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Abstract: Atmospheric turbulence (AT) can change the path and direction of light during video
capturing of a target in space due to the random motion of the turbulent medium, a phenomenon
that is most noticeable when shooting videos at long ranges, resulting in severe video dynamic
distortion and blur. To mitigate geometric distortion and reduce spatially and temporally varying
blur, we propose a novel Atmospheric Turbulence Video Restoration Generative Adversarial Network
(ATVR-GAN) with a specialized Recurrent Neural Network (RNN) generator, which is trained to
predict the scene’s turbulent optical flow (OF) field and utilizes a recurrent structure to catch both
spatial and temporal dependencies. The new architecture is trained using a newly combined loss
function that counts for the spatiotemporal distortions, specifically tailored to the AT problem. Our
network was tested on synthetic and real imaging data and compared against leading algorithms in
the field of AT mitigation and image restoration. The proposed method outperformed these methods
for both synthetic and real data examined.
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1. Introduction

Long-range imaging is deeply affected by the atmospheric medium, which causes dy-
namic deformations and blur in the resulting video. The effects of atmospheric turbulence
are caused due to shifts and changes in density, temperature, and humidity, which directly
affect the reflective index of the optical medium and cause said degradations. Hence, the
need for the reconstruction of degraded videos that have suffered atmospheric turbulence is
beneficial if one wishes to engage in higher tasks such as classification [1], object detection,
tracking [2,3], etc.

To mitigate the effect of atmospheric turbulence, many image-processing-based meth-
ods have been proposed over the years. These methods can be divided into three main
approaches: image-to-image methods [4–9], which were the main study subject for re-
cent AT reconstruction research using both classical and deep learning-based algorithms;
sequence-to-single image methods [10–15], which assume that the scene and position of
the camera are fixed while using multi-frame inputs in order to produce a single good
image and finally the least studied subject over the previous decade; and video-to-video
methods [16–19] that focus on video AT mitigation, where the input to the model is a frame
sequence and the output is the restored frame sequence with mitigated AT deformation
and blur.

The reconstruction of a video degraded due to atmospheric turbulence is of an ill-posed
nature and can be mathematically modeled in the following way, as used by [10]. We define
{A} as the set of all the observed frames, fA

t∈[0,T], and {B} as the set of all the real undistorted

AT frames fB
t∈[0,T], which we ideally want to recover from the observed frames. Next, we

define Distt as the geometric distortion caused by angle-of-arrival fluctuations caused by
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a turbulent atmosphere at time t, a blurring kernel Blurt at time t, which is commonly
assumed to be stationary for short periods with respect to the geometric distortion [2], and
nt, which represents some additive noise at time t.

f A
t = Blurt

(
Distt

(
f B
t

))
+ nt (1)

Recently, many learning-based algorithms have been proposed to tackle problems of a
similar nature, like super-resolution and unpaired video-to-video translation, yielding state-
of-the-art results, such as Recycle-GAN [20] and iSeeBetter [21]. These great breakthroughs
rely on cutting-edge deep learning algorithms, including CycleGAN [22], optical flow
estimation algorithms, such as FlowNet [23], and RNN algorithms, such as ConvLSTM [24],
which have made it possible for the development of these new methods.

Methods for AT image restoration can be divided into two main approaches: image-to-
image and sequence-to-image. The former is currently the main active research approach,
combining innovative deep learning techniques and blind deconvolution methods, which
rely on mathematical and physical modeling of the turbulence degradation effect. Recently,
the authors of [5] proposed an iterative algorithm called BATUD, which is based on a
physical model for the modulation transfer function of the imaging system and the impact
of the turbulence using the Fried kernel. The proposed method is used to perform decon-
volution and then estimate the Fried kernel [25] by jointly relying on a Gaussian Mixture
Model (GMM) prior to natural image patches and regularizing with the square Euclidean
norm of the Fried kernel. X. Bai et al. [6] conducted a comparative research between
Fully Convolutional Networks (FCNs) and conditional GAN (CGAN) with perceptual
loss [26] and adversarial loss [27], revealing that these networks outperform classical meth-
ods while restoring high-frequency details and textures and suppressing noise effectively.
O. Chen et al. [7] focused their research on the imaging of outer space targets, combining
FCN with dilated convolutions for denoising before propagating through an asymmetric
U-net [28] with transposed convolution. C. P. Lau et al. [8] tackled the task of face image
restoration under AT, with a three Wasserstein-GAN (WGAN) [29] with a gradient penalty
two pathway architecture for deblurring and deconstruction, respectively, along with a
fusion network, utilizing both perceptual [26] and adversarial loss [26] functions while
using a PatchGAN [22] architecture for the discriminators and a DeblurGAN-based [30]
generator architecture. R. Yasarla and V. M. Patel [8] proposed AT-Net, a deep CNN that
combines two networks. One assesses the degradation of the AT on the given image by
using Monte Carlo dropouts to estimate the epistemic uncertainty and use it as a prior
measure of the AT degradation at each pixel, and then a second network is used to estimate
the clean image.

Sequence-to-image methods contain more information about the given scene but have
to overcome temporal problems like dynamic scenes or moving objects. Nonetheless, in
recent years, several studies have been performed using this approach. Usually, the process
of sequence-to-image transformation involves a reference frame, which is of sharp and
undistorted quality that can be referred to as a “lucky image”, followed by a registration
step, where all other frames are registered to the “lucky image” under some criteria
to produce a single good image. However, statistically, there is no guarantee for such
a “lucky image” to even exist, particularly in regular horizontal imaging through the
atmosphere. X. Zhu and P. Milanfar [10] suggested using a B-spline-based non-rigid image
registration algorithm to register each observed frame with respect to a reference frame
while introducing a symmetry constraint for accuracy enhancement. In the reconstruction
part, they used an L1 norm and bilateral total variation (BTV) regularization term to
enhance image quality. In a sequel work [11] a few years later, the authors used a B-spline-
based non-rigid image registration and, for the second stage, they proposed the use of a
blind deconvolution algorithm to deblur the fused image. N. Anantrasirichai et al. [12]
proposed a method termed CLEAR, which introduced a new reference frame creation
technique through the selection of regions from different frames based on a quality metric
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followed by fusion at the feature level by using Dual-Tree Complex Wavelet Transform.
C. P. Lau et al. [13] proposed optimizing a cost function, including criteria for sharpness,
distortion and number of sampled frames, for sampling “good” frames from which a
sharp image is created via the temporal mean of the sampled “good” frames. Afterward, a
stabilization stage was proposed in order to remove geometric deformations by wrapping
each frame using a suitable deformation field calculated with large displacement optical
flow while using Robust Principal Component Analysis (RPCA) for outlier suppression.
Finally, registration and image fusion steps were carried using an image fusion scheme
followed by deconvolution to deblur the finite image. Later that year, the same authors
published [14], where several variational models were studied to simultaneously determine
the optimal subsampling of frames and the extraction of a clear image, afterwards a
registration step is carried out to register each frame to a reference image, and then the
turbulent deformation matrix can be estimated and a sharp image can be reconstructed.
Recently, Z. Mao et al. [15] proposed an averaging method to construct a reference frame
and a lucky region fusion method followed by a blind deconvolution step that showed
superior but close results to CLEAR [12].

The video restoration of AT-degraded videos has been the least studied subject in
recent years. It is considered to be more complicated than single-image restoration tasks,
for one has to consider not just blur and geometric distortion in one frame but in the
whole sequence of frames while taking into account object movement and temporal and
spatial movements in both the scene and even the camera. When concerning real-world
applications, like long-range video object tracking and super-resolution video, one must
first tackle the task at hand in order to achieve applicable results. The authors of [16]
proposed an adaptive control grid interpolation method for the case of a static camera
with dynamic scenes by first performing a bilinear interpolation to increase the spatial
resolution. Next, a calculation of a high-resolution dynamic motion vector field is derived
from the video data using a minimization process, assuming that the AT disturbance
is quasi-periodic, a base frame is achieved, and the motion field is used to correct AT
distortion. S. Gepshtein et al. [17] used a Differential Elastic Image registration method
by generating a good reference image using a rank smoothing filter to create a static
image of the scene, eliminating any moving parts. Next, a motion field is achieved via
the registration of the spatial neighborhood of each pixel to the reference image, which
is then used to eliminate AT geometric distortions from static parts of the scene. To deal
with moving objects, an error function was computed, providing a large score for moving
objects with respect to AT distortion, which is used to truncate the motion vectors of
those objects. Y. Lou et al. [18] proposed applying a Sobolev gradient method to sharpen
individual frames and mitigate the temporal distortions via the Laplace operator. Recently
N. Anantrasirichai [19] suggested the use of complex-valued convolutions on the basis
that it captures phase information from the atmospheric turbulence better than real-valued
CNNs. The results shown in the paper outperformed a regular U-Net [28] by a small
difference, where no special attention was given to the AT problem.

Motivated by the recent success in RNNs and GANs, we propose a novel Atmospheric
Turbulence Video Restoration Generative Adversarial Network (ATVR-GAN) with the
following innovations intended for AT video degradation recovery:

• A novel RNN generator architecture which includes:

o A preprocessing stage dedicated to acquiring an initial estimation of the turbu-
lence flow.

o Customized memory cells specifically aimed for the propagation of AT knowl-
edge across timestamps.

o A post-processing stage aimed at producing both temporal and spatial updates
for the network’s knowledge given the scene and turbulence predictions.

o An AT prediction sub-network, trained to predict the current AT optical flow
map by learning from the posterior knowledge of the scene.
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• A novel use of the following combined loss function integrating perceptual loss [26],
adversarial loss [27], total variation (TV) loss [31], optical flow loss and AT loss.

2. Method
2.1. Problem Definition

We argue that our task can be modeled as a domain transfer from an AT domain {A}
to an AT undistorted domain {B}. As such, we propose a novel architecture for AT video
restoration combining deep learning building blocks from GANs and RNNs and a new
loss function for our model to optimize by considering spatial and temporal constraints, as
well as the nature of AT disturbances, which can manifest as blur and spatial dispositions.
The goal is to mitigate AT effects in video frames and, by that, transfer them into a domain
where they appear to be sharper and temporally more coherent. To achieve this goal, we
set some assumptions to help define our problem:

• We focus our research on ground-level imaging under anisoplanatic atmospheric
turbulence, where the medium is assumed to be of the same level along the path of
propagation [32] and where the size of the objects is relatively small with respect to
propagation length.

• The video is taken from a constant position, which may move radially in yaw and pitch
angles but not axially. The justification for such a constraint is due to the prime intended use
of our algorithm, which is intended for surveillance missions or long-distance capturing
under relatively high zoom ratios for several to tens of kilometers where movements in
yaw, pitch and zoom are most relevant but axial movements are not.

• The scene may alter and contain dynamic objects and zoom in/out scenarios.

2.2. Algorithm and Arcitecture

The ATVR-GAN model was designed to capture both spatial and temporal features in
the received turbulent scene while resolving atmospheric turbulence disturbance, which,
as explained before, manifests mainly as blur and dispositions. Our model is a GAN based
on a novel RNN generator architecture, as shown in Figure 1, while harnessing a proven
discriminator architecture from PatchGAN [22], as used in [20,33].

After observing the remarkable achievements in video-to-video translation, particu-
larly recent breakthroughs like Recycle-GAN [20] and iSeeBetter [21], which harness the
potential of adversarial loss [26], we were inspired to adopt a GAN-based architecture for
our own model. These cutting-edge approaches have demonstrated the ability to generate
remarkably realistic results, especially in scenarios where the input data are limited while
the output demands intricate details.

Our generator architecture can be seen as being comprised of 3 stages: preliminary
flow prediction, frame reconstruction and auxiliary update. The only external input to the
network includes the current frame and previous frame, and the external output is the
current predicted frame. In the first stage, a prior for the input frames’ AT flow is predicted,
which is then concatenated with previous internal and external outputs of the network
and inserted into the second stage, which yields the current predicted frame. The last step
updates the memory cells and computes other internal outputs to be used in the following
time stamp as inputs to the second stage. The three stages are further elaborated in the
following paragraphs.
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2.2.1. Stage 1: Preliminary Flow Prediction

In the first stage, two distorted frames fA
t and fA

t−1 are used for the initial prediction of
a dense optical flow map OFA

t between the turbulent frames using the GMA [34] method.
The resultant flow map is used as the preliminary knowledge of the overall scene’s flow
that may include non-turbulence-induced motions (depending on the scene’s dynamics,
e.g., moving cars or a static scene where only turbulence-induced movement is present) for
the next stage, supplying the model with initial information of the combined scene and AT
optical flow.

2.2.2. Stage 2: Frame Reconstruction

The second stage makes use of the current and previous inputs and outputs from
the model and injects them into two networks: the Pre AT-processing Network (Figure 2),
which acts as a feature extraction network, and the AT prediction Network (Figure 3), which

is trained to predict the current AT optical flow ÔF
ATexpected
t induced only by the turbulence

effect without non-turbulence motions (such as that of moving objects). From there, the
concatenated outputs are inserted into a third Post AT-processing network (Figure 4), which
combines all the knowledge from the feature extractor and the predicted AT optical flow
and yields the restored frame f̂ B

t .
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To that end, two frames, fA
t and fA

t−1, along with the predicted optical flow map OFA
t

from the first stage, are concatenated with previous outputs from the generator at time
t− 1 and inserted parallel to the Pre AT-processing Network and AT prediction Network.

The previous outputs include: the previously restored frame f̂ B
t−1, previously calcu-

lated optical flow map between f̂ B
t−1 and f̂ B

t−2: ÔF
B
t−1, previous AT predicted flow map

ÔF
AT
t−1 and the two auxiliary memory cells. The outputs from said networks are concate-

nated along with the inputs to the two networks and inserted to the third Post AT-processing
network, which produces the reconstructed frame f̂ B

t .
The architectures for the Pre AT-processing network, AT Prediction network and Post

AT processing network are shown in Figures 2–4, respectively. As can be seen from these
figures, all our networks are built in an encoder–decoder structure, where the first two
(Figures 2 and 3) are based on Unet [18] with a convolution kernel size of 4 × 4 and a
combination of Leaky ReLU (pink) with a slope of 0.2 for the encoder and ReLU (magenta)
for the decoder. The third network was designed to combine features from previous
networks, and to that end, it was constructed to work in a higher spatial resolution than
the ones used in the previously mentioned networks and, therefore, equipped with a
straightforward convolution stack with batch normalization (red) and ReLU activation
applied between two convolutions (the convolution kernels and strides are shown for each
layer in Figure 4) and skip connections between blocks for gradient flow.

2.2.3. Stage 3: Auxiliary Update

As shown in Figure 1 and further detailed in Figure 5, the third stage is solely com-
prised of the Memory and Flow Extraction Unit, which was designed for two main tasks:
updating the auxiliary memory cells and calculating the resulting optical flow maps.

Table 1. The architecture of the hidden blocks in Memory and Flow Extraction (M&F) Unit.

Input Dimension * Layer Output Dimension

{256, 256, 1, 4}
Conv2D ( Kernal = (3× 3), stride = 1)

Instance Normalization
ReLU

{256, 256, 1, 4}

{256, 256, 1, 4} Conv2D ( Kernal = (3× 3), stride = 1)
Instance Normalization {256, 256, 1, 2}

* The dimensions in the table are set as {height, width, channels, and dimensions}.

The auxiliary memory cells include two dedicated memory cells: the Network Memory
cell and the AT Memory cell. The former was designed to provide the network with general
recurrent properties by propagating information from different outputs of the network. The
latter allows for the utilization of the quasi-periodic nature of the turbulence by aggregating

the latest AT flow maps ÔF
AT
t∈[0,t] using a moving average where α is a hyperparameter (set

to 0.7 in our model) that leverages past knowledge versus incorporating new knowledge.

ÔF
AT
t∈[0,t] = α× ÔF

AT
t + (1− α)× ÔF

AT
t∈[0,t−1] (2)

The auxiliary cells integrate key features across time stamps by extracting knowledge

from the newly predicated f̂ B
t , ÔF

B
t and ÔF

AT
t to update the state of the auxiliary cells and,

in doing so, result in recurrent properties in terms of the generator.
The second task of the M&F unit is to calculate two optical flow maps: one is used for

the current optical flow between the predicted restored frames f̂ B
t and f̂ B

t−1: ÔF
B
t is used for

the calculation of the optical flow maps, as further explained in Section 2.3.5. The second

optical flow map is used for a pseudo prediction of the current AT flow map ÔF
AT
t , which

is calculated by subtracting the ÔF
B
t from OFA

t (calculated in stage 1), as can be seen in
Figure 6. This map in theory counts only for the OF movement caused by the turbulence,
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excluding movement caused by dynamic objects or camera motion, as demonstrated in

Figure 6, where the cars motion is absent from the predicted AT flow map ÔF
AT
t=250frames

but is most noticeable in the outputted OF frame ÔF
B
t=250 f rames.
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The M&F Unit uses the pretrained OF network GMA [34] that takes the previous
predicted frame f̂ B

t−1 and current predicted frame f̂ B
t−1 and yields the current predicted

optical flow map ÔF
B
t , which is then used for the calculation of the pseudo AT estimation

ÔF
AT
t . Finally, the AT auxiliary memory cell is computed by inserting the previous AT

memory cell with the current pseudo AT estimation ÔF
AT
t estimation into Equation (2).

To update of the Network Memory auxiliary cell, three convolution blocks are used.
The architecture for the Hidden blocks is described in Table 1. Each block is built by
integrating the new outputs from the network. First, the previous Network Memory cell,
which we empirically set to {256, 256, 1, 2}, is concatenated with the current predicted
frame f̂ B

t and inserted to the first convolution block (ConvBlock1). Then, the output from

ConvBlock1 is concatenated with ÔF
B
t and inserted into ConvBlock2. Finally, the new

Network Memory cell is computed by concatenating the output from ConvBlock2 with the

pseudo AT predication ÔF
AT
t and inserting them into the third and final ConvBlock3.

2.3. Loss Function

To better address the problem of AT, we needed to compose a loss function that will
teach our model how to improve upon both visual and temporal disturbances caused by
AT. To do so, we combined five different losses, each designed to tackle different aspects of
the problem at hand.

To deal with missing information caused by capturing images under disturbed con-
ditions, we chose Adversarial loss [27] to encourage the network to invent and fill new
information where it is scarce or unknown. As our leading engine, we used perceptual
loss [26], which uses its learned knowledge from the high-dimensional features of real
images to teach the network about the divergence caused by AT-affected features. As a
regularization factor for preventing noise output, we used TV loss [31], which encourages
the network to produce clean edges and decrease the general noisiness in the image.

Since our focus is on video damaged by AT, we introduced two temporal-based loss
functions to ensure coherency between output frames by using OF loss and improve the
network’s knowledge of the turbulence flow by introducing AT loss, which teaches the AT
Prediction network to predict the current AT flow.

2.3.1. Adversarial Loss

Our network is GAN-based and is comprised of an ATVR generator and a Patch-
GAN [22] discriminator. The adversarial loss trains both the generator and the discrimina-
tor, where the generator learns to produce images with high resemblance to the learned

output distribution
{∼

B
}

over the training set, and the discriminator learns the high dimen-

sional features that separate the real images f B
t ∈ {B} from the synthetic ones f̂ B

t ∼ G
∼
B,

thereby punishing the generator for deviating from the learned output distribution
{∼

B
}

and encouraging it to innovate new information to “trick” the discriminator.
To train the generator and the discriminator, we used the Mean Squared Error (MSE)

version [33] of the adversarial loss function, which is more moderate compared to the
vanilla log-based [27] version with regards to error magnitude and resulted in more stable
training for our GAN model, resulting in fewer mode collapses while training.

Generator loss LG
Adversarial is the result of the MSE between the prediction of the

discriminator on a generated frame G
(

f A
t
)
= f̂ B

t where it is regarded as real (where 1 is real
and 0 is fake). The discriminator loss LD

Adversarial is defined as the combination of generator
loss, where the output from the generator is regarded as fake, and the MSE error of the real
GT frame f B

t is regarded as real:

LG
Adversarial = L

G
GAN = MSE

(
D
(

G
(

f A
t

))
, 1
)

(3)
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LD
Adversarial =

1
2

MSE
(

D
(

G
(

f A
t

))
, 0
)
+

1
2

MSE
(

D
(

f B
t

)
, 1
)

(4)

2.3.2. Perceptual Loss

Perceptual loss measures the difference between the feature representations of the
generated image and the ground truth image. It encourages the generated image to match
the target image, not only in terms of pixel-wise differences but also in terms of high-level
visual features previously learned from classifying comprehensive and diverse datasets.
We also used perceptual loss [26], which uses features from different depths of a pre-trained
VGG19 [35] network. The use of perceptual loss enables the network to learn turbulence-
related features that change the visual style and context of the predicted frame f̂ B

t with
respect to the clean frame f B

t while maintaining the innovative capabilities of the GAN
architecture. Perceptual loss is defined as follows [26]:

LG
VGG19 = LG

Perceptual = L
G
Content + 100×LG

Style (5)

where Style loss is defined as:

LG
Style = ∑

l∈L
wl×MSE(gram(φl( f B

t )), gram(φl( f̂ B
t ))) (6)

and wl represents the predefined weights for each layer l, as defined in [26], and gram
stands for the normalized Gram matrix:

gram(X) =
XTX

B ∗ C ∗ H ∗W
(7)

where B, C, H, W are the dimension sizes of matrix X. Finally, Content loss is defined as:

LG
Content = ‖ φ3( f B

t

)
, φ3

(
f̂ B
t

)∥∥∥
1

(8)

2.3.3. Optical Flow Loss

We aimed to restore videos degraded by atmospheric turbulence (not just restore
images, as often carried out), a task that has additional challenges with respect to single-
image restoration. While in the former, one needs to ensure temporal consistency between
the frames of the output video for it to be well restored; in the latter, only one frame is
outputted and validated for spatial deformities. To attend to this particular challenge,
we used two measures: first, we used the dense optical flow algorithm from [34] for pre-
and post-processing of the given adjacent turbulent frames f A

t−1, f A
t and the predicted

restored frames f̂ B
t−1, f̂ B

t , respectively. The optical flow may not be accurate for the sole
purpose of AT restoration but it still holds valuable information about movements and
changes in camera settings, such as in the case of zoom and radial movement of the camera,
and information about dynamic objects in the scene, though it may be affected by the
turbulence-induced movements. Therefore, knowledge of the flow fields in the scene
may contribute to the model’s understanding of the temporal behavior of both the scene
and turbulence. Secondly, we trained our module to optimize for the Optical Flow loss

between the predicted optical flow ÔF
B
t (between f̂ B

t−1 and f̂ B
t ) and the ground truth (GT)

flow OFB
t (calculated using [34], between real GT frames without turbulence, f B

t−1 and f B
t )

respectively, using the L1 loss, so the model will be penalized for incoherency of movement
between timestamps and will, therefore, be encouraged to produce temporally consistent
frames with respect to scene dynamics.

LG
OF =

∥∥∥OFB
t , ÔF

B
t

∥∥∥
1

(9)
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2.3.4. Total Variation Loss

Total Variation (TV) loss [31] is a regularization technique commonly used in image
processing and computer vision tasks. It encourages smoothness and reduces noise in the
output image by penalizing rapid changes or high-frequency components. The primary
motivation behind using TV loss is to preserve the structural integrity of the image while
removing noise and unwanted artifacts.

The loss function is defined by taking the sum of the absolute differences between
adjacent pixels in the image in both the horizontal and vertical directions, and the final TV
loss is the sum of these two components.

LG
TV =

1
2N ∑‖ f (i, j)− f (i + 1, j)‖1 +

1
2N ∑‖ f (i, j)− f (i, j + 1)‖1 (10)

where N = (H − 1) ∗ (W − 1) and H, W are the height and width of the image, respectively.

2.3.5. Atmospheric Turbulence Loss

This loss was designed specifically for our network. It is an unsupervised loss func-
tion fully contained from the networks’ outputs, which uses posterior knowledge of the
turbulence from the network’s M&F Unit stage to teach an earlier stage of the network to
predict AT flow.

LG
AT =

∥∥∥ÔF
ATexpected
t , ÔF

AT
t

∥∥∥
1

(11)

The pseudo prediction of the AT flow is used twice: first for the training of the AT
Predication Network, which is optimized to predict the current AT flow using an L1 loss

between the expected and predicted AT flow ÔF
ATexpected
t , which is the output of the AT

Prediction network (Figure 3) and the calculated current flow ÔF
AT
t , as can be seen visually

in Figure 7. That said, this loss is highly dependent on the optical flow algorithm used
since it acts as an optical flow predictor for the AT and is directly affected by its errors.
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Figure 7. A visual comparison of AT optical flow learning for the AT prediction network (vector field
is increased by a factor of 8 for visual purposes), where the green lines represents the optical flow
from f̂ B

t=249 f rames to f̂ B
t=250 f rames for each 8th pixel in the image. (a) The expected AT flow sampled at

frame 250, predicted in the output from the AT Prediction Network. (b) The calculated AT flow at
frame 250, from stage 3 in Figure 1.

The second use, as explained before, is in the updating of both auxiliary cells, where
the justification for such memory cell comes directly from the quasi-periodic attribute of
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the turbulence under the thesis that the network can estimate the AT flow over time at
different spatial areas of the scene and estimate the correct changes needed to overcome it.

2.3.6. Overall Loss

Finally the complete Loss function is the weighted sum of the individual loss functions,
where λGAN , λVGG19, λOF, λAT and λTV are the corresponding weights for LG

GAN , LG
VGG19,

LG
OF, LG

AT and LG
TV , respectively. Their values are presented in Section 3.2.

LG
ATVR = λGAN ×LG

GAN + λVGG19 ×LG
VGG19 + λOF ×LG

OF + λAT ×LG
AT + λTV ×LG

TV (12)

3. Results

Our algorithm was first trained and evaluated on our synthetic dataset, followed by
testing with real AT-degraded data. To assess and compare the performance of our model
with other state-of-the-art algorithms, and since no video-to-video method with published
code could be found, we used AT image-to-image restoration algorithms like AT-Net [9]
and BATUD [5] and the AT sequence-to-image restoration algorithm CLEAR [12] for our
AT restoration comparison. Also, we compared our work with the image restoration model
MPRNet [36] to see if such a general image restoration model can outperform dedicated
AT restoration models.

In order to compare the different methods, each method was trained and evaluated
with our dataset while using the published hyperparameters and code. For CLEAR [12],
which is a sequence-to-image model, we followed the authors’ work in [37] and used a
sequence of five reference frames for each time stamp.

The performance of the different methods on the synthetic data is evaluated in terms
of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), which are
very common metrics used for evaluating image/video denoising and restoration tasks, as
can be seen in [5,12,19] and more.

3.1. Dataset and Data Preparation

In the absence of a formal atmospheric turbulence benchmark, over the years, different
methods for atmospheric turbulence simulation and synthesis have been proposed. Some
do not rely on a physical model, like the ones used in [8,9,19], which rather use random
blurring kernels and random motion fields while following Equation (1). Others use
physical modeling of the turbulence, such as [32], which takes into account the distance
between the camera and the object and turbulence strength. After studying the different
methods for AT simulation, we used the method suggested in [32] to create our dataset.

Our training and validation dataset was created by gathering different kinds of videos
from online sources, which were used for the creation of our synthetic dataset. These videos
had little to no visible turbulence interference across different scenes, such as animals in
the wild versus people walking in a crowded street and different object dynamics, such
as horizontal and vertical movements. Moreover, we added videos containing changes
in camera settings like zoom in and zoom out to address various changes that can be
encountered when filming long-range videos.

For a test dataset, we used the publicly available CDnet 2014 dataset [38], which
contains 11 video categories with four to six video sequences in each category. However,
we only included videos captured outdoors under clear weather conditions for our synthetic
dataset. This ensured that the videos were free from additional disturbances and provided
a suitable foundation for generating synthetic atmospheric turbulence.

Furthermore, the CDnet dataset [38] includes four real turbulent videos that exhibited
visible atmospheric turbulence effects. These videos were used for the visual assessment
and benchmarking of our algorithm’s performance on real AT videos. Dataset division,
along with the number of videos and frames used in training, validation, and testing,
respectively, is detailed in Table 2.
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Table 2. Properties of the real and synthetic datasets.

Videos/Number of Frames Training Validation Testing

Synthetic AT dataset
10 different videos per set

(80 videos)
~100,000 frames

3 different videos per set
(24 videos)

~30,000 frames

7 different videos with setting
from set6 and set1 (14 videos)

~11,000 frames

Real AT dataset 4 videos

To create synthetic AT videos, we resized the video frames to 256 × 256 pixels and
converted them to grayscale (0–255), and then we calibrated the distance, aperture diameter
and turbulence degree for all the videos and inserted them frame by frame using the
method proposed by [38]. All of the synthetic data were created with a mean wavelength
of 0.525 µm, and the other parameters that correspond to different imaging conditions are
detailed in Table 3.

Table 3. Synthetic dataset simulation hyperparameters.

Simulations
Sets

Propagation
Length (L) [m]

Refractive
Index Structure (C2

n)
[
m−

2
3

] Fried
Parameter (r0) [m]

Aperture
Diameter (D) [m]

set1 4000 1.1× 10−17 1 0.1
Set2 4000 0.35× 10−17 2 0.1
Set3 4000 0.18× 10−17 3 0.1
Set4 4000 0.11× 10−17 4 0.1
Set5 1000 0.65× 10−14 0.05 0.2
Set6 1500 0.43× 10−14 0.05 0.2
Set7 2000 0.32× 10−14 0.05 0.2
Set8 2500 0.26× 10−14 0.05 0.2

3.2. Training Details

The end-to-end design was implemented in Pytorch, and the training was performed
using a single GeForce RTX 2060 Super GPU. In training, a batch of four randomly picked
synthesized AT sequences of 10 frames each and their corresponding GTs are drawn from
the training set. The frames are normalized to the range of [−1, 1]. During training, we
used the Adam solver [39] with the hyperparameters of β1 = 0.9 and β2 = 0.999 to perform
one step of the update on the discriminator and then one step on the generator for each
predicted frame in the sequence. After going through all the frames in the sequence and
before inserting new frames from different videos, initialization of the recurrent cells in
the generator is performed to prevent the generator from learning unreal scenarios. The
learning rate is initially set at 0.0005, and an “On-Plateau” learning rate scheduler is applied
with a patience parameter of 50 validation iterations, a division factor of 0.5 and a threshold
of 0.01. For the hyperparameters in the loss function (Equation (12)), we empirically set
λVGG19 = 10 and λOF = λGAN = λAT = λTV = 1. The empirical setting of the lambda
parameters stemmed from various experiments conducted during the research, where
different settings for each loss were examined. We found that having the λVGG19 set to a
relatively high value w.r.t enabled the rest of the loss functions, encouraged the generator
to learn better and quicker, and yielded a more stable GAN training while aiding with
other loss convergences.

3.3. Testing Details

The testing procedure contained both synthetic data, for which we have GT and can
provide quantitative results, and real-world turbulence distorted videos, for which no GT
could be provided and, thus, a qualitative comparison of the different methods can be
inspected visually.
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3.4. Results on Synthetic Data

The comparative results corresponding to different methods used in relation to syn-
thetic data are summarized in Table 4, where higher PSNR and SSIM correspond to a
better quality in terms of the reconstructed videos. Visual examples for the second row in
Table 4 are shown in Figure 8 from the “boats” video. As can be seen from Figure 8 and
Table 4, ATVR-GAN outperforms these state-of-the-art image-restoration and AT mitigation
methods. In particular, ATVR-GAN, which utilizes prior knowledge of the turbulence from
previous frames, manages to produce better images by 10.24% and 17.39% over the input
frames and by 4.16% and 5.73% over the second-best algorithm [9], with regard to PSNR
and SSIM, respectively. Moreover, we can see that our model was able to overcome harsh
displacements, as can be seen when examining straight lines in the image, like the boat’s
sail. Additionally, our algorithm was able to reconstruct fine features of the image, like the
bushes in the background, which are absent from the input AT frame.

Table 4. Quantitative comparison results in terms of PSNR/SSIM on synthetic datasets, where the
best results are marked in bold, and the second best are underlined.

Dataset/
Degradation Level

AT Raw
Input CLEAR [12] MPRNET

[36]
BATUD

[5]
AT-Net

[9]
Ours

ATVR-GAN

D = 0.1|L = 4000|r0 = 1
C2

n = 1.1× 10−17
20.98/
0.586

20.64/
0.571

21.55/
0.635

20.02/
0.567

22.77/
0.692

23.96/
0.741

D = 0.2|L = 1500|r0 = 0.05
C2

n = 0.43× 10−14
22.58/
0.703

22.00/
0.692

23.21/
0.753

21.96/
0.685

23.34/
0.738

24.05/
0.770

Average Test Scores 21.78/
0.644

21.32/
0.631

22.38/
0.694

20.99/
0.626

23.05/
0.715

24.01/
0.756
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As can be seen, ATVR-GAN, which utilizes knowledge of the nature of AT motion
and data from previous time stamps, both architecturally and via a dedicated cost function,
is able to generate sharper and clearer frames while counting for previous frames and, thus,
generates more coherent video frames. As can be seen in Figure 8, our model can improve
the simulated AT conditions.

3.5. Results on Real Data

The performance of the described methods was also evaluated against real-world
turbulence-distorted videos. Figure 9 presents the reconstruction results of the compared
methods on a real-world distorted video from the CDnet 2014 dataset [38], where the AT
degradation is assessed to be of low distortion and medium blur. In addition to turbulence, it
may also contain particles in the atmosphere that sometimes cause blur. Additionally, this
video contains a dynamic scene of moving cars without a change in camera position. Using a
qualitative visual comparison of the different methods, it can be observed that ATVR-GAN
was able to restore the real-world video frame while preserving the original details.
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4. Conclusions

We proposed a method termed ATVR-GAN to address the problems that arise during
the reconstruction of a video damaged by atmospheric turbulence in long-distance imaging.
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This is a problem entailing both geometric deformations and blur in both time as well
as in spatial domains. We took on the challenge of video-to-video AT restoration, which
has been the least studied problem over the last decade compared to image-to-image and
sequence-to-image restoration models. Our model was specially designed to tackle the AT
problem using a specialized generator architecture that utilizes the time domain as well as
custom loss functions that drive the network to predict the current flow of the turbulence
and counts for its quasiperiodic nature. We showed that our model can generalize to unseen
or closely resembled scenes, which shows the model’s capabilities to learn the nature of
AT. Our model outperformed the state-of-the-art methods in terms of generating improved
frames and video sequences with less blur and deformation on real and synthetic data.
Nevertheless, further work should be carried out to better generalize the model for the
variety of severely turbulence-degraded videos.
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