GNSS (SGNSS), especially in the horizontal channel. The timely
and spatial correlation of the GNSS common mode errors was demonstrated, and the
maximum communication failure and baseline separation required to comply with the SAE
J2945 standard specifications were found to be up to 3000 s and approximately 1500 km,
respectively, for a moving agricultural rover equipped with a low-cost GNSS receiver.

As suggestions for future works, the authors plan to investigate real-time precise point
positioning (RT-PPP) in place of RGNSS, which consists of using precise corrections of
common mode errors produced by specialized institutions, such as the International GNSS
Service (IGS). Another topic of interest is the integration between inertial navigation systems
(INSs) and GNSSs, as they are complementary in terms of advantages and drawbacks.
Finally, another type of analysis that is worthy of investigation involves comparing the
extended (EKF) and unscented Kalman filter (UKF) approaches in light of the following
well-known trade-off: position estimation accuracy versus computation effort.
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