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Abstract: Soil moisture plays a crucial role in various hydrological processes and energy partitioning
of the global surface. The Soil Moisture Active Passive-Sentinel (SMAP-Sentinel) remote-sensing
technology has demonstrated great potential for monitoring soil moisture with a maximum spatial
resolution of 1 km. This capability can be applied to improve the weather forecast accuracy, enhance
water management for agriculture, and managing climate-related disasters. Despite the techniques
being increasingly used worldwide, their accuracy still requires field validation in specific regions like
Thailand. In this paper, we report on the extensive in situ monitoring of soil moisture (from surface up
to 1 m depth) at 10 stations across Thailand, spanning the years 2021 to 2023. The aim was to validate
the SMAP surface-soil moisture (SSM) Level 2 product over a period of two years. Using a one-month
averaging approach, the study revealed linear relationships between the two measurement types,
with the coefficient of determination (R-squared) varying from 0.13 to 0.58. Notably, areas with
more uniform land use and topography such as croplands tended to have a better coefficient of
determination. We also conducted detailed soil core characterization, including soil–water retention
curves, permeability, porosity, and other physical properties. The basic soil properties were used for
estimating the correlation constants between SMAP and in situ soil moistures using multiple linear
regression. The results produced R-squared values between 0.933 and 0.847. An upscaling approach
to SMAP was proposed that showed promising results when a 3-month average of all measurements
in cropland was used together. The finding also suggests that the SMAP-Sentinel remote-sensing
technology exhibits significant potential for soil-moisture monitoring in certain applications. Further
validation efforts and research, particularly in terms of root-zone depths and area-based assessments,
especially in the agricultural sector, can greatly improve the technology’s effectiveness and usefulness
in the region.

Keywords: soil moisture; remote sensing; SMAP; Sentinel-1; soil–water retention curve; validation;
Thailand

1. Introduction

Soil moisture is a critical factor in various fields of hydrology, agriculture, climate
modeling, and land management. The temporal and spatial distribution of soil moisture in
watersheds can affect the amount of water that enters streams, rivers, and groundwater,
which, in turn, can impact the water availability for human consumption, agriculture, and
other uses [1]. Wise management of soil moisture is thus critical for ensuring sustainable
land use and for maximizing agricultural productivity. Soil-moisture data can be used to
provide information about plant growth and health [2], nutrient availability, soil erodibility,
as well as to optimize the irrigation schedule [3] and to aid in crop selection. Additionally,
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soil moisture is an important parameter in predicting climate-related disasters such as
floods, landslides, and droughts. Early warning systems for such disasters often rely on
accurate soil-moisture monitoring as part of their scheme.

As soil moisture significantly affects the partitioning of energy at the land surface, it
exerts a considerable impact on the surface energy balance and atmospheric processes, such
as surface temperature, surface evaporation, and transpiration. Knowledge of soil moisture
can enhance the accuracy of weather forecasting and climate modeling at both global and
regional scales. Remote-sensing techniques have been developed to measure soil moisture
and related parameters [4], such as active and passive microwave remote sensing (e.g., Soil
Moisture Active Passive, known as SMAP [5]), optical remote sensing for the Normalized
Difference Vegetation Index (NDVI) [6], and thermal remote sensing (Moderate Resolution
Imaging Spectroradiometer (MODIS) [7] or the Thermal Infrared Sensor (TIRS) [8].

SMAP is a NASA satellite mission launched in 2015, utilizing both active and passive
microwave remote sensing to measure soil moisture with high spatial resolution [5]. Other
satellites, such as Soil Moisture and Ocean Salinity (SMOS), also employ passive microwave
techniques, particularly at the L-band frequency, enabling global mapping of near-surface
(0–5 cm) soil moisture with 25 to 40 km spatial resolution and a temporal resolution of 2 to
3 days [4]. A study by Forgotson et al. [9] demonstrated several applications of SMAP soil-
moisture products to improve soil-moisture-related monitoring and early warning systems
in the United States (U.S.) through case studies. They reported that SMAP soil-moisture
information could be utilized to enhance the capacity to predict snowmelt flooding by
capturing antecedent soil-moisture conditions prior to freeze up and using this information
to update snow water equivalent (SWE) estimates in the U.S. from 2015 to 2018.

In order to validate the SMAP soil-moisture product, Colliander et al. [10] presented
the results from 34 candidate core validation sites in various parts around the world for the
first eleven months of the SMAP mission. They indicated that the SMAP radiometer-based
soil-moisture data product meets its expected performance of 0.04 m3/m3 volumetric
soil moisture (unbiased root-mean-square error). Rahman et al. [11] also conducted a
validation analysis of the SMAP L4 soil-moisture (SSM) data against in situ measurements
obtained from various locations and land use types in the U.S. The authors suggested
that SMAP L4 data can be a valuable tool for accurately mapping cropland inundation,
providing useful information for flood monitoring and management. The study revealed
that the SMAP data demonstrated the closest agreement with in situ measurements from
the central Great Plains and cultivated croplands throughout the year. In a study conducted
by Zhang et al. [12], the reliability of SMAP L-band radiometer data was also validated
against in situ soil-moisture data from selected agriculture sites in the U.S. The previous
study specifically focused on assessing the influence of spatial–temporal characteristics,
particularly on land covers such as cultivated crops, deciduous/evergreen forest, and
pasture/hay. Their work also explained a methodology to derive a soil wetness index
from the time series of SMAP L-band brightness temperatures. The findings from their
study indicated that the SMAP L4 products exhibited high reliability and demonstrated a
significant impact of spatial–temporal characteristics, particularly on certain land cover
types. In addition, the SMAP L4 soil-moisture data was found to be significantly affected by
seasonal variation in these land covers. Zhou et al. [13], using the 43-station soil moisture
over eastern China validated the satellite soil-moisture products from various sources,
including Chinese FengYun 3C (FY3C), the level-2 neural network product of the European
Soil Moisture and Ocean Salinity (SMOS), and the level-4 product of the U.S. Soil Moisture
Active Passive (SMAP). They found the SMAP product to generally be the best among
the three products in terms of the root-mean-square error (RMSE), unbiased RMSE, and
correlation coefficient (R). Zhao et al. [14] compared NASA’s SMAP surface soil-moisture
products to the High-Resolution Land Assimilation System (HRLDAS) surface-layer soil
moisture for irrigation management purposes in Nebraska. They attempted to indirectly
validate its root-zone soil-moisture (RZSM) product (~top 1 m) and suggested a simple
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calibration that was applied to the HRLDAS products by including the irrigation amount
as one of its variables.

These previous studies clearly demonstrate the importance of regional and local
validation of the SSM data prior to their application to any specific region worldwide.
Such validation is essential to ascertain the reliability and suitability of the SSM data for
use in particular geographical areas. The main challenge still arises from the significant
disparity in measurement scales between satellite-based SSM (in kilometers) and in situ
measurements (in centimeters). The penetration depth of the satellite measurement is
normally less than 10 cm [15] while the in situ measurement can be made at any desired
depth. This difference is influenced by factors such as land cover type, soil type, and the
complex boundary conditions of the soil strata. This current study thus aims to validate the
SSM products for Thailand by correlating the remote-sensing data with in situ soil-moisture
measurements from 10 telemetry stations encompassing diverse soil types and land covers
in Thailand. In addition, a detailed analysis of soil properties, including the particle size
distribution, plasticity, organic content, thermal conductivity, porosity, and soil–water
characteristic curves, was also conducted. These analyses were subsequently used in a
multiple linear regression analysis to provide simple transfer functions for remote-sensing
and in situ soil-moisture measurements. These transfer functions will serve as a baseline
for more advanced models in the future.

In the paper, Section 2 provides a detailed description of the material and methods
employed in this study. Subsequently, in Section 3, we present the analysis results derived
from the in situ measurements and the validation of the SMAP soil moisture. Finally,
Section 4 provides a comprehensive discussion of the results and summarizes the main
findings obtained from this study.

2. Materials and Methods
2.1. Remote Sensing Soil Moisture

This study utilizes the SMAP radiometer/Copernicus Sentinel-1 soil-moisture product
(L2_SM_SP) of the National Aeronautics and Space Administration (NASA) (Washington,
DC, USA), designated as SPL2SMAP_S SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second
Scene 3 km EASE-Grid Soil Moisture, Version 3 [16,17]. Being a Level-2 (L2) soil-moisture
product, it provides estimates of land surface conditions retrieved by both the SMAP
radiometer during the 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes
and the Sentinel-1A and -1B radar. The soil-moisture data was derived using SMAP L-
band brightness temperatures and Copernicus Sentinel-1C-band backscatter coefficients.
Subsequently, the datasets were resampled to an Earth-fixed, cylindrical 3 km Equal-Area
Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) [16,17]. For Thailand, the available SMAP
L-band data mostly corresponds to nighttime, while the Sentinel-1 data covers both daytime
and nighttime observations. In this study, the soil-moisture data from 149 files spanning
approximately one month are stitched together to cover all the pixels across Thailand. An
example of the monthly soil-moisture map that can be produced is shown in Figure 1.

2.2. In Situ Soil-Moisture Monitoring

In situ soil-moisture data used to validate the SMAP soil moisture were collected
from 10 telemetry monitoring stations installed throughout various locations in Thailand.
These stations are extensions of the existing telemetry weather stations belonging to the
Hydro-Informatics Institute (HII) of Thailand. The locations of these stations were carefully
selected to represent a variety of soil types, geographical features, and climate conditions
in Thailand, offering valuable data for understanding soil-moisture behavior in more
topographically varied landscapes.
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The distribution of the monitoring stations across diverse topographic and land-use
settings in Thailand is presented in Figure 1 and summarized in Table 1. As seen, five
stations (HNKA, WGYG, VLGE50, BNKE, and THAT) were situated on flat plains, while
three stations (KKCN, PAII, and SWR036) were located in hilly terrains, and the other two
stations (VLGE49 and NMUB) were on undulating plains.

Table 1. Location details of telemetry weather/soil-moisture stations used in this study.

No. Station
Name Province Latitude Longitude Land Use 1 Geology 2 Geography Elevation

(AMSL)

Average
Annual

Rainfall 3

1 KKCN Phetchaburi 12.8723 99.6835 Perennial
plant

Sedimentary
and

metamorphic

Plain at the
foot of hilly

terrains
64 m 983.0 mm

2 VLGE49 Phetchabun 15.61636 101.023 Field crop Quaternary
sediment

Undulating
plain 96 m 1210.0 mm

3 HNKA Chai Nat 14.9696 100.0104 Rice paddy
Quaternary

alluvial
sediment

Flood plain 13 m 1010.8 mm
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Table 1. Cont.

No. Station
Name Province Latitude Longitude Land Use 1 Geology 2 Geography Elevation

(AMSL)

Average
Annual

Rainfall 3

4 WGYG Saraburi 14.8481 101.1459 Field crop Sedimentary
rock Plain 93 m 1185.2 mm

5 VLGE50 Prachinburi 14.0426 101.7204 Rice paddy
Quaternary

alluvial
sediment

Alluvial
plain 27 m 1762.4 mm

6 NMUB Nan 18.48421 100.93071 Forest Sedimentary
rock

Undulating
plain 333 m 1238.9 mm

7 PAII Mae Hong
Son 19.37012 98.39309 Fruit trees Granitic

Plain
between
complex

mountain
ranges

776 m 1315.8 mm

8 BNKE Nakhon
Phanom 16.90888 104.6187 Rice paddy

Sedimentary
and

metamorphic
Plain 153 m 2328.0 mm

9 THAT Surin 15.31667 103.9355 Urban Sedimentary
rock Plain 128 m 1445.3 mm

10 SWR036 Satun 7.08837 100.002 Perennial
plant Igneous

Basin
surrounded

by hills
110 m 2386.0 mm

1 based on the land use map of the Land Development Department, Thailand; 2 based on the geology map of the
Department of Mineral Resources, Thailand; 3 based on the Thai Meteorological Department.

From Table 1, the telemetry stations exhibited a wide variation in annual rainfall, rang-
ing from the lowest recorded value of 983.0 mm (KKCN station) to the highest recorded
value of 2386.0 mm (SWR036 station). This rainfall variability reflects the diverse hydrolog-
ical conditions across the monitored regions and can significantly influence soil-moisture
patterns. Moreover, the land-use types surrounding these stations encompassed various
categories, including agriculture (field crops or rice paddy), perennial and urban areas, and
forested regions. Understanding soil-moisture features in these distinct land-use types is
also essential for assessing the impacts of different land covers on soil-moisture dynamics.

To delineate the soil stratigraphy within the uppermost 1 m layer at the monitoring
station, a test pit was dug to collect in situ soil samples (both disturbed and undisturbed
samples) for further testing. In situ field classification was performed based on soil color
and texture, enabling the description of soil stratigraphy, which was divided into 2–3 layers
over the 1 m depth. The soil-moisture sensors (MAS-1, METER Group, Pullman, WA, USA
with a standard 2-wire, 4 to 20 mA type) were installed at depths of 0.10, 0.30, 0.60 and
1.00 m along the side wall of the pit, as shown in Figure 2. During the sensor installation
process, each sensor was horizontally inserted into a pre-bored hole created on the test pit
side-wall using a dummy sensor of the same size to minimize any potential damage to
the actual sensor. Great care was taken to minimize soil disturbance during installation.
However, when the soil was dry and compacted, a small hole (1–2 cm in diameter and
about 10 cm long) was created horizontally in the test pit wall. The excavated soil was then
moistened and carefully backfilled into the hole before inserting the sensor. Following the
installation of all the sensors on the pit wall, the pit was backfilled with excavated soil to
restore it to its original condition.

The MAS-1 sensor employs capacitance/frequency domain technology to determine
local volumetric water content (θ) by measuring the soil’s dielectric constant. In this
study, the volumetric water content obtained from the in situ sensor is referred to as the
local water content (θ), while the water content derived from remote sensing is called
SMAP surface soil-moisture content (SSM). For site-specific calibration of the soil-moisture
sensors, soil samples were collected from each delineated soil layer. Undisturbed soil
samples were collected using a soil core sampler (63 mm inner diameter) from each soil
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layer to determine porosity, the soil–water retention curve, hydraulic conductivity, and
thermal conductivity. Disturbed soil samples were used for basic classification tests, such as
wet sieve analysis, the hydrometer test, and the determination of organic content, specific
gravity, and Atterberg’s limits.
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Figure 2. Test pit and installation of soil-moisture sensors: (A) shows installation of a SM sensor
along the side wall of the pit, while (B,C) show collecting soil samples at a site.

2.3. Laboratory Testing of Soil

Figure 3 shows the calibration box (with inner dimensions of 16.2 × 18.2 × 20.1 cm3)
and the procedure used to establish the relationship between the sensor output (mA)
and volumetric water content (θ = Vw/V, where Vw is the volume of water and V is the
total volume of soil). This specific size of the calibration box was chosen to minimize
boundary effects on the moisture sensor signal, as suggested by Suwansawat et al. [18].
To replicate field conditions as closely as possible, the soil sample was re-compacted in
the calibration box to achieve the same dry unit weight as that of an undisturbed sample.
A number of soil samples were compacted to different moisture contents and the sensor
output was measured accordingly for each moisture level. The final stage of calibration
involved soaking the samples for several days until the sensor reading stabilized, indicating
a saturated condition.

Three undisturbed cylindrical samples (63 mm in diameter and about 25 mm in height)
were obtained from each soil layer and utilized for conducting the soil–water retention
curve, hydraulic conductivity, and thermal conductivity tests. The soil–water retention
curve (SWRC) procedure involved measuring the soil suction at different water contents in
a drying path, as explained in Barus et al. [19] and Shrestha et al. [20]. The test began by
soaking the soil sample for several days to reach full saturation and then gradually drying
the sample. At each drying stage, the soil suction, weight, and dimension of the soil sample
were measured under equilibrium conditions. For suction measurements, three methods
were employed; namely, the miniature tensiometer for matric suctions less than 100 kPa,
the pressure plate for matric suctions between 200 to 1500 kPa, and the isopiestic technique
(salt solution equilibrium) for total suctions greater than 1500 kPa. Additionally, the
porosity and volume changes in the soil sample were also monitored during the SWRC
test. The hydraulic conductivity and thermal conductivity tests were carried out on the
undisturbed samples in a saturated condition following the American Society for Testing
and Materials (ASTM) standards as described in [21] and [22], respectively. Other index
properties, including specific gravity, Atterberg’s limits, and from the wet sieve analysis
and hydrometer test were determined based on the ASTM standards [23–25]. The organic
content was determined using the chronic acid titration method [26].
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2.4. Basic Soil Properties

Table 2 summarizes the basic soil properties and soil classification (based on the
unified soil classification system, USCS) of all the prescribed soil layers in all the telemetry
stations. At four stations (KKCN, VLGE49, VLGE50, PAII), the soils were described as
clays (CL and CH) of varying plasticity indices (PI) ranging between 5.7 to 37.9. Silty soils
(classified as ML and MH) were found at three stations; namely, WGYG, NMUB, and PAII.
Silty sand and clayey sand were present at the remaining four stations, i.e., HNKA, BNKE,
THAT, and SWR036. In most cases, the organic content of the soils was lower than 20 g/kg,
which was considered low, with the exception of WGYG (0–50 cm) and PAII (0–10 cm),
which had higher organic matter varying from between 30 to 35 g/kg.

The porosity of HNKA and THAT soils were relatively lower than that of the others
(<0.35), which indicated the compaction of the soil resulting from human activities, e.g.,
preparation of the land for urban uses or any other development. It should also be noted
that at the HNKA station, the soil collected at the telemetry station was classified as
clayey sand and silty sand, while the soil map of Land Development Department (LDD) of
Thailand indicated that the soil in the area should be clay (Unit 4, Cn). This discrepancy
was due to the fact that the soil-moisture sensors were required to be installed near the
telemetry station, which was located on an engineering sandy soil fill and may not be
representative of the clay that extended in most of nearby rice paddy. Such a discrepancy
between the properties of the collected soil and the information from the LDD soil map
was to be expected due to spatial variability of the in situ soil.
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Table 2. Basic soil properties collected from the 10 telemetry stations.

No. Station
Name

Depth (cm)

Atterberg Limits Grain Size Distribution (%)

Porosity Organic
Content (g/kg) Specific Gravity

Soil Type (Unified
Soil Classification

System)
Liquid
Limits

(%)

Plastic
Limits (%)

Plasticity
Index, PI Gravel Sand Silt Clay

1 KKCN
0–50 44.70 24.62 20.08 4.24 27.90 21.04 46.83 0.41 20.0 2.64 CL

50–100 52.80 30.83 21.97 0.71 23.16 26.22 49.91 0.47 5.8 2.41 CH

2 VLGE49 0–100 43.82 25.12 18.70 0.88 37.19 2.03 59.90 0.54 19.0 2.70 CL

3 HNKA

0–10 33.40 18.52 14.88 11.70 66.56 8.29 13.45 0.39 10.0 2.59 SC

10–40 24.10 14.51 9.59 11.39 43.52 23.29 21.81 0.37 6.8 2.52 SM

40–100 NP NP NP 2.05 63.01 16.87 18.07 0.49 4.9 2.63 SC

4 WGYG
0–50 62.00 48.38 21.63 7.17 40.11 41.49 11.23 0.57 30.0 2.68 MH

50–100 39.80 29.03 10.77 4.55 44.31 45.44 5.70 0.52 5.8 2.64 ML

5 VLGE50
0–20 25.90 20.16 5.74 2.03 45.73 2.15 50.09 0.45 11.0 2.69 CL

20–100 29.70 20.79 8.91 3.83 39.61 5.46 51.10 0.38 1.8 2.70 CL

6 NMUB 0–100 NP NP NP 17.53 32.04 40.43 10.00 0.58 17.0 2.65 ML

7 PAII
0–10 39.00 28.91 10.09 5.76 43.42 44.32 6.50 0.68 35.0 2.67 ML

10–100 64.30 26.39 37.91 0.22 43.57 4.20 52.01 0.55 3.5 2.71 CH

8 BNKE

0–50 NP NP NP 18.89 46.24 22.26 12.61 0.41 15.0 2.60 SM

50–70 NP NP NP 14.92 50.03 22.13 12.92 0.36 5.8 2.52 SM

70–100 24.20 16.75 7.45 7.75 48.92 20.80 22.53 0.38 5.3 2.62 SM

9 THAT
0–10 NP NP NP 8.19 55.32 15.06 21.44 0.36 10.0 2.60 SC

10–100 NP NP NP 0.07 70.21 13.97 15.74 0.35 0.8 2.49 SM

10 SWR036

0–10 NP NP NP 0.25 70.04 16.05 13.66 0.52 15.0 2.55 SM

10–40 NP NP NP 1.46 70.41 12.92 15.22 0.42 8.0 2.48 SC

40–100 NP NP NP 7.51 82.25 4.66 5.57 0.44 1.8 2.60 SP

NP = Non-plastic.
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2.5. Soil-Moisture Sensor Calibration

The soil-moisture sensor required a soil-specific calibration so that a reliable reading
could be achieved. Figure 4 shows some examples of sensor calibration results for different
soil types. Table 3 summarizes the coefficients of the calibration equation for a soil-moisture
sensor that takes a linear form as follows:

θ = ax + b (1)

where x is the sensor reading in milliamps (mA), a and b are the fitting parameters from the
linear regression, and θ is the volumetric water content (%). The coefficient of determination,
R2, also summarized in Table 3, was found to range between 0.980 to 0.999, which indicated
a satisfactory correlation and accuracy. It is noteworthy that the default calibration equation
provided by the manufacturer of the MAS-1 sensor can give very different values of soil
moisture compared with the soil-specific equation (Table 2), varying by about 7% (in terms
of θ) on average, and the maximum discrepancy in θ can be as much as 22.9%. It is thus
of utmost importance to determine the soil-specific calibration equation in the laboratory
using the in situ soil for a reliable measurement.
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soils, and (c) sandy soils.

Table 3. Moisture-sensor calibration coefficients and hydraulic and thermal properties of the soils.

No. Station
Name Soil Unit * Depth (cm)

Sensor Calibration Coefficients Hydraulic
Conductivity, k,

cm/s

Thermal
Conductivity, λ,

W/(m·K)a b R2

1 KKCN
U 0–50 3.9346 −20.638 0.9839 9.44 × 10−5 1.76

L 50–100 5.5088 −42.002 0.9812 1.32 × 10−4 2.34

2 VLGE49 - 0–100 4.9995 −30.271 0.9822 3.31 × 10−5 1.68

3 HNKA

U 0–10 3.6222 −22.539 0.9802 1.80 × 10−7 1.41

M 10–40 4.1060 −26.655 0.9872 1.18 × 10−7 1.76

L 40–100 3.6185 −19.873 0.9940 5.83 × 10−4 2.01
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Table 3. Cont.

No. Station
Name Soil Unit * Depth (cm)

Sensor Calibration Coefficients Hydraulic
Conductivity, k,

cm/s

Thermal
Conductivity, λ,

W/(m·K)a b R2

4 WGYG
U 0–50 4.3506 −26.233 0.9946 2.56 × 10−4 1.44

L 50–100 7.6092 −68.035 0.9847 1.68 × 10−4 1.26

5 VLGE50
U 0–20 4.4931 −27.202 0.9911 1.02 × 10−7 1.44

L 20–100 3.5044 −18.562 0.9915 2.61 × 10−7 2.01

6 NMUB - 0–100 6.8022 −56.189 0.9910 2.20 × 10−3 1.31

7 PAII
U 0–10 8.2213 −63.759 0.9846 1.33 × 10−3 2.63

L 10–100 6.1297 −38.391 0.9911 2.80 × 10−6 1.13

8 BNKE

U 0–50 4.8077 −37.689 0.9947 8.04 × 10−5 1.48

M 50–70 3.5852 −22.114 0.9921 2.56 × 10−6 1.67

L 70–100 4.2354 −29.708 0.9911 4.21 × 10−7 2.51

9 THAT
U 0–10 3.5023 −24.270 0.9940 1.62 × 10−6 2.87

L 10–100 3.4499 −22.674 0.9872 1.66 × 10−5 2.89

10 SWR036

U 0–10 5.4454 −38.234 0.9944 1.93 × 10−3 0.88

M 10–40 3.8002 −22.982 0.9998 4.32 × 10−3 2.34

L 40–100 5.9551 −39.924 0.9938 4.20 × 10−3 1.26

* U = Upper; M = Middle; L = Lower.

In this study, multiple linear regression analyses were conducted to model the rela-
tionships between the fitting parameters (a and b, taken as dependent variables) and soil
properties (taken as independent variables), as shown in Equations (2) and (3).

a = αc + α1X1 + α2X2 + α3X3 + α4X4 + α5X5 + α6X6 + α7X7 (2)

b = βc + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 (3)

where X1 is the plasticity index (for non-plastic soil, X1 is taken as zero), X2 is the % gravel,
X3 is the % sand, X4 is the % silt, X5 is the % clay, X6 is the porosity (unitless), and X7 is the
organic content (g/kg), as summarized in Table 2. The fitting parameters αi and βi (i = 1,
2, . . ., 7) are obtained from multiple linear regression analyses as summarized in Table 4.
These relationships are useful in the case where there is no site-specific sensor calibration
test and only information on the soil texture, porosity, and organic content is available.
Then the sensor calibration coefficients (a and b) can be predicted using the known basic
soil properties (X1, . . . , X7). The coefficient of determination (R2) from the multiple linear
regression analysis of the a and b parameters was 0.748 and 0.721, respectively.

Table 4. Multiple linear regression coefficients for predicting the sensor calibration equations using
soil properties for Equations (2) and (3).

αc α1 α2 α3 α4 α5 α6 α7

1598.835 −0.000552 −15.971 −16.009 −15.985 −16.007 14.960 −0.0608

βc β1 β2 β3 β4 β5 β6 β7

−16,579.396 0.123 165.669 166.105 165.639 166.058 −132.139 0.727

2.6. Hydraulic and Thermal Properties

Figure 5 illustrates the hydraulic conductivity values of the undisturbed core samples
(from Table 3) categorized by soil textures, ranging from fine-grained (CH) to coarse-grained
(SP). The initials are shown according to the Unified Soil Classification System (CH = high-
plasticity clay; CL = low-plasticity clay; MH = high-plasticity silt; ML = low-plasticity



Sensors 2023, 23, 8828 11 of 24

silt; SC = clayey sand; SM = silty sand; and SP = poorly graded sand). The variation of
hydraulic conductivity for the clay soils (CH and CL) ranged between 10−7 to 10−4 cm/s
(about three orders of magnitude), while that of silts (ML and MH) were between 10−4 to
10−3 cm/s (one order of magnitude). The upper range of the hydraulic conductivity of
clay was relatively high (10−4 cm/s) due to the aggregated structure of the material. The
clayey and silty sands (SC and SM) had hydraulic conductivities that varied to a greater
extent, between 10−7 to 10−3 cm/s, which reflected the influence of the clay particles
present. The poorly graded sand (SP) had the highest value of hydraulic conductivity of
4.2 × 10−3 cm/s. The observed variations in hydraulic conductivities clearly indicate that
soil textures alone are insufficient to fully explain the range of hydraulic conductivities.
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Figure 6 shows the thermal conductivity (λ) values (from Table 3) of the undisturbed
core samples by soil textures. The values of λ ranged from 0.88 to 2.89 W/(m·K), which is
within the typical range observed for soils. Various factors, such as soil mineral, porosity,
moisture content, and organic content, can directly influence the thermal conductivity of
the soil [27]. Notably, soils with higher quartz content are normally of greater thermal con-
ductivity. Three soils, namely PAII-U, THAT-U, and THAT-L, exhibit thermal conductivities
greater than 2.5 W/(m·K) and can be classified as silt (ML), clayey sand (SC), and silty sand
(SM), respectively. It is likely that these soils have a higher proportion of quartz in their
composition. However, it is important to note that there has been no mineral composition
test conducted to verify this assumption.

2.7. Soil–Water Retention Curves

Soil–water retention curves (SWRCs) of all the soils in this study are shown in Figure 7.
It is noted that the curves represent the drying paths followed by the soil samples. These
SWRCs were plotted as the volumetric water content, θ (%), against suction, s (kPa),
together with curve fitting using the Van Genuchten [28] model, as shown in Equation (4).

θ = (θs − θr)[
1

1 + (p · s)n ]
m
+ θr (4)

where θs is the saturated volumetric water content, θr is the residual volumetric water
content, p is the fitting parameter that is inversely proportional to the air-entry suction of
the soil, and m and n are the fitting parameters related to the pore-size distribution. Table 5
summarizes the Van Genuchten parameters obtained from best fitting of the experimental
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data points for all the soils tested in this study. The wide range of SWRC fitting parameters
in this study is attributed to the diverse range of soils encountered. These parameters
provide indications about various soil properties such as the pore-size distribution, soil
texture, soil aggregation structure, and organic content. It is important to note that these
properties can vary spatially with depth and temporally, depending on the land-use type.
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Table 5. Soil–water retention parameters estimated for the 10 telemetry stations.

No. Station Name Soil Unit * Depth (cm)
Van Genuchten Parameter

θs (%) θr (%) p (kPa−1) n m R2

1 KKCN
U 0–50 41 10 0.072 0.442 1.066 0.958

L 50–100 47 10 0.496 0.560 1.026 0.960

2 VLGE49 - 0–100 54 20 0.00470 0.318 1.059 0.985

3 HNKA

U 0–10 39 7 0.0524 0.532 1.590 0.948

M 10–40 37 3 0.00905 0.512 1.350 0.950

L 40–100 49 2 0.0364 0.413 1.105 0.973

4 WGYG
U 0–50 57 19 0.0211 0.378 1.345 0.969

L 50–100 52 5 0.0258 0.428 1.207 0.954

5 VLGE50
U 0–20 45 10 0.00216 0.356 1.114 0.962

L 20–100 38 12 0.0189 0.394 1.168 0.957

6 NMUB - 0–100 31 2 0.000843 0.484 1.504 0.975

7 PAII
U 0–10 31 15 0.0113 0.906 1.501 0.982

L 10–100 46 18 0.0370 0.913 0.318 0.936

8 BNKE

U 0–50 30 17 0.00903 0.691 1.758 0.937

M 50–70 26 6 0.158 0.938 0.309 0.996

L 70–100 30 9 0.0806 1.075 0.308 0.981

9 THAT
U 0–10 36 6 0.360 4.556 0.0670 0.984

L 10–100 35 0 0.00311 0.380 1.892 0.971
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Table 5. Cont.

No. Station Name Soil Unit * Depth (cm)
Van Genuchten Parameter

θs (%) θr (%) p (kPa−1) n m R2

10 SWR036

U 0–10 17 2 0.164 20.779 0.0181 0.966

M 10–40 30 0 0.00000133 0.347 17.014 0.989

L 40–100 25 7 0.115 1.990 0.162 0.967

* U = Upper; M = Middle; L = Lower.
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It is worth mentioning that hysteresis can significantly impact the SWRC. However,
the parameters presented here solely pertain to the drying path, which involves increasing
suction or decreasing water content. The wetting SWRC was not within the scope of this
study and, therefore, not considered in the analysis. The drying SWRC is particularly
relevant for analyzing drought events rather than flooding. By focusing on the drying path,
these parameters can provide valuable insights into the water availability and soil-moisture
retention during dry periods. The information on SWRC presented here provides the
fundamental link between soil-moisture content and suction, which is a direct measure of
the energy state of water in the soil. It reflects how tightly the water is held in the soil and
how difficult it is for plants to extract it. The SWRC thus has the potential to expand the
use of satellite soil moisture to a wider range of applications.

3. Results
3.1. Correlations and Calibration of SMAP-Sentinel and In Situ Soil Moisture
3.1.1. Effect of the Temporal Variation in Soil Moisture

The temporal resolution disparity between the SMAP product, which is available
in intervals ranging from 3 to 8 days, and the high-frequency hourly measurements of
in situ moisture content necessitates the adoption of an averaging approach to establish
correlations between these datasets. To elucidate this, Figures 8a and 9a vividly depict the
original soil-moisture variations at depths of 10 cm and 30 cm, respectively, for Station
VLGE49. It is intriguing to observe that the SMAP soil moisture (SSM) exhibits significantly
larger and more oscillatory amplitudes in comparison with in situ readings. Particularly
noteworthy is the observation that, at a depth of 30 cm (as depicted in Figure 9), in situ
moisture values surpass those of the SSM, suggesting the potential influence of diverse
factors such as soil depth, interactions with groundwater, and spatial heterogeneity on the
measurement outcomes.

Introducing a 1-month averaging methodology, as illustrated in Figures 8b and 9b,
imparts a smoothing effect on the temporal profile of the soil moisture, thereby attenuating
the magnitude of fluctuations. This smoothing effect culminates in an advantageous
enhancement of the correlation between the SMAP product and the in situ measurements,
as discernible in Figures 10 and 11, which depict the relationship between the soil moisture
at depths of 10 cm and 30 cm, respectively. It is acknowledged that the increase in the
R-squared value as a result of monthly averaging was moderate (e.g., from 0.2752 to 0.4385
for a 10 cm depth). However, it is important to highlight that this improvement, although
modest, is indicative of the positive impact of the smoothing process on the obtained results.
In subsequent analyses, the utilization of one-month average soil moisture predominantly
guided the exploration of correlations between the SSM and in situ measurements.

3.1.2. Linear Correlation Coefficients and Soil Properties

The correlation between the SSM and in situ soil moisture based on 1-month average
values can be expressed using the following linear equation:

θ = M · SSM + C (5)

This correlation was determined for all ten telemetry stations, and the fitting parame-
ters (M,C) are summarized in Tables 6 and 7, together with the coefficient of determination
(R2). For three stations (KKCN, PAII and SWR036), the correlations were unreliable, due
both to the excessive fluctuation in the SMAP data and malfunctions in the in situ moisture
sensors. The correlation coefficients are not presented for these stations. Among the other
seven stations, the coefficients of determination range between 0.13 to 0.58, which show a
varying degree of fitting. The relatively poor fitting between the SMAP soil moisture and
the in situ measurement is expected to be related to the disproportionate measurement
areas, which will be discussed in the next section. The slope (M) of the linear equation is
mostly below unity, which suggests that the SSM varies with a larger amplitude than does
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the in situ soil moisture. The intercept (C) is also greater than zero for all cases, indicating
that even when the SMAP surface moisture tends to zero, some residual water content still
remains in the surface soil. This kind of correlation is valuable for site-specific purposes
and can be extended to sites with similar conditions.
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Table 6. Linear correlation coefficients for monthly SMAP vs. in situ soil moisture for Stations 1 to 5.

No. 1 2 3 4 5

Station KKCN VLGE49 HNKA WGYG VLGE50

Depth (cm) all 10 30 10 100 10 10 30 100

M NR 0.3207 0.2883 0.2387 0.3428 0.1283 0.364 0.3451 0.2059

C NR 12.247 42.324 13.493 19.155 42.016 24.438 21.165 29.807

R2 NR 0.4385 0.3943 0.2086 0.4134 0.1756 0.4971 0.5471 0.5814

NR = Not reliable (negative correlation or R2 < 0.1).
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Table 7. Linear correlation coefficients for monthly SMAP vs. in situ soil moisture for Stations 6 to 10.

No. 6 7 8 9 10

Station NMUB PAII BNKE THAT SWR036

Depth
(cm) 10 30 60 all 10 30 60 100 30 100 all

M 0.4217 1.1006 0.9325 NR 0.4748 0.6607 0.3699 0.3497 0.255 0.3873 NR

C 21.306 1.5069 0.4633 NR 9.0514 2.7021 12.625 21.448 5.6962 4.0059 NR

R2 0.1296 0.5333 0.5378 NR 0.5247 0.6376 0.4906 0.4722 0.2969 0.3345 NR

NR = Not reliable (negative correlation or R2 < 0.1).
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The values of M and C are further correlated to a soil’s physical properties (X1, . . . , X7),
as explained in Section 3.1. The multiple linear regressions for M and C can be expressed in
Equations (6) and (7), respectively:

M = D + a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6 + a7X7 (6)

C = E + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 (7)

where D, ai, and bi (i = 1, 2, 3, . . ., 7) are curve-fitting parameters obtained from the
regression analysis as summarized in Table 6. The coefficient of determination (R2) from
the multiple linear regression analysis of the M parameter and the C parameter was 0.933
and 0.847, respectively. Provided that the basic soil properties (X1, . . . , X7) are known at
the site, the in situ soil moisture can then be predicted using the SMAP soil moisture and
Equations (5)–(7). The estimated parameters given by the regression are summarized in
Table 8.
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Table 8. Multiple linear regression coefficients for predicting the sensor calibration equations using
soil properties for Equations (6) and (7).

D a1 a2 a3 a4 a5 a6 a7

−400.298 −0.00987 4.0132 4.0052 4.0042 4.0083 0.1167 0.0006060

E b1 b2 b3 b4 b5 b6 b7

−219,718.912 0.083 2196.216 2197.531 2198.317 2197.613 −54.224 0.377

3.1.3. Upscaling of SMAP, In Situ Soil Moisture and Validation for Croplands

As discussed earlier, the relatively poor correlation between the SMAP soil moisture
and in situ soil moisture at any specific telemetry station was largely attributed to the
disproportionate measurement areas (1 sq·km for the SMAP soil moisture versus 0.01 sq·m
for the in situ soil moisture) as well as to the spatial and temporal variations in in situ soil
moisture. Land-cover types have also been shown to play a significant role in the correlation
between the two kinds of measurements. Croplands generally demonstrated a better
correlation due to the greater uniformity of the land cover and thus in situ soil moisture
within the SMAP measurement pixels compared with other land covers. In this study, the
MODIS land-cover-type product obtained from the International Geosphere–Biosphere
Program (IGBP) was used to classify the land cover at the telemetry station in each SMAP
measurement pixel. Seven stations are located in the croplands, namely PAII, VLGE49,
BNKE, THAT, VLGE50, WGYS, and HNKA, while Station NMUB is in the woody savannas,
SWR036 is in the evergreen broadleaf forests, and KKCN falls within the grassland type.
Only data from seven stations in the croplands were used in further analyses. The average
values of the soil moisture from all seven stations in the croplands were used in order to
upscale both the SMAP and in situ soil moisture data, thus generalizing the soil moisture
to represent the climate regimes of the cropland regions in Thailand.

In Figure 12, the variations in the average SMAP moisture values obtained from
the seven measurement pixels in croplands (representing all seven telemetry stations)
are depicted for the period between 2017 and 2022. These SMAP moisture values were
calculated using the 3-month running average approach. This method aligns with the
averaging period of the Oceanic Niño Index (ONI), which is also displayed in the figure.
The Oceanic Niño Index (ONI) is NOAA’s primary index for tracking the ocean part of
ENSO, the El Niño–Southern Oscillation climate pattern that indicates the difference from
average in the surface waters of the east–central tropical Pacific. Also shown in the figure
are the periods of El Niño (ONI ≥ 0.5) and La Niña (ONI ≤ 0.5). The average SMAP
moisture calculated using the seasonal mean approach is also shown for comparison. The
episodes of La Niña in 2018, 2021, and 2022 (shown as blue bar charts) contributed to the
increase in soil moisture in these years, while the El Niño in 2019 (red bar charts) gave rise
to a decrease in the soil moisture. The rainy season SMAP moisture reached the maximum
value of 0.42 in 2022 (La Niña), while the minimum dry season SMAP moisture was 0.22 in
2020 (one year after El Niño).

Given our understanding of the influence of the El Niño–Southern Oscillation (ENSO)
on the regional climate, it is reasonable to suggest that variations in the 3-month ENSO
index may affect the surface soil moisture in Thailand over a corresponding 3-month period,
primarily through its impact on rainfall variation. Torsri et al.’s recent study [29] highlights
a significant negative response due to the ENSO in most of Thailand’s regions. Thus,
the alignment between changes in the 3-month ENSO average and the SSM given by the
present study implies that ENSO variability likely plays a role in modulating soil-moisture
content in Thailand by means of its influence on ENSO-induced rainfall fluctuations.

Based on the findings that the three-month running average period resulted in a
reasonable agreement between the soil moisture and the Oceanic Niño Index (ONI), this
averaging approach was adopted to determine the correlation between the in situ and the
SMAP soil-moisture (SSM) data. The study utilized in situ soil-moisture data collected
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from seven stations situated in croplands. The data was averaged both spatially, between
seven stations, and temporally, considering the three-month running period spanning 2021
to 2022. Figure 13 shows the relationship between the average SSM and the in situ water
content, θ, at depths of 10 and 30 cm. The data was fitted using a linear model, yielding
R-squared values ranging from 0.83 to 0.87, indicating a strong correlation between the
SSM and the in situ θ when averaged using such approach. This is an important first
step required for the further development of upscaling and downscaling models for soil-
moisture measurements in Thailand. At a depth of 10 cm, the correlation revealed a
systematic transformation shift of approximately −3%, suggesting that the SSM tended
to overpredict in situ moisture (θ). However, the slope of the linear equation remained
close to 1, indicating a relatively consistent relationship. Similarly, at the 30 cm depth, the
correlation indicated SSM’s tendency to overpredict the in situ θ, with the slope of the
linear equation measuring approximately 0.53.
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One of the objectives of this research project was to produce a monthly surface soil-
moisture data to be used for climate modeling and for improving weather forecasting at
a national scale. The linear models presented earlier in Figure 13, using the three-month
running average and cropland data, were then utilized to adjust the original monthly
SMAP data to be more accurate and suitable for Thailand’s specific conditions. However, it
is essential to acknowledge that extending the model calibrated with cropland data to all
land-cover types in the country might introduce some inherent errors.

To assess the effectiveness of the SSM adjustment, we compared the monthly SMAP
soil moisture values with and without model adjustment against the one-month average in
situ soil moisture (θmonth) from the ten telemetry stations between January and May 2023,
as shown in Figure 14. We calculated the root-mean-square errors (RMSEs) to demonstrate
the correlation improvements that could be expected from the SMAP SSM adjustment.
For the case of the 10 cm deep in situ soil moisture, the linear model adjustment of the
SMAP SSM did not significantly improve the accuracy of the correlation. The RMSE values
were comparable, measuring 0.021 and 0.020 for the adjusted and original SMAP SSMs,
respectively (Figure 14a).
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However, a promising trend was observed for the adjusted SMAP SSM at the depth
of 30 cm (Figure 14b). The RMSE value decreased from 0.026 for the original SMAP SSM
to 0.018 after adjustment. This suggests that the adjustment technique holds potential for
enhancing the accuracy at greater soil depths. Overall, while the linear model adjustment
of the SMAP SSM showed mixed results, it has demonstrated the ability to improve the
correlation in certain scenarios, particularly at greater soil depths. Further investigation
and refinement of the models might be necessary to enhance the accuracy of the surface
soil-moisture data across various land-cover types in Thailand.

4. Discussion and Conclusions

The present study undertakes an in-depth exploration of the intricate interplay be-
tween remotely sensed SMAP data and in situ soil-moisture measurements, with the over-
arching goal of advancing our comprehension of soil-moisture dynamics. This multifaceted
investigation encompasses an array of aspects, including temporal variations, correlation
coefficients, and the impact of soil properties. Collectively, these facets contribute to a
comprehensive understanding of the complex process of soil-moisture estimation.
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One of the central considerations in this study revolves around addressing the dis-
crepancies between the SMAP data and the in situ measurements spanning the years 2021
to 2023. This discrepancy stems from the inherent differences in temporal resolutions
between the two datasets. The solution lies in employing a monthly averaging approach,
which serves to attenuate the inherent fluctuations in soil moisture and thus enhance the
reliability of the correlation analysis. The observed disparities in soil-moisture variations
underscore the multifaceted nature of soil-moisture dynamics. Interestingly, SMAP soil
moisture exhibits more pronounced amplitude variations compared with in situ readings.
A noteworthy phenomenon arises when in situ measurements surpass SSM readings at
greater soil depths, offering intriguing insights into the underlying influences, which in-
clude soil properties, groundwater interactions, and spatial variations. The introduction
of a 1-month averaging scheme effectively highlights the potential of this approach to
mitigate these discrepancies, resulting in a smoother soil-moisture variation profile and
subsequently improving the correlation between SMAP data and in situ measurements.

A significant focus of this study lies in exploring the linear correlation coefficients,
characterized by the coefficients M and C. While some stations exhibit unreliable corre-
lations due to factors such as SMAP data volatility and sensor malfunctions, the reliable
correlations provide valuable insights into understanding soil-moisture dynamics. The
diverse range of calculated correlation coefficients, as indicated by the coefficient of determi-
nation (R2), underscores the importance of considering the proportionality of measurement
areas. Although these correlations are specific to individual stations, their implications
extend to site-specific applications and analogous conditions, emphasizing the versatility
of remote-sensing data.

Furthermore, the integration of essential soil properties into the correlation analysis
through multiple linear regression (MLR) enhances the scientific rigor of this study. This an-
alytical approach illuminates the intricate interconnections between soil characteristics and
moisture measurements, revealing the multifaceted nature of soil–water interactions. As a
starting point, the resulting regression equations establish simple relationships between
linear coefficients (M and C) and basic soil properties (X1, . . ., X7), thereby shedding light
on the underlying mechanisms governing correlations. Nevertheless, it should be noted
that the predictive capacity of the MLR method could be limited by the non-linearity and
interdependency of soil properties. More sophisticated models, such as machine learning,
artificial neural networks, etc., will be explored in our future work.

The imperative of upscaling and correlating soil-moisture data from diverse sources,
such as satellite-based SMAP measurements and in situ observations, underscores the need
for a comprehensive understanding of soil-moisture dynamics across various scales. The
insights gained from this study highlight the pivotal role of measurement area proportions
and land-cover types in influencing correlation outcomes. The distinct scales of measure-
ment between SMAP soil-moisture and in situ data, combined with the inherent variations
in in situ measurements, impact the correlation results. The role of land-cover type emerges
as a significant factor, with croplands displaying enhanced correlations due to their uni-
formity. Utilizing MODIS land-cover type data allows for the effective classification of
telemetry stations, providing insights into the role of land cover in determining correlation
efficacy. It should be added that further analyses should focus on the role of vegetation on
the correlation development and upscaling model. Additional vegetation indices such as
the NDVI will be considered in our future work.

Temporal averaging has emerged as a key technique in bridging the temporal gap
between SMAP data and high-frequency in situ measurements. The alignment of the
three-month running average with the Oceanic Niño Index (ONI) period resulted in a
meaningful agreement between soil-moisture patterns and climate oscillations. Extending
this approach to correlate SMAP and in situ soil-moisture data proved effective, particularly
when focusing on cropland regions. Through spatial and temporal averaging, robust
correlations were achieved, harmonizing diverse data sources into a coherent relationship.
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The correlation analysis further uncovered significant insights into the interrelation
between SMAP soil moisture (SSM) and in situ water content (θ) at varying depths. By
utilizing linear regression models, correlations were established for the average SSM and
the in situ θ at depths of 10 cm and 30 cm. The high R-squared values, ranging from 0.83 to
0.87, underline the strong correlations achieved through the three-month running average
approach. Notably, distinct patterns emerged from this analysis. At a depth of 10 cm, the
SSM consistently exhibits a slight tendency to slightly overpredict in situ moisture (θ), with
a systematic transformation shift of around −3%. Importantly, the linear equation’s slope
remains close to unity, indicating a proportional correlation. Similarly, at a 30 cm depth,
the correlation highlights SSM’s consistent inclination to overpredict the in situ θ, with a
slope of the linear equation around 0.53.

While the adjustments we explored did not consistently yield significant improve-
ments in all cases, the positive outcomes observed, particularly for greater soil depths,
point toward the potential for refining our models. These results highlight the intricate
nature of soil-moisture dynamics in diverse land-cover types, emphasizing the importance
of tailored approaches to calibration and adjustment. In our endeavor to create accurate
soil-moisture data for climate modeling and weather prediction, this study offers valuable
insights and suggests directions for future research. It is clear that the linear adjustment
method has promise, but its effectiveness depends on intricate relationships that require
further investigation and validation. These endeavors have the potential to deepen our
understanding of soil-moisture behavior, contributing to more precise and dependable
environmental modeling and predictive systems.

In conclusion, this study signifies a significant advancement in refining soil-moisture
estimation by bridging the gap between remote sensing and in situ measurements. The
investigation into temporal variations, correlation coefficients, and the role of soil proper-
ties culminate in a comprehensive understanding of soil-moisture dynamics. The study
underscores the crucial role of temporal averaging and the impact of land-cover types in
unraveling the complexities of correlation patterns.
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List of Notations

SMAP Soil Moisture Active/Passive
θ In situ volumetric water content
SSM Surface soil moisture
Vw Volume of soil water
V Total volume of soil
x Sensor reading (mA)

a, b
Fitting parameters for water content–voltage sensor
calibration from linear regression

αc, α1, ., α7
Multiple linear regression parameters for sensor
calibration based on physical properties for a

βc, β1, ., β7
Multiple linear regressions parameters for sensor calibration
based on physical properties for b

X1, ., X7 Soil physical properties used in multiple linear regressions
θs Saturated volumetric water content
θr Residual volumetric water content
s Soil suction
p, m, n Van Genuchten’s fitting parameter for soil–water retention curves

M, C
Linear regression fitting parameters between θ and SSM, based on
1-month average values

D, a1, . . .,a7 Multiple linear regression parameters for M, based on physical properties
E, b1, . . . , b7 Multiple linear regression parameters for C, based on physical properties
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