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Abstract: Traffic simulations are valuable tools for urban mobility planning and operation, par-
ticularly in large cities. Simulation-based microscopic models have enabled traffic engineers to
understand local transit and transport behaviors more deeply and manage urban mobility. However,
for the simulations to be effective, the transport network and user behavior parameters must be
calibrated to mirror real scenarios. In general, calibration is performed manually by traffic engineers
who use their knowledge and experience to adjust the parameters of the simulator. Unfortunately,
there is still no systematic and automatic process for calibrating traffic simulation networks, although
some methods have been proposed in the literature. This study proposes a methodology that fa-
cilitates the calibration process, where an artificial neural network (ANN) is trained to learn the
behavior of the transport network of interest. The ANN used is the Multi-Layer Perceptron (MLP),
trained with back-propagation methods. Based on this learning procedure, the neural network can
select the optimized values of the simulation parameters that best mimic the traffic conditions of
interest. Experiments considered two microscopic models of traffic and two psychophysical models
(Wiedemann 74 and Wiedemann 99). The microscopic traffic models are located in the metropolitan
region of Sao Paulo, Brazil. Moreover, we tested the different configurations of the MLP (layers and
numbers of neurons) as well as several variations of the backpropagation training method: Stochastic
Gradient Descent (SGD), Adam, Adagrad, Adadelta, Adamax, and Nadam. The results of the experi-
ments show that the proposed methodology is accurate and efficient, leading to calibration with a
correlation coefficient greater than 0.8, when the calibrated parameters generate more visible effects
on the road network, such as travel times, vehicle counts, and average speeds. For the psychophysical
parameters, in the most simplified model (W74), the correlation coefficient was greater than 0.7. The
advantage of using ANN for the automatic calibration of simulation parameters is that it allows
traffic engineers to carry out comprehensive studies on a large number of future scenarios, such as at
different times of the day, as well as on different days of the week and months of the year.

Keywords: automatic simulation; microsimulation; traffic models; calibration; artificial neural
network

1. Introduction

Transport planning and operation have become critical activities worldwide, particu-
larly in urban regions. Before any new intervention in a specific traffic system, engineers
usually analyze the impacts of their decisions in future scenarios. These scenarios allow
dimensioning solutions that could support practical operation and planning actions to
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define transport policy strategies. Computational modeling is essential to support these
actions, especially when dealing with future scenarios.

A microscopic traffic model characterizes vehicle maneuvers individually based on
human driving behavior and provides a complete trajectory, tracking the position of each
vehicle from origin to destination. On the other hand, macroscopic traffic models describe
traffic flow over a road link using aggregated variables, such as flow (the number of vehicles
passing through a road section), speed (the time it takes to cover a given distance), and
density (the number of vehicles in a link at a given time). There are intermediate traffic
models that fall between these two models. For instance, mesoscopic models calculate
some traffic flow elements at a macroscopic level and others at a microscopic level, while
submicroscopic models focus on the sub-levels of vehicles and/or drivers, such as the
mechanical engine performance of a vehicle or the physiological speed perception of a
driver [1].

Macroscopic models for traffic simulations can support long-term planning actions,
such as quantifying the impacts of new road infrastructure on a specific area. On the other
hand, microscopic traffic simulations aim to model the stochastic interactions observed
in transport systems formed by dynamic and complex subsystems, where the aggregated
and static models cannot adequately explain the operational and tactical problems ob-
served in traffic engineering. Therefore, traffic microsimulators combine computational
resources, such as geo-referenced databases, tools, and algorithms, to represent the urban
context, vertical and horizontal signaling systems (dynamic or not), and automata agents
governed by behavioral algorithms that define their interactions with any element of the
simulated environment.

Microscopic traffic models detail individual behavior, such as lane-changing and
car-following maneuvers, and route and departure time choices. For example, Cantisani
et al. [2] investigated the effects of user behavior, road design, and flow conditions on
initial speeds, acceleration rates, and merging speeds/positions along the acceleration
lanes to determine their adequate lengths and guarantee safe merging operations. Giuffre
and Grana [3] used a traffic microsimulation model to estimate the capacity functions
in double-lane roundabout entries, whereas Osorio and Nanduri [4] modeled the traffic
conditions using information from a macroscopic analytical model, combined with the
outputs of a microscopic and emission simulator.

Likewise, the decision-making process for new transportation infrastructure invest-
ments and the analysis of road network updates have also benefited from simulation models
and related tools [5], which are usually employed to assess and compare multiple scenarios
on a what-if or sensitivity analysis [6]. A comprehensive review of the state-of-the-art on
simulation models has been presented by Barcel6 [7].

Despite their advantages in virtually representing real-world traffic conditions and de-
tailing the interactions between vehicle performance and travel behavior under transporta-
tion infrastructure interventions, microscopic traffic models require numerous parameters
to replicate such conditions adequately [8]. As a result, the simulation tools embedded
in these models typically provide average values to those parameters, for example by
comparing default values and best-guesses based on optimization procedure [9].

In this sense, the calibration of microscopic simulators essentially consists of determin-
ing the values of parameters that provide the most realistic representation of the overall
traffic conditions of a scenario, thus minimizing the differences between the outputs of a
model and observed field data [10]. However, despite the existing methods for determining
the optimal parameter values of microsimulation models, there is still no consensus regard-
ing an adequate and automated procedure to find the microscopic simulation parameters
that best represent the traffic conditions of a real-world network.

This paper presents a new method to automatically calibrate the parameters of urban
traffic networks by combining microscopic simulation models and artificial neural networks
(ANNSs). The ANNSs used in this project are multi-layer perceptrons (MLPs) trained with
back-propagation methods. Different variations have been used (stochastic gradient descent
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(SDG), Adam, Adagrad, Adadelta, Adamax, and Nadam) to identify their impact on
training convergence, with the aim of assessing whether they can learn from some different
scenarios (traffic conditions in the same urban site) and then generalize the calibration
procedure to help address other scenarios.

In our method, the microscopic traffic model that best fits the observed field data is
adjusted by the parameters estimated by the ANNs to match the traffic condition. The
ANN was previously trained to exploit a wide range of different configurations, adjusting
itself in each case to find the correct match between the parameters and the corresponding
results (traffic conditions) of the microsimulation. We applied the proposed approach to
two real-world sets of links and nodes of the network in the metropolitan region of Sao
Paulo (Brazil), considering different sets of parameters to be calibrated.

The use of microscopic traffic simulation poses significant challenges in defining the
most suitable parameters that replicate user behavior within traffic flow. While various
tools and methods have been used to estimate these parameters, there is still no consensus
on the most effective approach. Additionally, the potential of artificial neural networks as a
supporting tool for these problems remains largely unexplored. Therefore, the contributions
of this study are twofold. First, we propose a method to automatically calibrate multiple
parameters of microscopic traffic simulators, such as driver behavior and vehicle capability
parameters, used in microsimulation models embedded in traffic simulators. Second, we
assess the capabilities of ANNSs in calibrating microscopic traffic simulations. To our knowl-
edge, there is only one study in the literature that has used ANNSs for this purpose [11] in
order to calibrate the microscopic traffic simulator VISSIM [12] on roundabout simulations.

The remainder of this paper is organized as follows. A background and literature
review of microscopic traffic simulation methods are presented in Section 2, and the
proposed methodology is detailed in Section 3. Section 4 describes the experiments used
to assess the method, and Section 5 discusses the results of the experiments. Finally,
conclusions and rows for future research are presented in Section 6.

2. Related Research

Many efficient methods have been proposed in the literature to overcome the chal-
lenges in calibrating microscopic simulation models; for instance, real-time and offline
calibration using artificial neural networks [11], calibration of origin-destination matrices
for large-scale networks [13], and separate or simultaneous behavioral and flow parameter
calibration [14].

Punzo et al. [15] provided evidence that a subset of calibrated parameters in micro-
scopic traffic simulation models is sufficient to reproduce actual traffic conditions using
simplified car-following models. In addition, Chu et al. [16] stated that small-scale traffic
simulations are more affected by driving behavior parameters than more extensive and
complex models.

Other research considered sensitivity analyses and trial-and-error methods for calibrat-
ing traffic signal systems [17] and lane-changing behavioral decisions [18], notwithstanding
their usual time-consuming and resource-intensive characteristics [19]. Sensitivity analysis
has been extensively used to select the most influential parameters in microscopic traffic
simulations. For example, the one-at-time (OAT) approach has assessed how uncertainty
in one parameter affects the model outputs while keeping the other parameters fixed. De-
spite its effectiveness, such a procedure does not comprise the effect of several parameters
simultaneously. Nevertheless, multi-factor analysis of variance (ANOVA) has already been
used to analyze the effect of several parameters on a dependent variable to determine their
single effect and interactions [20].

In contrast, more sophisticated calibration techniques have also been developed. For
example, gradient-based search methods estimate the gradient of the simulation results,
which often results in multiple non-convex local minima objective functions of the calibra-
tion parameters. The stochastic and highly nonlinear relationships between the parameters
and the objective function in these calibration methods usually involve non-closed-form
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formulations [6]. Despite their ability in dealing with more complex experiments, such
methods usually require large-scale datasets and substantial efforts to implement.

Likewise, simulation-based optimization (SO) techniques comprise general-purpose
algorithms to address the calibration of the parameters in traffic models. SO algorithms rely
on iterative procedures to determine the parameters that best fit the simulation outputs to
the observed data [10]. At each iteration, a new set of values was assigned to the parameters
based on a given rule, and a predefined error measure was calculated from the difference
between the simulation output and field data. The optimization process is completed when
the error measure reaches a specific value [21].

The genetic algorithm (GA) is one of the most used SO algorithms in applications
to microscopic simulation, for example, using the speed-density relationship [19] and
simulating a vehicle decision in intersections [22]. The performance of such a technique has
also been tested and improved when combined with the Tabu Search heuristic [23]. Simul-
taneous perturbation stochastic approximation (SPSA) algorithms [24] and variations, such
as weighted SPSA (W-SPSA) [25], have also been extensively used [26]. Other attempts to
calibrate traffic simulation models involve multi-start algorithms, Tabu Search, Monte Carlo
sampling, artificial neural networks (ANN), and the Extended Kalman Filter (EKF) [10].
These techniques benefit from the current availability of computational infrastructure that
allows repetitive tasks to be executed to optimize traffic simulation parameter sets [27].

More recently, metamodels (or surrogate models) have been used to calibrate traffic
simulation models by computing the gradient of an analytical and deterministic approx-
imation of an objective function updated using simulation results [6], with applications
to network models [28] and microscopic traffic simulation [10]. A review of metamodels
was presented by Barton et al. [29]. Osorio and Bierlaire [6] first addressed metamodels
for the general-purpose calibration of simulation-based transportation models. More re-
cently, Zhang et al. [28] detailed the procedures for calibrating these models in large-scale
traffic simulators and applying them to a single behavioral parameter estimation that
controls route choice. Since then, other applications have been presented, such as dynamic
transportation optimization [30], origin-destination matrix calibration [31], microscopic
car-following models [32], and calibration of agent-based multimodal traffic microsimu-
lation [10]. Despite their effectiveness, the design, implementation, and analysis of such
models are not straightforward.

Several works have shown techniques used for calibrating microscopic simulation
models while also highlighting the lack of a standardized protocol for this purpose. Chowd-
hury et al. [33] used a microscopic simulation model to study the impact of road design,
traffic, and driver behavior on merging maneuvers. They employed an empirical approach
and TransModeler software to analyze video data and estimate the parameters for vehi-
cle classification, critical distance, and gap acceptance. However, the results specifically
described traffic within the Italian region. Various tools and methodologies have been
employed to accurately simulate urban traffic flow and enable the prediction of the effects
of different traffic solutions. For instance, Bieker et al. [34] utilized the commercial software
VISSIM, incorporating input data of the road network, traffic demand, traffic lights, and
infrastructure, to create three real-world traffic simulation scenarios in Bologna, Italy, and
reduce the efforts of users in generating the scenarios. Zambrano-Martinez et al. (2017)
used the open-source software SUMO, along with the DFROUTER module and a heuristic
approach to generate Origin-Destination matrices utilizing actual data from loop measure-
ments. Their model was applied to Valencia, Spain, and its performance was compared to
data from Cologne (Germany) and Bologna (Italy) [35].

Amirjamshidi and Roorda [36] employed a genetic algorithm to optimize a multi-
criteria objective function to calibrate microscopic traffic simulation models. The objective
function aimed to balance speeds, traffic counts, and acceleration/deceleration patterns,
while simultaneously minimizing the Root Mean Square Error between the estimates
and field measures. Three different calibrated models were compared, considering the
simulated driving cycles and cycle parameters, the estimated parameters, the Vehicle-
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Specific Power (VSP) distribution, and emission factors. These parameters were then used
to compute traffic microsimulation emissions.

Karimi et al. [37] employed traffic data gathered through video surveillance to simulate
a real-world highway using VISSIM. They calibrated the parameters of the simulation
model using a posteriori multi-objective particle swarm optimization (MOPSO) method,
aiming to minimize differences between the simulated and observed headway distribution
capturing longitudinal movements, as well as the observed and simulated lane changes at
various locations, taking into account the lateral maneuvers of vehicles. The calibration
process was carried out in a single step. A comparison was performed between this method
and other optimization methods, commonly known as a priori optimization methods
(particle swarm optimization, genetic algorithm, and whale optimization), which involve
aggregating objectives into a single function by assigning weighting coefficients to each
objective before running the algorithm. The results demonstrated that the posteriori-based
method yielded more accurate solutions than the other tested algorithms with respect to
the objectives. Building on this approach, Karimi and Alecsandru (2019) [38] adopted a
similar approach to simultaneously capture the safety and operational aspects of a network,
such as the number of conflicts and the time series of speed. The MOPSO method was once
again used, leading to better results.

Karimi et al. (2019) [37] used video surveillance data to simulate a real-world highway
in VISSIM and calibrate its parameters using a multi-objective particle swarm optimization
(MOPSO) method. It aimed to minimize the differences between the simulated headway
distribution and the real-world observed headway distribution, as well as the differences
between the observed and simulated number of lane changes at different locations. The
MOPSO method was compared with other a priori optimization methods, such as particle
swarm optimization, genetic algorithm, and whale optimization, and it provided more
accurate results. Building on this approach, Karimi and Alecsandru (2019) [38] adopted a
similar method to simultaneously capture the safety and operational aspects of a network.
The MOPSO method was once again used, leading to better results.

Instead of relying on VISSIM's built-in attributes, such as volume-to-capacity ratios,
vehicle delay, and queue lengths, a calibration procedure was proposed to compare real-
world saturation flow rates with VISSIM degree of saturation at signalized intersections.
The procedure involved comparing the differences between the simulated and field rela-
tionships of green time and average headway measurements at the fourth or fifth headway
position in a signalized intersection, also known as saturation headway. Time headways
were collected from video recordings and compared with the simulated time headways of
vehicle trajectories on the queue per signal cycle [39].

Maheshwary et al. [40] proposed a method for calibrating the driving behavior param-
eters of microscopic simulations using VISSIM for heterogeneous traffic (car, bus, and bike).
They explored the commonly used techniques for calibration, including linear regression
models, non-linear search algorithms, trial and error, and genetic algorithms, which are
mainly used for homogeneous traffic conditions. The proposed method included data
collection, network coding, comparison of simulation with default values and field data,
identification of parameter ranges, experimental design, and optimization using a genetic
algorithm. A case study in Kolkata (India) was presented to calibrate the parameters
CCO0-CC9 of the Wiedemann model through Latin hypercube design, ANOVA, and linear
regression, which showed that the travel time of a particular vehicle class depends on
other classes.

A five-step method was proposed to calibrate a microsimulation model in VISSIM/
VISWALK for pedestrian crossing time using neural networks [41]. The method was
applied in the entry leg of a roundabout in Manfalcone (Italy) to calibrate eight parameters
(five related to pedestrians and three linked to vehicular traffic) using a social force model
implemented in VISSIM/VISWALK and a feedforward neural network. A database of
100 random combinations of input-output values of the simulation parameters and their
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corresponding pedestrian crossing times were used to train and validate the estimations
with the neural network.

In order to improve the accuracy of crash estimates in microsimulation models, Guo
et al. [42] proposed a calibration approach that uses the extreme value theory to link non-
crash events to crashes. They first calibrated a VISSIM model to match real-world traffic
conditions, such as vehicle delay and arrival type, and then used genetic algorithms to
match the extreme value distribution to field-measured conflicts. The approach was applied
to two signalized intersections in Canada, being effective in estimating safety measures
from simulation.

Chun et al. [43] evaluated the performance of an analytical platform and a microsimu-
lation model using video data captured from a drone. They analyzed vehicle trajectories
and operations at a single-lane roundabout. They calibrated the critical headway and
follow-up headway distribution using Troutbeck maximum likelihood estimation and the
Siegloch method, respectively. The Siegloch method was closely related to the HCM 6
capacity model for roundabouts [44]. They also developed a specific method to calibrate
the models that took into account restrictions on sight distance, with results that were more
consistent with the field data for both models.

Finally, several methods have been proposed to describe driving behavior. Wu et al.
(2019) [45] found that the type of leading vehicle influences longitudinal driving behavior
based on naturalistic driving data. Wu et al. [46] modeled the non-humanlike lane-changing
behavior of autonomous vehicles using an artificial potential field algorithm to improve
humanlike ability. They compared this method with other lane change algorithms in real
traffic scenarios, which had a better ability to simulate human driving behavior. In their
study, Nassrullah and Yousif [47] created a microsimulation model to assess the effective-
ness of various temporary traffic management strategies for highway work zones. They
designed car-following, discretionary and mandatory lane change rules, gap acceptance,
and narrow lane rules and calibrated the model using data from different locations, traffic
flow conditions, lane counts, and section types. The calibrated model was verified by
comparing the simulated traffic flow to actual field data.

3. Background on Microscopic Traffic Models

Modeling individual vehicles in microscopic traffic simulators involves the representa-
tion of several elements, such as input parameters related to travel demand (vehicle flows
and route decisions), driving behavior (speed/acceleration, reaction time, desired speed,
safety distance, look-ahead distance, lane changing, gap acceptance models, among others),
and network topology (maximum speeds, turning movements, link capacity).

Microsimulation tools usually require different parameters to describe the vehicle
trajectories. For example, the VISSIM microsimulator [12], developed in the 1970s at the
University of Karlsruhe, Germany, is based on Wiedemann psychophysical perception car-
following model [48]. This model describes the vehicle characteristics and driving behavior
using parameters such as desired speed, acceleration, deceleration, and safe following
distance. Moreover, the simulation package AIMSUN [49] considers Gipps’ model and
requires the definition of maximum speed, acceleration rate, reaction time, and deceleration
rate as input parameters. Finally, the benchmarking of microscopic traffic flow models
and related parameters is detailed in the literature [21]. In the following, we describe the
Wiedemann model in the 1974 (W74) and 1999 (W99) versions.

3.1. Wiedemann 1974 Model
According to Gao [50], the W74 model is formulated as follows.

so(sz) )

so (i)

Uy (t + At) = min
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where uy (f + At) is the speed update, and uy is the spatial traffic stream free-flow speed.
su(t) is the spacing between the leader (vehicle n — 1) and the follower (vehicle n). Ex is
a calibration parameter. Finally, Ax and Bx are parameters that comprise the distance d
between two consecutive vehicles, as follows:

d = Ax + Bx, ()

where Ax is the average standstill distance, and Bx is the average safety distance. Ax
represents the desired average distance between two vehicles when stopped in line, which
can be expressed as

Ax =L+ Ax_gq0 + Ax_yp-rndl(1) (3)

where L is the leader vehicle length, Ax_;4; is the additive factor of Ax, representing the
minimum value between two successive vehicles in a queue, Ax_,,,; is the multiplicative
factor of Ax, and rndl(I) is the normal distribution random variable (between 0 and 1), and I
is the seed value.

The safety distance Bx corresponds to the time required for the leading vehicle to reach
its position. The more careful the driver is, the greater Bx is. It can be expressed as:

Bx = (L+Bx7add+meult’rndl(1))’ﬁL (4)

where Bx_,4; is the additive factor of Bx, Bx_,,;; is the multiplicative factor of Bx, v is the
leader’s vehicle speed [m/s], and rndI(I) is a value between 0 and 1, which is typically
distributed around 0.5 with a standard deviation of 0.15.

3.2. Wiedemann 99 Model

The W99 model is similar to the W74 one, with new parameters added to better model
the freeway traffic conditions. According to Gao [50], the W99 model is formulated as

1y (t) + 3.6 (ccs + ceBicco,,, (t)) At

sn(t)—CCO—L, 1 \2 , up(t) ®)
3.6~(W)

uy(t+ At) = min

where CCO0 is the standstill distance [m], CC8 is the standstill acceleration [m/s%], and CC9
is the desired acceleration [1/s2] at a speed of 80 km/h. In addition to CCO, CC8, and CC9
which appear in Equation (5), there are additional adjustable parameters for W99.

The parameters CCO and CC1 of W99 were correlated to the parameters of the previous
distances Ax and Bx described in the W74 model. For example, the standstill distance CCO
is expressed as follows:

CCO=Ax—1L 6)

where Ax is the average standstill distance (Equation (3)) and L is the length of the leader
vehicle.

The parameter CC1 is the headway time, i.e., the interval between two consecutive
vehicles, where lower values represent more aggressive drivers. The parameter CC2 is
the car-following distance variation. It restrains the longitudinal oscillation of a vehicle
with the vehicle in front. CC2 defines the variation between the minimum distance that the
vehicle must remain from the pursued vehicle as

CC2 = SDx — Bx @)

where SDx denotes the maximum distance at which the vehicle is still considered to be
in pursuit.

The parameter CC3 is the threshold for entering “Following”. It defines when the
deceleration process begins before reaching the safety distance, Bx. The parameter CC4 is
the negative “following” the threshold that controls the negative speed difference concern-



Sensors 2023, 23, 8798

8 of 23

ing the pursued vehicle. Values with lower modules define a driver as more sensitive to
changes in the speed of the leading vehicle.

Ax — SDx
CC4 = oz SDV 8)
where Ax is the distance between the pursuing vehicle and the pursued vehicle; SDV is
the difference in speeds as a function of the distance between the vehicles, defining the
threshold from which the following vehicle notices the vehicle ahead.

The parameter CC5 is the positive “following” threshold that controls the positive
speed difference with the pursued vehicle. It can be interpreted as the previous parameter
CC4. Values with lower modules define a driver as more sensitive to changes in the
speed of the leading vehicle. The parameter CC6 represents the speed dependence of the
oscillation. It is defined as the influence of distance on speed oscillation. A zero value
indicates that the speed oscillation is independent of distance. The speed oscillation started
to increase at higher values as the distance increased. The parameter CC7 is the acceleration
oscillation and defines the actual acceleration of the vehicle during the oscillation process.
The parameter CC8 is the standstill acceleration. It represents the desired acceleration when
starting from a stationary state. Finally, CC9 is the desired acceleration at 80 km/h.

4. Methodology

An adjustment of the parameters is required for a microsimulation model to reproduce
the traffic conditions of the network of interest. These calibrations result in vehicle demand
data or driver behavior parameters, assuming that the characteristics of the road network
(capacity and signaling systems) mimic real-world conditions. Here, we consider the cali-
bration of vehicle demand data and the driving behavior parameters for the Wiedemann
models (W74 and W99) implemented in the microscopic traffic simulator VISSIM [12]. The
simulation tool is widely employed by researchers and practitioners to replicate the behav-
ior of drivers and other road users. This tool can model the movements of every vehicle
within the traffic flow, including decisions related to car following and lane changing. For
this study, we utilized the 10th version of this software (VISSIM 10).

Figure 1 shows the proposed method, using a traffic microsimulator to build an ex-
tensive database referring to the input data required to run the simulations, including the
set of given values for the parameters to be calibrated and the corresponding output data
expressed by measures of performance, such as travel times and flows in the links of the
network. Next, the corresponding input and output data generated from the microsimula-
tions are used as input datasets to train a neural network and model a causal relationship
between the performance measures of a traffic scenario and the related parameters. Finally,
in the decision-making process, the analyst uses traffic data (travel times and flows in the
links) as input data to the trained neural network and retrieves related parameters that
would provide the most likely simulations representing the observed scenario.

As shown in Figure 1, the method comprises four steps: (a) data generation from
microsimulations, (b) data processing, (c) ANN training and testing, and (d) use of the
trained ANN to obtain the traffic simulator calibration parameter.

4.1. STEP 1: Data Generation

We used a traffic microsimulation to generate a dataset comprising the input data
to run the simulations, including the values of the parameters to be calibrated and the
output data given by the corresponding performance measures. First, the microstimula-
tor environment is configured with the road network characteristics (link capacities and
signaling systems), the travel demand referring to the traffic flows entering the network,
movements in the intersections, and values of the behavioral driving parameters of the
car-following and lane-changing models. Then, the proposed method can calibrate the
driving behavioral parameters or demand flows between origin and destination pairs. In
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this step, the variables to be calibrated are defined, and their values are established in
advance within predefined ranges.

STEP 4
User System
Input Desired Traffic . Traffic Simulator Output
Scenario Calibration Parameters
A\ L/
< i
ANN Inpput /" STEP 3 ™| ANN Output
A STEP 1 R
\
( Inputs Outputs \
7 5 Artificial Neural
Simulation Network state at Network =
configuration end of simulation
Network Network state at
characteristics simulation steps
: 5 o
Microscopic 80% “ b . @
Traffic Simulation Traffic Vehicles state at \ e 20% )
and Calibrarion Data Simulator simulation steps -\\(Eralnlngj (test) gy
e Traffic Simulations \
prning Results
behavior TRAFEIC
| parameters |
\ (W74 or W9s) \ J / BEHAVIORD
/ DATASET
Fixed characteristics Variable values
1 1 \ STEP 2

Figure 1. Architecture diagram of the proposed Automatic Calibration of Traffic Microsimulator.

The generation of sets with different values for the vehicle flow demands and driving
behavioral parameters was performed repeatedly to build a dataset of instances to be run
in the microsimulator. This dataset must be sufficiently large to cover a range of values
for calibrating variables. The following section presents simulations performed to obtain
the corresponding output data regarding traffic performance measures, such as travel
times, speeds, delays, and vehicle counts in the network links. The number of runs and the
duration of each simulation depend on the characteristics of the network and its attributes.

The resulting datasets consisted of pairs of input and output data from the microsimu-
lation that were used to train the ANN. The outputs (i.e., the traffic performance measures)
and the inputs in the microsimulation are defined as the input data of the ANN. The values
of the parameters to be calibrated are the desired outputs of the ANN. Therefore, the
ANN provides the most likely values of the parameters that represent the observed traffic
conditions used as input data.

4.2. STEP 2: Data Processing

This step aimed to filter the dataset obtained from the simulations to train and test the
ANN. Specific traffic conditions were observed in the simulations of various scenarios from
the previously generated database; in some cases, scenarios with unrealistic outputs may
occur owing to road capacity constraints, traffic control specificities, or driving behavior
specifications. Those scenarios could hamper the training process of the neural networks
and should be excluded from the dataset to be used in the next step of the proposed method.
In the experiments described in the following sections, these conditions were observed in
less than 3% of the simulations generated in the previous step.

4.3. STEP 3: ANN Training and Testing

This step was applied to train and test the ANNSs used for pattern recognition. Specifi-
cally, a correlation was obtained between the parameters of the traffic simulation model
and the corresponding traffic performance measures. The ANN training process of the
proposed method comprises four elements: (1) defining the number of epochs, (2) selecting
the ANN optimization algorithm, (3) defining the network topology, and (4) selecting an
adequate ANN among the tested and trained configurations. TensorFlow libraries [51] and
the Keras environment [52] were used to build, train, and test the neural networks.
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This study considered ANNs with different numbers of inner layers and neurons. We
tested six optimization algorithms to train the ANN topology in each experiment: stochastic
gradient descent (SGD) [53], Adagrad [54], Adadelta [55], Adam [56], Adamax [57], and
Nadam [58]. We used the mean squared error (MSE) implemented in Keras to test the
convergence of the algorithms and the average Pearson correlation between the ANN
responses (i.e., the parameters to be calibrated) and the values of the parameters used as
input data in the microsimulation runs. We normalized the neural network input data and
established a proportion between the training and testing datasets.

The number of epochs must be defined to avoid ANN underfitting and overfitting
and to minimize the training error. The Keras environment implements an early stopping
procedure, and several training algorithms are comparable regarding the epoch number
required for training each neural network. Therefore, this study estimates an adequate
number of epochs per optimizing algorithm in each experiment.

Finally, the ideal ANN was built based on the best correlation of its responses com-
pared to the microsimulator parameters to be calibrated and used as input data in the
microsimulations. Once the neural networks were trained and tested with the proper
topology, several epochs and optimization algorithms were selected.

4.4. STEP 4: Deployment of the Traning ANN

From the trained ANN, the user can obtain the best values for the set of parameters of
the desired microsimulation scenario by providing practical or hypothetical traffic measures
as input data for the ANN.

5. Experimental Setup

Four experiments involving two urban road interchanges in the metropolitan region
of Sao Paulo (Brazil) were conducted to assess the proposed method. The first interchange
(Figure 2) is the intersection between two major expressways in Sao Paulo, the north-south
corridor (Avenue 23 de Maio) and the east corridor (Radial Leste). The second interchange
(Figure 3) is the intersection between an expressway that connects a residential area in the
northwestern region of Sao Paulo (Avenue Sao Camilo) to the highway (Highway Raposo
Tavares) that passes through the western region of Sao Paulo.
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Figure 2. Interchange between Avenue 23 de Maio and Radial Leste in Sao Paulo (Brazil) [57].
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(Brazil) [57].
5.1. E1: Experiment Setup 1
In this experiment, the interchange between Avenue 23 de Maio and Radial Leste
(Figure 2) was implemented in VISSIM and used to calibrate the vehicle volumes entering
the network and the turning rate percentages at each intersection of the network (henceforth
called route decision). The parameters to be calibrated in Experiment 1 (E1) refer to
five vehicle volumes randomly drawn from uniform probability distributions between zero
and 1800 vehicles per hour per lane and five route decisions randomly drawn from uniform
probability distributions between zero and one. The simulation output data used as input

data to train and test the ANN comprised 13 travel times and vehicle counts. Figure 4
illustrates the vehicle entrances and turnings, and the links in which the vehicle counts and

the travel times were obtained from the simulations.

5.2. E2: Experiment Setup 2
This experiment followed the same sequence as E1, in which vehicle volumes in

the entrances of the network and routing decisions were calibrated using the simulated
vehicle counts and travel times in specific links as input data to the ANN. In addition,
it was executed in the interchange between Avenue Sao Camilo and Highway Raposo
Tavares (Figure 3). In this experiment, three vehicle volumes were randomly drawn from a
uniform probability distribution between zero and 1800 vehicles per hour per lane. Seven
route decisions following a uniform distribution between zero and one were calibrated
considering 12 travel times, 14 vehicle counts, and 14 harmonic average speeds in the links,

shown in Figure 5.

5.3. E3: Experiment Setup 3
This experiment was also conducted in the interchange between Avenue Sao Camilo

and Highway Raposo Tavares (Figure 3). However, the vehicle volumes and route decisions
were established from the data collected in the field. The driving behavior parameters of
the Wiedemann 74 (W74) car-following and lane-changing models implemented in VISSIM

were calibrated.
More specifically, the input data of the simulations that have been used as output data

to the ANN refer to the car-following model behavior parameters of the W74 model:

Ax, randomly drawn from a uniform probability distribution between 0.5 and 3 m;
Bx_add, randomly drawn from a uniform probability distribution between 0.5 and

4.0 m;
e  Bx_mult, randomly drawn from a uniform probability distribution between 0.5 and
6 m, and the minimum headway distance (MinHdwy) from the vehicle in an adjacent

lane as a threshold for the lane-changing maneuver, randomly drawn from a uniform

probability distribution between 0.5 and 7.0 m.



Sensors 2023, 23, 8798

12 0f 23

Volume 4

Volume 5 °
i Route decision 4

Inputs

5 Vehicle volumes
5 Route decisions

/ Route decision 3
5 ! Route decision 2 Volume 1
Route decision 1 |

[ =k Volume 2

- Volume 3

(a)
Travel time 11
Outputs
Travel time 13 ;
13 Travel times
Travel time 8 13 Vehicle counts
Travel time 12
Travel time 6
Travel time 7
Travel time 1
Travel time 4 Travel time 3
Travel time 2
| Travel time 9
(b)

Figure 4. Location of flows and route decisions (a) and travel times and vehicle counts (b) in the
interchange between Avenue 23 de Maio and Radial Leste used in Experiment 1 (E1).

The remaining car and driver behavior parameters of the W74 model were fixed to
their default values.

5.4. E4: Experiment Setup 4

This experiment is analogous to E3, as it considers the same fixed vehicle volumes at
the entrances and route decisions in the network shown in Figure 5. However, we replaced
the W74 model with the W99 model, which comprises ten parameters (CCO-CC9) related to
acceleration, braking, reaction times, and safe distances. Punzo et al. [15] pointed out the
low effectiveness of calibrating all the parameters of a microsimulation at the expense of
simplicity, particularly in cases where they do not influence traffic simulations. Therefore,
we selected nine of the ten parameters of the W99 model for calibration in this experiment.
Only CC1 was not analyzed from Model W99 because it is closely correlated with the safety
distance (Bx) already explored in the W74 model. For simplicity, in this experiment, the
parameters CC1 and MinHdwy have been fixed to the VISSIM default values of 0.9 s and
0.5 m, respectively.
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Figure 5. Location of flows and route decisions (a) travel times and vehicle counts (b) vehicle counts
and speeds in the interchange between Avenue Sao Camilo and Highway Raposo Tavares used in

Experiments E2, E3, and E4.

These choices and the respective values are randomly drawn from uniform probability
distributions based on the interval of the values suggested by Sukennik and Kautzsch [59]
as follows according to Table 1:

Table 1. The W99 model parameters and reference value [59].

Parameter Range Reference Value
CCO (m) [0.50, 2.00] 1.5
CC2 (m) [0.00, 5.00] 4.0
CC3 (s) [—12.00, —4.00] —8.0
CC4 (m/s) [—0.40, 0.00] —0.35
CC5 (m/s) [0.00, 0.40] —-0.35
CCé [0.00, 12.00] 11.44
CC7 (m/s?) [0.00, 3.00] N/A
CC8 (m/s?) [0.00, 5.00] N/A
CC9 (m/s?) [0.00, 3.00] N/A

5.5. Experiments Setup Values

These experiments were executed with the following setup values:

Number of simulations: 4000 (E1 and E2), 3000 (E3), and 2000 (E4);

Simulation duration: 3600 s (E1), 1800 s (E2, E3, and E4);

Warm-up times: 600 s (E1) and 300 s (E2, E3, and E4);

Desired speeds: limited to the regulatory speed limit of the roads;

ANN training/testing dataset ratio was 80/20, and the validation split within the
training dataset was 20%;
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e  Vehicle flows have been converted to equivalent passenger vehicles assuming that
motorcycles correspond to 0.5, and buses and trucks are equivalent to two vehicles.

6. Results and Discussions

First, the ANN input dataset was generated from the VISSIM microsimulations by
applying different values to the parameters to be calibrated and their related outputs,
given by the travel times and volumes in the network links. Next, the optimal number
of epochs of the ANN, one network for each experiment, was determined considering a
fixed network topology of two hidden layers with 50 neurons each and varying Keras
optimizing algorithms. Finally, the optimal ANN topology was identified among the
different combinations of layers and neurons per layer, given the best-performing algorithm
in the previous step. The tested networks comprised structures with 1, 2, and 3 layers, and
2,3,5,10, 15, 20, 30, and 50 neurons, respectively.

In all experiments, the analyses were performed using the Pearson correlation coeffi-
cient. This coefficient was calculated between the VISSIM input volumes and ANN outputs.
As input to the ANN, travel time and flow values were observed in different stretches of
the network, which are the outputs of VISSIM. Moreover, as the output of the ANN, we
sought to estimate the probable input volumes of VISSIM in order to generate the desired
travel times and flows.

6.1. R1: Results of Experiment 1

In Experiment 1, we built an ANN input dataset with 4000 microsimulations running in
the transport network, shown in Figure 4, to calibrate vehicle volumes and route decisions.

Figure 6 shows the number of epochs before the early stopping callback of each
algorithm (i.e., before overfitting the models). Due to the number of input and output
variables, the topology of 2 hidden layers with 50 neurons each (the notation is a 50-50
configuration) was fixed, as an initial attempt. To identify the most appropriate ANN
topology, we varied the number of hidden layers and neurons per layer, given the number
of epochs, as shown in Figure 6.
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Figure 6. Number of epochs before early stopping callback in E1.

The SDG optimizer that implemented fixed-sized steps presented more epochs than
the others that implemented adaptive-sized steps.

Figure 7 shows the average Pearson correlation between the microsimulation inputs
to be calibrated and the ANN outputs per optimizer, indicating that the models resulted in
similar values. Furthermore, the variation in the performance measure among optimizers
was less than 1%, indicating that the algorithm’s effectiveness was not affected regardless
of the variation in the required number of epochs to convergence.
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Figure 7. Correlation between the ANN outputs and the parameters used as microsimulation inputs
per optimizer in E1.

Figure 8 shows the four algorithms with the best performance in the average correla-
tion between the microsimulation inputs and the ANN outputs (Adadelta, Adagrad, and
SGD with two hidden layers and 50 neurons each, and Adadelta with one hidden layer
and 50 neurons).

- W50-50 Adadelta
B 50-50 Adagrad
- W50 Adadelta

Test correlation

50-50 SGD

Variable for calibration in PTV Vissim

Figure 8. Correlation between the ANN output and the microsimulation input for specific optimizers
and network topologies in E1.

Figure 8 shows high correlations between the values of the parameters for all the
optimizers, except for the route decision “Rout_2”. The volume variables (Vol) did not
present significantly higher correlations than the route decision variables (Rout) because
the ANN of Experiment 1 did not adjust the vehicle volume entries with only the counts in
the edge segments, aiming to reduce the error of the inner segments.

According to Punzo, Montanino, and Ciuffo [15], it is possible to determine a subset
of variables that are sufficient for calibration by sensitivity analysis. They suggest that
variables that make a small contribution to the output can be ignored. In the case of
Rout_2, it is possible that the variable was not captured by the ANN learning process due
to complexity limitations.

After the development of the ANN, the individual correlations between variables were
estimated. In this initial experiment, the user can review the metrics and decide whether to
use the recommendations of the ANN as calibration values. If necessary, variables such as
Rout_2 can be manually calibrated or assigned a default value. Alternatively, if the traffic
engineer’s requirements are met, the variable may be ignored altogether.
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6.2. R2: Results of Experiment 2

Experiment 2 refers to the calibration of vehicle volume and route decisions in the
transport network depicted in Figure 5. We also ran 4000 simulations in VISSIM to obtain a
dataset to train and test the neural network. For a fixed neural network with two hidden
layers and 50 neurons each, the number of epochs before the early stopping callback,
considering the six optimizers implemented in Keras, is shown in Figure 9. SDG provided
the highest number of epochs to avoid overfitting analogously to E1, probably due to the
specificity of the road network, followed by Adagrad.
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Figure 9. Number of epochs before early stopping callback in E2.

The average correlation between the ANN output and microsimulation input is shown
in Figure 10, where the performance measure does not vary significantly among optimizers,
similar to E1.
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Figure 10. Correlation between the ANN outputs and the parameters used as microsimulation inputs
per optimizer in E2.

Finally, Figure 11 shows the average correlation between the parameters calibrated in
the microsimulation and those obtained from the ANN. The best neural network in this
experiment had the 50-50 configuration with the Adam optimizer. The correlation varied
positively above 0.8 (maximum 0.89) except for the route decision variable “Rout_7".

According to the E1 justification, the connections between this variable and the PTV
VISSIM metrics might be too intricate for the ANN to comprehend while undergoing
training. Additionally, it is plausible that the impact of this variable on the metrics is
insignificant and not worth considering for calibration, as discussed by Punzo, Montanino,
and Ciuffo [15].
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Figure 11. Correlation between the ANN output and the microsimulation input for specific optimizers
and network topologies in E2.

Once the ANN development is complete, the user can access the specific metrics of the
calibration variables. A traffic engineer has the option to manually calibrate this variable
separately, or choose to disregard it and use a default value if the overall calibration results
meet the practical requirements of the project.

6.3. R3: Results of Experiment 3

Experiment 3 focused on the same transportation network as E2, which is shown in
Figure 5. However, it concentrated on calibrating the W74 car-following and lane-changing
parameters. To select four relevant variables related to the Wiedemann 74 car-following
model and the lane-change model that influence the aggressiveness of overtaking cars,
Fransson’s [60] study was used as a reference. After running 3000 simulations, the number
of epochs required by each of the six tested ANN optimizers before early stopping was
obtained as shown in Figure 12, where the SDG again resulted in the highest values,
followed by Adagrad, similar to previous experiments.
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Figure 12. Number of epochs before early stopping callback in E3.

Furthermore, Figure 13 shows that the average correlation between the microsimula-
tion inputs and ANN outputs varied between 0.7358 (SDG) and 0.7161 (Adadelta). These
values are lower than the ones obtained in previous experiments (E1 and E2), as we are not
calibrating physical parameters, such as volumes and route decisions, but psychophysical
parameters, which are related to the Wiedemann 74 Model (W74).
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Figure 13. Correlation between the ANN outputs and the parameters used as microsimulation inputs
per optimizer in E3.

Finally, Figure 14 shows that the average correlation between the microsimulation and
ANN values is positive for all parameters, with the lowest values referring to W74bxMult.
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Figure 14. Correlation between the ANN output and the microsimulation input for specific optimizers
and network topologies in E3.

The high level of abstraction of the driving behavior models, particularly W74, poses
a greater challenge for the ANN to achieve optimal calibration performance compared
to variables that have more observable effects on the road network, such as travel times,
vehicle counts, and average speeds. By following the proposed methodology, a traffic
engineer may opt to disregard the W74 variables or use the ANN estimate as a foundation
for additional fine-tuning.

6.4. R4: Results of Experiment 4

Experiment 4 shares similarities with E2 and E3 as it examines the transportation
network shown in Figure 5, but focuses on calibrating the Wiedemann 99 (W99) car-
following parameters. The calibration of these parameters is a topic of significant interest
for research and discussion, mainly because of their abstract meanings and potential use in
modeling the behavior of autonomous vehicles, as suggested by previous studies [59].

Figure 15 shows that the SDG and Adagrad require the highest number of epochs
before the ANN implements the early stopping procedure at 2000 simulations, the lat-
ter significantly higher than the former. In contrast, Figure 16 shows that the average
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correlation between the microsimulation inputs and the ANN outputs varies between
0.4071 and 0.3795, indicating that the ANN cannot provide accurate values for these kinds
of parameters.
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Figure 15. Number of epochs before early stopping callback in E4.
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Figure 16. Correlation between the ANN outputs and the parameters used as microsimulation inputs
per optimizer in E4.

Figure 17 shows the average correlation of the parameters in the microsimulation and
ANN outputs of the selected network topologies and optimizers. These findings indicate
that relying solely on ANN for automatic calibration may not always produce accurate
results. Previous studies have shown that calibrating the Wiedemann 99 parameters
typically involves straight road segments, roundabouts, or small road networks with low
complexity. It is plausible that the mathematical complexity of the relationships between
these inputs and the simulator output metrics is too high for the ANN to model accurately,
especially given the highly stochastic nature of traffic microsimulations and the abstract
nature of the Wiedemann 99 car-following model.

Ultimately, it is essential to obtain feedback from the user to evaluate the effectiveness
of the calibration. Given that calibration is frequently an iterative and manual process; the
ANN estimates can provide useful starting points for refinement and reduce the workload.
As noted by Punzo, Montanino, and Ciuffo [15], it may be possible to only calibrate the
W99 parameters that resemble the Wiedemann 74 model since the simulations may be more
sensitive to those parameters. This strategy can help streamline the calibration process.
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Figure 17. Correlation between the ANN output and the microsimulation input for specific optimizers
and network topologies in E4.

7. Conclusions

While various methods and techniques are discussed in the literature, calibrating
traffic microsimulation models remains a challenging task for both researchers and practi-
tioners. This work presents a new calibration method for microsimulation models using
artificial neural networks. The steps of the proposed method include running several
microsimulations with different values for the parameters to be calibrated, collecting and
processing the microsimulation output (travel times and link flows), training and testing
the ANN configured with a specific number of epochs, layers, and optimizing algorithms,
using the microsimulation outputs as input data to the neural networks. For the trained and
tested ANNS, it was possible to estimate an adequate set of values for the microsimulation
model from the observed traffic measures as input data to the artificial neural network.

To assess the performance of the proposed method in the four experiments imple-
mented in VISSIM, we used the travel time and flows in the links of different networks in
the Sao Paulo metropolitan area. The first and second experiments considered two different
networks to calibrate the route decisions, that is, the turning rate percentages at each
intersection of the network and the vehicle volumes entering the network. In contrast, the
third and fourth experiments calibrated the car-following and lane-changing parameters of
the Wiedemann 74 and 99 models in the urban road network in the second experiment. In
addition, we estimated the optimal number of epochs before the early stopping of several
ANN:-optimizing algorithms and compared the correlation between the ANN outputs and
parameters used as microsimulation inputs per optimizer and neural network topology.

The results show that the trained and tested ANNs can provide a high correlation
between the parameters to be calibrated and obtained as outputs from the ANN and the val-
ues used as input data for the microscopic traffic simulation models. More specifically, the
correlation between such values was higher than 0.8 for most parameters in Experiments 1
and 2, where the traffic parameters which have more visible effects on the road network,
such as travel times, vehicle counts, and average speeds, were calibrated. For Experiment 3,
the correlation was lower, around 0.7, due to the attempt to calibrate the psychophysical
parameters of Model W74 related to the safety distance. We showed in Experiment 4 that
the ANN had more difficulty to achieve high correlation values for psychophysical model,
due to the number of W99 parameters being larger than W74.

Our main contribution was to demonstrate that a traffic simulation micromodel can be
automatically calibrated with satisfactory accuracy. For this, we proposed to use an ANN
trained with a database representative of the traffic demands, to estimate the calibration
parameters of the micromodel. The experiments carried out in this investigation showed
significant correlations between the estimations of the neural networks and the input data
to the traffic simulations in the experiments carried out at different interchanges of an
urban road network. Moreover, the results of the proposed method should be of interest to
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practitioners since, once the neural network is trained and tested, it can be used to obtain
calibrated parameters from field data directly retrieved from road sensors (such as cameras
and inductive loops) and mobile apps.

We emphasize that the advantage of using ANN for the automatic calibration of
simulation parameters is to allow traffic engineers to carry out comprehensive studies on a
large number of future scenarios. For example, if it is necessary to evaluate the behavior
of the same micromodel during different times of the day, different days of the week, or
different months of the year, a great effort would be required to calibrate the micromodel.
This is because the traffic demand tends to vary substantially between peak and off-peak
hours, as well as between weekdays and weekends, and between typical holiday months
and other regular months.

In this work, we use an MLP architecture for the ANN, as it is a well-established tech-
nique in many applications. Once the process has been validated, other ANN architectures
can be explored in future work, maintaining this approach as an aid to the calibration
process, both for micromodels and for network models. For the latter, the ANN can support
the estimation of origin-destination matrices and, still working with micromodels, traffic
light controls can be incorporated into them. In both cases, new ANN architectures can be
explored, keeping the focus on supporting the calibration of simulation models. Addition-
ally, we consider that studies related to aspects of the road network, such as intersections,
number of lanes, and road geometry, in addition to psychophysical behavior in the face of
anomalous situations, such as rain, road works, and events, such as concerts and sports
games, are promising for future research.
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