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Abstract: Sensors on autonomous vehicles have inherent physical constraints. To address these
limitations, several studies have been conducted to enhance sensing capabilities by establishing
wireless communication between infrastructure and autonomous vehicles. Various sensors are
strategically positioned within the road infrastructure, providing essential sensory data to these
vehicles. The primary challenge lies in sensor placement, as it necessitates identifying optimal
locations that minimize blind spots while maximizing the sensor’s coverage area. Therefore, to solve
this problem, a method for positioning multiple sensor systems in road infrastructure is proposed.
By introducing a voxel grid, the problem is formulated as an optimization challenge, and a genetic
algorithm is employed to find a solution. Experimental findings using lidar sensors are presented to
demonstrate the efficacy of this proposed approach.

Keywords: placement; optimization; genetic algorithm; sensors; infrastructure; urban intersection

1. Introduction

In the realm of autonomous driving research, sensors play a pivotal role. Cameras, for
instance, perceive incoming light through their lenses and image sensors. Radar, short for
“radio detection and ranging”, employs electromagnetic waves to estimate position and
relative velocity.

Lidar, or “light detection and ranging”, stands out as a key sensor in autonomous
driving research. It gauges position by measuring the time it takes for a laser beam to
be emitted, reflect off an object, and return. Lidar, especially the time-of-flight (TOF)
variant, is widely used in autonomous vehicles to acquire point cloud data, aiding in object
detection, localization, and map construction. Integrating lidar into roadside infrastructure
is emerging, and some studies have been conducted using roadside lidar [1–10].

A high-channel lidar, typically having 64 channels or more, offers advantages such
as narrower beam spacing, facilitating feature extraction and the detection of distant
objects. However, these sensors are expensive, making it difficult to install multiple units
in one space. Moreover, they are constrained by their limited measurement range and
susceptibility to occlusion.

Research on the placement of multiple lidars has primarily focused on vehicles. S.
Roos et al. [11] placed multiple lidars and assessed their performance using the CARLA
simulator. T. Kim et al. [12] introduced a multi-lidar placement approach that takes into
account blind spots created by other vehicles. They placed a 2D occupancy grid board at a
specified distance and calculated occupancy using the point cloud reflected on the board.
Furthermore, various studies have proposed techniques for placing multiple sensors within
a single vehicle [13–17].
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Existing research on lidar placement primarily focuses on vehicles and does not
consider the placement problem for infrastructure sensors. Urban environments often
feature numerous obstructions, such as streetlights and traffic signals, at intersections.
These obstructions can lead to a decline in the quality of raw data due to occlusion. Figure 1
shows a point cloud acquired from a typical intersection. The quality of these raw data
varies depending on lidar placement, leading to a drop in object detection performance.
Therefore, the optimization of sensor placement in urban settings emerges as a crucial
challenge. Infrastructure lidar placement offers a higher degree of freedom, requiring
consideration of both the xyz positions and roll, pitch, and yaw angles [18]. X. Cai et al. [18]
conducted a study where they placed multiple lidars at an intersection, analyzing their
impact on recognition performance based on their placements. S. Jin et al. [19] put forth
an evaluation method for lidar placement, but it lacks a systematic approach, including
accounting for blind spots in modeling the real environment.
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sensors, designating candidate locations, and optimizing them using the point cloud pro-
jected on the road surface while excluding buildings, sidewalks, etc. L. Kloeker et al. [21] 
proposed optimizing lidar placement in infrastructure by utilizing a 3D digital map. They 
divided the road into triangles based on the OpenDRIVE [22] format map and optimized 
lidar placement by considering the number of points projected onto these triangles. 

Several studies have used multiple lidars. However, they often fail to reflect the 
unique features of urban roads, characterized by numerous buildings, poles, and more, or 
have primarily relied on simulations. In this study, we propose a method for multiple 
sensors placement, aiming to identify the optimal position and orientation that maximizes 
data detection range. Our proposed method takes into account blind spots arising from 
the road environment. To quantify parameters for sensor placement, we introduce a novel 
approach for evaluating occupancy through voxelization of a map. Additionally, we em-
ploy a genetic algorithm to address the sensor placement problem. The sensor array is 
represented by chromosomes, and new chromosomes are generated through crossover 
and mutation operators. The experiments of this study were conducted in a simulation 
replicating the real environment, and the results affirm the effectiveness of our proposed 
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Figure 1. Differences in quality of raw data depending on lidar placement. (a) Placement #1.
(b) Placement #2.

A. Qu et al. [20] proposed implementing the environment in a simulation and placing
sensors, designating candidate locations, and optimizing them using the point cloud
projected on the road surface while excluding buildings, sidewalks, etc. L. Kloeker et al. [21]
proposed optimizing lidar placement in infrastructure by utilizing a 3D digital map. They
divided the road into triangles based on the OpenDRIVE [22] format map and optimized
lidar placement by considering the number of points projected onto these triangles.

Several studies have used multiple lidars. However, they often fail to reflect the unique
features of urban roads, characterized by numerous buildings, poles, and more, or have
primarily relied on simulations. In this study, we propose a method for multiple sensors
placement, aiming to identify the optimal position and orientation that maximizes data
detection range. Our proposed method takes into account blind spots arising from the road
environment. To quantify parameters for sensor placement, we introduce a novel approach
for evaluating occupancy through voxelization of a map. Additionally, we employ a genetic
algorithm to address the sensor placement problem. The sensor array is represented by
chromosomes, and new chromosomes are generated through crossover and mutation
operators. The experiments of this study were conducted in a simulation replicating the
real environment, and the results affirm the effectiveness of our proposed method. The key
contributions of this paper are as follows:

• Modeling the lidar placement environment based on real-world data rather than
simulation.

• Converting the point cloud map and lidar beams into a computable discrete signal
format (voxel) for quantitative evaluation.

• Optimizing the positions and directions of the lidars using genetic algorithm chromo-
somes and introducing a 2-opt local optimization method.

• Proposing a placement method for multiple lidars (two or more) on infrastructure,
replicating and validating the simulation placement results in a real environment.
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This paper is structured as follows. Section 2 introduces a multiple lidar system in
an urban environment, and Section 3 provides a mathematical description of the problem.
Section 4 describes the optimization algorithm, while Section 5 presents the experimental
results.

2. Multiple Lidar System in an Urban Environment

The mechanically rotating 3D lidar radiates Nbm, θ channel laser beams in the vertical
direction, forming a rotating laser beam array in the horizontal direction. The angle between
these beams in the vertical or horizontal direction is referred to as the resolution, denoted by
∆angα

bm, θ (α = 1, . . . , Nbm, θ) and ∆angbm, φ, respectively. The lowest and highest angles
in the vertical direction are represented as ang−bm, θ , and ang+bm, θ , respectively.

The lidar sensor calculates distances by measuring the time taken for emitted laser
beams to reflect off objects and return. This information is represented as points. Figure 2
shows the resolution and reflection points of the lidar.
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When a lidar is placed along an urban road, it may encounter obstacles like buildings
that can block the laser beams, causing what is commonly known as a “dead zone”. To
minimize dead zones, multiple lidars are strategically positioned at intersections. Each
lidar covers a specific area, resulting in overlapping coverage regions. Figure 3 provides
an example of multiple lidar systems, their coverage areas, and the overlapping coverage
regions. Figure 3a displays the positions of three lidars placed at an intersection, with
the cyan polygons representing buildings that replicate the urban environment and create
blind spots in sensing. Figure 3b shows the coverage of each lidar in relation to the blind
spots caused by the buildings. Figure 3c demonstrates the overlapping coverage provided
by the three lidars, effectively reducing blind spots at intersections through their strategic
deployment. Almost all areas around intersections are covered by lidar.

In a multiple lidar system containing Nld lidars, the position of the l-th lidar is as
follows.

pl
ld =

(
xl

ld, yl
ld, zl

ld, rl
ld, pl

ld

)
∈ S(l = 1, · · · , Nld) (1)

where S is the set of potential positions for the placement of lidars. The position (pld, 1) of
the first (reference) lidar is fixed by the user, while the positions of the remaining lidars are
determined using the proposed method.

The number and density of lidar points increase in areas where the coverage overlaps.
Efficient placement of multiple lidars reduces dead zones at urban intersections, as shown
in Figure 4, and enables the acquisition of high-resolution data, similar to that achievable
with high-channel lidars.
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3. Problem Formulation

The main problem of multiple lidar placement in urban environments is minimizing
blind spots while maximizing point density. One of the main problems is that the locations
for lidar placement are restricted to specific areas, such as the roadside, to avoid interfering
with the road where vehicles are in operation. Therefore, an optimization method is
required to identify the optimal placement while modeling the real environment to reduce
blind spots.

In this study, we introduce the concept of Lidar Occupancy Space (LOS) for opti-
mization. LOS comprises voxels, which are a down-sampling method that reduce the
number of point clouds and converts them into a normalized discrete signal format. This
enables the modeling of the real environment for computational purposes and reduces the
computational load for layout optimization. An LOS is generated to match the size of the
user’s region of interest

(
LOSx, LOSy, LOSz

)
. Since the point cloud map, derived from

real lidar data, accurately reflects the actual environment, the LOS is weighted using this
map, and the occupancy rate is determined as the lidar beams traverse the LOS.

Additionally, we propose a Lidar Occupancy Voxel (LOV) grid to assess the distribu-
tion of lidar beams. LOV consists of unit-length cubes (ULOV). The LOS is divided into
WLOS × DLOS × HLOS voxel grids, which are determined according to the size of the LOS
and the unit length (LLOV) of the LOV. Figure 5 shows LOV and LOS, where LOS is an
aggregation of LOVs.
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To ensure the accurate weighting of LOS using the point cloud map, the point cloud
map must undergo preprocessing (filtering) to match the size of (LOSx, LOSy, LOSz).
When the LOS and point cloud map overlap, the distribution of points within each LOV
will vary, as shown in Figure 6. Figure 6a presents the point cloud map, while Figure 6b
shows the LOS generated from this map. The weight of the LOV comprising the LOS
is determined by the number of points contained within the corresponding voxel, with
yellow indicating the presence of weight. For the voxel grid LOV(i, j, k), the weight
(LOVwg(i, j, k)) is defined as follows.

LOVwg(i, j, k) =
{

1 , Nwg(i, j, k) ≥ 1
0 , Nwg(i, j, k) = 0

(2)

where Nwg(i, j, k) is the number of points of the point cloud map included in LOV(i, j, k).
LOVwg(i, j, k) denotes whether the grid is occupied by the point cloud map, and has a
weight if it is occupied.
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In the proposed method, occupancy is evaluated based on whether the lidar beam passes
through the voxel grid LOV(i, j, k) that constitutes the LOS, and is determined as follows:

Step 1. Set lidar counter l to 1.
Step 2. Set the horizontal angle counter β to 0.
Step 3. Set the vertical angle counter α to 1, and set the vertical angle variable anĝbm, θ to
ang−bm, θ .
Step 4. Calculate the intersection pbm(α, β) of the six outermost surfaces of the LOS and
the lidar beam bm(α, β) as follows.

xα, β
bm = rcos(anĝbm, θ)cos(β∆angbm, φ) (3)

yα, β
bm = rcos(anĝbm, θ)sin(β∆angbm, φ) (4)

zα, β
bm = rsin(anĝbm, θ) (5)

where r =‖ pbm(α, β)− pl
ld ‖ is the distance between the lidar and the intersection.

Step 5. Using the Bresenham algorithm [23], store index idxγ = (i, j, k) of the voxel grid
LOV(i, j, k) included in the line segment between pl

ld and pbm(α, β) in the array IDX.

IDX =
{

idx0, . . . , idxNIDX
}

(6)

where NIDX is the number of voxel grids included in the line segment. The Bresenham
algorithm is a computer graphics algorithm designed for drawing straight lines using
integer calculations exclusively, avoiding the complexity and slowness associated with
real number calculations. Since actual computer screens consist of pixels, and pixels
are inherently integers, a straight line drawn through a straight-line equation may span
multiple pixels. In this study, we generated LOS by introducing voxels and efficiently
approximated straight lines within the LOV that constitutes the LOS.
Step 6. Set the index search counter γ to 0.
Step 7. If LOVwg(idxγ) = 1, change LOV

(
idx0) to LOVwg(idxγ) to 1 and move to Step 9.

Step 8. Increment the index search counter γ and move to Step 7.
Step 9. Increase the vertical angle counter α and calculate anĝbm, θ as in the following
equation. If anĝbm, θ ≤ ang+bm, θ , move to Step 4.

anĝbm, θ = anĝbm, θ + angα
bm, θ (7)

Step 10. Increase the horizontal angle counter β. If β ≤ 2π
∆angbm, φ

, move to step 3.

Step 11. Increase lidar counter l, If l ≤ Nld, move to Step 2.

The total lidar occupancy LO of lidar beams relative to the LOV, as shown in Figure 7,
is the sum of all voxel grids, and is calculated as follows.
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LO =
HLOS

∑
k=1

DLOS

∑
j=1

WLOS

∑
i=1

LOV(i, j, k) (8)
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On the other hand, lidar occupancy %LO is the ratio of LO to the total number of voxel
grids.

%LO =
LO

WLOS × DLOS × HLOS
(9)

The lidar placement problem aims to determine the lidar locations pl
ld ∈ S(l = 1, · · · , Nld)

to maximize the lidar occupancy LO. The voxel grid value depends on the lidar’s placement,
and the mathematical formula is defined as follows.

pl, ∗
ld = argmax

pl
ld ∈S

HLOS

∑
k=1

DLOS

∑
j=1

WLOS

∑
i=1

LOV(i, j, k) (10)

4. Optimization

This section describes the placement optimization algorithm. The placement algorithm
is designed to find a near-optimal solution. The genetic algorithm is a search method that
identifies the optimal solution by simulating the way organisms evolve and adapt to their
environment. This algorithm operates by selecting the chromosome with the best fitness
from a set of chromosomes and iteratively refining the search in the direction of the optimal
solution. The sensor placement algorithm is as follows:

Step 1. Place the first (reference) lidar.
Step 2. Create lidar occupancy space (LOS) using the point cloud map.
Step 3. Assign weights LOVws(i, j, k) to the voxel grid.
Step 4. Set the lidar count l to 2.
Step 5. Find the pl, ∗

ld that maximizes the lidar occupancy (LO) using a genetic algorithm.
Step 6. Increment the lidar counter. If l ≤ Nld go to Step 5.

In Step 5, a genetic algorithm (GA) is applied to determine the placement of the sensors.
The chromosome pop is a binary string divided by five sections as:

pop =< Xpop, Ypop, Zpop, Rpop, Ppop > (11)

Xpop =< s1
x, s2

x, . . . , sNx
x >, sx ∈ {0, 1} (12)

Ypop =< s1
y, s2

y, . . . , s
Ny
y >, sy ∈ {0, 1} (13)

Zpop =< s1
z , s2

z , . . . , sNz
z >, sz ∈ {0, 1} (14)
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Rpop =< s1
r , s2

r , . . . , sNr
r >, sr ∈ {0, 1} (15)

Ppop =< s1
p, s2

p, . . . , s
Np
p >, sp ∈ {0, 1} (16)

where Xpop, Ypop, Zpop, Rpop, and Ppop are matched with the lidar placement pl
ld =(

xl
ld, yl

ld, zl
ld, rl

ld, pl
ld

)
, respectively.

The initial population, denoted as POPg =< popg, 1, popg, 2, . . . , popg, NPOP >, is
generated through random number generation. The next population is formed by the
selection operator, with the remaining stochastic sampling [24] reproduces to chromosomes
with higher fitness, where fitness is defined as the total lidar occupancy LO.

The crossover and mutation operators create a range of new chromosomes, enhanc-
ing the optimization of lidar placements. Chromosomes are randomly selected based on
the crossover probability (PBcs), and the crossover point is randomly determined at the
boundary of sections, as showed in Figure 8. New chromosomes popg, 1 and popg, 2 are gen-
erated through the crossover operation of popg, 1 and popg, 2. Similarly, chromosomes are
randomly selected according to the mutation probability (PBmt). For chromosome popg, 1,
one bit from each section ( Xpop, Ypop, Zpop, Rpop, Ppop

)
is selected. A new chromosome

popg, 1 is generated by inverting the selected bits, as depicted in Figure 9.
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Our genetic algorithm is summarized as follows:

Step 5-1. Generate initial population POP0 =< pop0, 1, pop0, 2, . . . , pop0, NPOP > randomly.
Step 5-2. Set the generation counter p to 1.
Step 5-3. Calculate the fitness, and reproduce chromosomes by the remainder stochastic
sampling.
Step 5-4. Pairs of chromosomes are randomly selected, and crossover operation is per-
formed between chromosomes.
Step 5-5. Chromosomes are randomly selected, and mutation operation is performed.
Step 5-6. Find the best chromosome and vary it by 2-opt improvement [25]. The 2-opt
method is a local search algorithm that examines all feasible combinations and swaps them
to find a solution.
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Step 5-7. Make increments to the generation counter p. If the exit condition is not satisfied,
go to Step 5-3.
Step 5-8. The final best chromosome is decoded into placement of lidar position pl, ∗

ld .

5. Experiments
5.1. Experimental Setup

The proposed sensor placement algorithm was validated using 3D lidars. Two or three
forty-channel lidars (HESAI Pandar40P, Shanghai, China) were simulated and used for
placement optimization. For performance comparison, a single 128-channel lidar (Velodyne
VLS-128, San Jose, CA, USA) was utilized. The algorithm was executed on a workstation
running Linux Ubuntu 20.04 and ROS Noetic, with the program developed in the C++
language. The specifications of the lidars used in the experiment are detailed in Table 1.

Table 1. Lidar specifications [26,27].

Item Unit
Specifications

Pandar40P VLS-128

Scan planes Channel 40 128
Range m Up to 200 Up to 245

Range accuracy cm ±2 ±3
FOV (vertical) Degree 40 (−25 to +15) 40 (−25 to +15)

Resolution (vertical) Degree 0.33 (non-linear) 0.11 (non-linear)
FOV (horizontal) Degree 360 360

Resolution (horizontal) Degree 0.2 (10 Hz), 0.4 (20 Hz) 0.2 (10 Hz), 0.4 (20 Hz)
Frame rate Hz 10, 20 5 to 20

The test area selected for the experiment was the proving ground of the Korea Auto-
motive Parts Promotion Institute (KIAPI). KIAPI’s proving ground encompasses various
test facilities, including an autonomous vehicle test road, a multipurpose test track, and a
high-speed circuit. This experiment specifically focused on the autonomous vehicle test
road, which features two four-way intersections. These intersections replicate an urban
environment and exhibit blind spots created by buildings, as shown in Figure 10.
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Table 2 provides a comprehensive overview of the experiment. As part of the sim-
ulation, the placement optimization results of two or three forty-channel lidars and one
one-hundred-and-twenty-eight-channel lidar were compared at Intersection #1 (S1~S3)
and Intersection #2 (S4~S6). The optimization of lidar placement involved adjusting the
crossover and mutation probabilities.

Table 2. Experimental setup.

Config Environment Intersection
Sensor Description

Model Number

S1

Simulator

#1
Pandar40P

2
Lidar placement optimization simulation at

Intersection #1
S2 3

S3 VLS128 1

S4

#2
Pandar40P

2
Lidar placement optimization simulation at

Intersection #2
S5 3

S6 VLS128 1

R1

Real #1

Pandar40P 2 Reproducing optimal placement and
comparing vehicle detection rangesR2 VLS128 1

R3 Pandar40P 2 Reproducing optimal placement and
comparing pedestrian detection rangesR4 VLS128 1

R5 Pandar40P 2 Reproducing optimal placement and comparing
detection ranges for occluded vehiclesR6 VLS128 1

The results of the optimal placement in the simulator at Intersection #1 were subse-
quently replicated in a real environment (R1~R6). In the real environment, the vehicle
was driven, and its detection was based on data acquired from the placed lidars, with a
comparison of detection ranges (R1~R2). Additionally, pedestrians walking in the real
environment were detected using data from the lidars, and their detection ranges were
compared (R3~R4). Finally, when two vehicles were driven, one vehicle was partially
obscured, and the detection range was compared by detecting the vehicles from the data
acquired by the placed lidars. To place lidars on a simulator using the proposed method
and verify their performance, an experiment was conducted at two intersections with
different environments. Furthermore, by optimally placing multiple 40-channel lidars,
which is relatively cost effective, it was intended to reduce the blind spot of the intersection
and maintain the detection performance. We sought to validate the effectiveness of the
proposed method by applying the simulation results to a real environment. We aimed to
verify the utility of the proposed placement method by evaluating the detection perfor-
mance of objects primarily found in infrastructure, such as vehicles and pedestrians, and
demonstrating its reproducibility.

5.2. Experimental Results
5.2.1. Placement Optimization Simulation

The parameters for the genetic algorithm were set as follows: a population of 100
and 300 iterations. The crossover probability ranged from 0.4 to 0.2, and the mutation
probability ranged from 0.2 to 0.05, respectively. The size of LOS was (160 m, 72 m, 10 m),
with a unit distance of LOV set at 0.4 m, as depicted in Figure 11. In the experiment
involving two and three forty-channel lidars at Intersections #1 and #2, the placement of
the first (reference) lidar was at (−7.9, −9.1, 2.9, −0.4, 0.5).

The first experiment (S1~S3) was conducted at Intersection #1. Table 3 presents the
LO for two forty-channel lidars, three forty-channel lidars, and one one-hundred-and-
twenty-eight-channel lidar. Figure 12 displays the placement optimization results for each
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configuration. In the case of two forty-channel lidars (S1), the placement of the second
lidar was determined using the proposed method. Additionally, for three forty-channel
lidars (S2), the location of the third lidar was found after the optimal placement in S1
was determined. Figure 12b,c validate the enhancement in measurements achieved by
the proposed method. Table 3 shows that the proposed method exhibits performance
comparable to that of a 128-channel lidar sensor. The mean and maximum values of LO
demonstrate improvements with the proposed method.
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Table 3. Lidar occupancy according to each parameter (in Intersection #1).

Probability
One One-Hundred-and-
Twenty-Eight-Channel

Lidar (S3)

Two Forty-Channel
Lidars (S1)

Three Forty-Channel
Lidars (S2)

Crossover Mutation LO Best
Placement LO

Best
Placement

(Second Lidar)
LO

Best
Placement

(Third Lidar)

0.4

0.2 154,522

p1, ∗
ld
=

(−1.5,
0.3,
2.8,
−1.6,
−1.0)

138,903

p2, ∗
ld
=

(6.8,
6.0,
4.9,
−0.9,
6.0)

174,774

p3, ∗
ld
=

(6.5,
−21.1,

3.8,
12.4,
−12.4)

0.1 146,039 157,905 166,702

0.05 151,800 147,529 169,019

0.02 148,972 152,257 168,000

0.3

0.2 146,201 137,886 192,507

0.1 157,397 141,684 175,029

0.05 151,451 140,585 165,479

0.02 150,172 141,407 169,823

0.2

0.2 146,840 145,036 172,465

0.1 155,187 147,487 168,328

0.05 144,968 148,546 166,546

0.02 150,810 152,469 180,816

0.1

0.2 150,838 143,189 170,464

0.1 157,053 158,553 169,239

0.05 140,229 152,964 172,629

0.02 162,423 141,022 169,309

Mean LO 150,931 146,714 171,946

Max LO 162,423 158,553 192,507

The second experiment (S4~S6) was conducted at Intersection #2. Table 4 shows the LO
at Intersection #2, and Figure 13 shows the results of placement optimization. As evident
from Figure 13b,c, the proposed method improves measurements. Furthermore, it is evident
that the proposed method, involving 40-channel multi-lidar placement, demonstrates
performance similar to that of the 128-channel lidar, as shown in Figure 13b,c. The average
and maximum LO values are either similar to or improved with the proposed method.

5.2.2. Placement and Evaluation in Real Environment

Finally, we placed lidars in the real environment and acquired point cloud data.
Among the simulation results for Intersection #1, the optimal placements for two forty-
channel lidars (S2) and one one-hundred-and-twenty-eight-channel lidar (S1) were recre-
ated in the real environment. Figure 14 shows the placement of lidars in the actual envi-
ronment. Three lidars (two forty-channel lidars and one one-hundred-and-twenty-eight-
channel lidar) were simultaneously placed, and point clouds were obtained while vehicles
and pedestrians were in motion. The point clouds acquired from the two forty-channel
lidars and the 128-channel lidar were input into a deep learning-based detection algo-
rithm [28] to compare the positions of detected vehicles and pedestrians. The detection
algorithm receives point cloud input from lidar and detects objects such as vehicles and
pedestrians based on artificial intelligence, and outputs the type, location, and size of the
object in 3D space. Figure 15 shows a detailed scenario, which is as follows.

• R1, R2: Point clouds were acquired while vehicles were driven on the road near
an intersection. Using a deep learning algorithm, vehicles were detected, and their
detection ranges were compared (Figure 15a).
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• R3, R4: Point clouds were acquired as people walked on the sidewalk near the in-
tersection. Pedestrians were detected based on a deep learning algorithm, and the
recognized ranges were compared (Figure 15b).

• R5, R6: Point clouds were acquired as two vehicles were driven on the road near
the intersection. While driving, one vehicle was positioned to obscure an area by
other vehicles. Using a deep learning algorithm, two vehicles were detected, and the
recognition of obscured areas was compared (Figure 15c).
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Table 4. Lidar occupancy according to each parameter (in intersection #2).

Probability
One One-Hundred-and-
Twenty-Eight-Channel

Lidar (S3)

Two Forty-Channel
Lidars (S1)

Three Forty-Channel
Lidars (S2)

Crossover Mutation LO Best
Placement LO

Best
Placement

(Second Lidar)
LO

Best
Placement

(Third Lidar)

0.4

0.2 144,519

p1, ∗
ld
=

(−6.9,
−5.5,
4.7,
1.7,
−0.9)

144,376

p2, ∗
ld
=

(6.4,
4.7,
4.1,
−2.2,
−1.7)

197,441

p3, ∗
ld
=

(7.7,
−19.6,

4.9,
3.5,
−6.7)

0.1 143,080 140,789 194,700

0.05 140,606 149,373 189,926

0.02 146,431 145,034 194,462

0.3

0.2 146,760 149,409 192,075

0.1 143,894 152,930 197,398

0.05 151,688 152,350 203,682

0.02 145,399 166,184 191,239

0.2

0.2 142,365 149,438 191,872

0.1 148,304 147,046 192,287

0.05 139,525 148,515 194,342

0.02 141,120 164,734 187,869

0.1

0.2 143,224 146,827 187,606

0.1 142,970 151,856 174,500

0.05 153,015 155,803 174,708

0.02 155,200 159,735 169,895

Mean LO 145,506 151,525 189,625

Max LO 155,200 166,184 203,682

Sensors 2023, 23, 8808 16 of 20 
 

 

  
(a) (b) (c) 

Figure 14. Lidars placed on real environment. (a) First 40-channel lidar. (b) Second 40-channel lidar. 
(c) The 128-channel lidar. 

 
(a) (b) 

 
(c) 

Figure 15. The detailed scenarios. (a) Comparison of driving vehicle detection range. (b) Compari-
son of walking pedestrian detection range. (c) Comparison of detection range for blocked vehicles. 

Figure 16 shows the vehicle detection results from the acquired point clouds. Figure 
16a shows the results of vehicle detection from the point cloud acquired using the pro-
posed method with two forty-channel lidars. Figure 16b shows the results of vehicle de-
tection from the point cloud acquired with a single 128-channel lidar. Figure 16c,d provide 
a comparison of the trajectories where vehicles were detected. Table 5 shows the maxi-
mum detection position (x, y) and distance. The experiment revealed that the maximum 
detection position and distance exhibited similar results. However, in areas with sensing 
blind spots due to buildings, the utilization of low-channel multiple lidars through place-
ment optimization yielded superior detection results. The results of pedestrian detection 
from the acquired data are shown in Figure 17. Figure 17a shows the results of pedestrian 
detection from the point cloud acquired using the proposed method with two forty-chan-
nel lidars. Figure 17b shows the results of pedestrian detection from the point cloud ac-
quired with a single 128-channel lidar. Figure 17c,d show a comparison of the trajectories 
where pedestrians were detected. Table 6 presents the maximum detection position (x, y) 
and distance. The experiment demonstrated that the maximum detection position and 
distance yielded similar results. Finally, Figure 18 shows the results of detecting an ob-
scured driving vehicle. Figure 18a shows the results of occluded driving vehicle detection 
from the point cloud acquired using the proposed method with two forty-channel lidars. 
Figure 18b shows the results of occluded driving vehicle detection from the point cloud 
acquired with a single 128-channel lidar. Figure 18c,d show a comparison of the trajecto-
ries where occluded driving vehicles were detected. Table 7 shows the maximum 

Figure 15. The detailed scenarios. (a) Comparison of driving vehicle detection range. (b) Comparison
of walking pedestrian detection range. (c) Comparison of detection range for blocked vehicles.

Figure 16 shows the vehicle detection results from the acquired point clouds. Figure 16a
shows the results of vehicle detection from the point cloud acquired using the proposed
method with two forty-channel lidars. Figure 16b shows the results of vehicle detection
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from the point cloud acquired with a single 128-channel lidar. Figure 16c,d provide a
comparison of the trajectories where vehicles were detected. Table 5 shows the maximum
detection position (x, y) and distance. The experiment revealed that the maximum detection
position and distance exhibited similar results. However, in areas with sensing blind
spots due to buildings, the utilization of low-channel multiple lidars through placement
optimization yielded superior detection results. The results of pedestrian detection from
the acquired data are shown in Figure 17. Figure 17a shows the results of pedestrian
detection from the point cloud acquired using the proposed method with two forty-channel
lidars. Figure 17b shows the results of pedestrian detection from the point cloud acquired
with a single 128-channel lidar. Figure 17c,d show a comparison of the trajectories where
pedestrians were detected. Table 6 presents the maximum detection position (x, y) and
distance. The experiment demonstrated that the maximum detection position and distance
yielded similar results. Finally, Figure 18 shows the results of detecting an obscured driving
vehicle. Figure 18a shows the results of occluded driving vehicle detection from the point
cloud acquired using the proposed method with two forty-channel lidars. Figure 18b
shows the results of occluded driving vehicle detection from the point cloud acquired
with a single 128-channel lidar. Figure 18c,d show a comparison of the trajectories where
occluded driving vehicles were detected. Table 7 shows the maximum detection position
and distance. Vehicle #1 changes lanes in front of vehicle #2, resulting in temporary
obscuration of vehicle #2 when changing lanes. This observation highlights that only
occluded vehicles can be detected using the proposed method. It was confirmed that
the multi-sensor placement method using the proposed approach is effective in handling
occlusions between objects.
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Table 7. Comparison of maximum detection position and distance.

One One-Hundred-and-Twenty-
Eight-Channel Lidar (R6) Two Forty-Channel Lidars (R5)

X Y Maximum
Distance X Y Maximum

Distance

Vehicle #1

Easting −89.2 1.1

91.8

−90.3 0.9

97.8Northing 91.6 6.4 97.6 6.5

Sum 180.8 5.3 187.9 5.6

Vehicle #2

Easting −89.9 3.6

99.7

−87.8 2.7

99.2Northing 99.5 6.6 99.1 6.8

Sum 189.4 3.0 186.9 4.1

The experimental results in the real environment were similar to the simulation results
of the proposed method, demonstrating the feasibility of the proposed method. Lidar
occupancy was compared by implementing the proposed method in the simulation. Multi-
ple lidars were placed to reduce blind spots at urban intersections, resulting in a higher
occupancy rate than high-cost lidar. Multiple lidar placements were replicated in a real
environment, and vehicles and pedestrians were detected using point clouds acquired from
the lidars. The reproducibility and effectiveness of the proposed method were validated
by comparing the detection ranges of the acquired data. In a real environment, multiple
lidar placements exhibited a detection range similar to that achieved with a 128-channel
lidar. It was evident that placing multiple lidars using the proposed method enhanced
measurements, as demonstrated through comparative experiments in a real environment
using lidar. For the placement of lidars in an actual urban environment, multiple lidars can
be efficiently placed by generating a point cloud map of the environment and applying the
proposed method, as demonstrated by experimental results. Our method has showcased
that environmental information can be acquired from infrastructures. The acquired envi-
ronmental information can then be processed to extend the vehicle’s detection range and
transmit it to connected vehicles using V2X (Vehicle-to-Infrastructure) communication. This
approach not only helps in reducing sensor blind spots in autonomous vehicles, enhancing
the safety of other vehicles and pedestrians, but it also holds promise for further research
in this domain.

6. Conclusions

In this paper, the lidar placement problem was defined as the problem of determining
the lidar placement in an urban environment to minimize blind spots and optimize the
number of beams reaching the point cloud. To mathematically formalize this problem, a
point cloud map was processed and defined as the lidar occupancy space (LOS). Experimen-
tal results demonstrated that performance can be enhanced through our lidar placement
method. Future work will involve expanding the proposed method to systems utilizing
multiple lidar, radar, and cameras, and integrating it with edge–cloud infrastructure and
V2X communication technology.
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