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Abstract: The utilization of multiscale entropy methods to characterize vibration signals has proven
to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale
entropy methods, only the information in the low-frequency range is utilized and the information
in the high-frequency range is discarded. In order to take full advantage of the information, in
this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining
process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency
range feature information, the Random Forest algorithm combined with the Maximum Relevance
Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor
classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the
proposed framework is evaluated by a numerical simulation and two experimental examples. The
validation results demonstrate that the extracted features by the proposed method are highly sensitive
to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite
multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion
entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed
method is able to identify the fault categories and health states of rolling bearings simultaneously.
The proposed damage detection methodology provides a new and better framework for intelligent
fault diagnosis of rolling bearings in rotating machinery.

Keywords: rolling bearing fault diagnosis; fuzzy dispersion entropy; feature extraction; feature selection

1. Introduction

In modern industrial systems involved in major engineering fields such as aviation,
electric power, the chemical industry, and mining, rotating machinery has been widely used
as an integral part of such systems. With the continuous progress of modern science and
technology, the complexity of rotating machinery systems is also getting higher [1]. The
rolling bearing, as a key component, usually operates continuously in a harsh environment
and under complex loading; thus, it is prone to failures [2,3]. Once a rolling bearing failure
occurs, it will directly affect the reliability and the stability of the rotating machinery system,
and it sometimes produces safety risks or even leads to catastrophic accidents [4]. Therefore,
the research of rolling bearing health condition monitoring and intelligent fault diagnosis
is very important.

Due to its cost-effectiveness, the vibration sensor has been widely used in bearing
condition monitoring [5]. In general, vibration-based rolling bearing health condition mon-
itoring and intelligent fault diagnosis technology consists of three major steps: vibration
signal data acquisition, signal feature extraction, and fault identification and classifica-
tion [6,7]. Among these steps, the process of feature extraction will greatly affect the final
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identification. The extraction of proper features from the complex vibration signals is the
key step to realizing intelligent fault diagnosis [8,9].

As a statistical measure, information entropy can be used to quantify the internal
information and complexity of a time series [10]. Usually, the greater the complexity or
irregularity of the time series, the larger the corresponding entropy value. In contrast, a
smaller entropy value usually means less complexity and less irregularity in the time series.
As is well known, the introduction of faults in a bearing will increase the complexity of the
vibration signal during operations; therefore, an appropriately configurated entropy could
be a feasible measure for the bearing health conditions.

Based on vibration signals, some commonly defined information entropy has been
successfully applied to the field of fault diagnosis and has yielded useful results. For
example, Yan [11] used the approximate entropy as the feature index of signal complex-
ity measurement and successfully applied it to the identification of structural defects in
bearings. Han et al. [12] adopted the sample entropy as an index to reflect the regularity
and features of vibration signals and realized the fault diagnosis of rolling bearings. Zheng
et al. [13] utilized the fuzzy entropy as the feature and demonstrated its effectiveness
through experimental verifications. Zhang et al. [14] characterized the fault state of motor
bearings by using the permutation entropy of the vibration signal. The effectiveness of their
method was verified through experiments and comparative studies. Rostaghi et al. [15]
proposed dispersion entropy for condition monitoring of rotating machinery and, through
several sets of experimental data, demonstrated that it has a better effect than other usual
entropy methods. In recent years, there have also been efforts made towards improvements
of the entropy methods based on dispersive entropy which have been applied to the field
of fault diagnosis [16,17].

For more complicated diagnosis situations, the above-mentioned single-scale entropy
is sometimes not sufficient. Accordingly, the multiscale entropy method has been pro-
posed [18]. Multiscale entropy is calculated through expanding the original time series into
a multiple scale series by using the coarse-graining method. Long et al. [19] realized rolling
bearing different fault category diagnosis by using the multiscale sample entropy calculated
from the vibration signal as the feature index and compared it with the results of using a
traditional single-scale sample entropy as the index. Wu et al. [20] extracted the features
of multiscale permutation entropy from the vibration signals of faulty rolling bearings
and compared them with that of single-scale permutation entropy and multiscale sample
entropy methods to verify the superiority and effectiveness of the multiscale permutation
entropy method. Zhang et al. [21] utilized the multiscale dispersion entropy of the vibration
signal as the feature for rolling bearing diagnosis and obtained an effective diagnosis result.

Multiscale-based entropy feature extraction methods are widely used, but they still
have two major drawbacks. From one aspect, multiscale entropy based on the traditional
coarse-graining method has a large variance of entropy value when the scale is large,
causing the reliability of the entropy assessment results to be reduced. On the other side, the
current multiscale methods extract only the low-frequency information from the sequence,
without considering the high-frequency information. In order to overcome the problem
of a high variance of entropy value in multiscale entropy methods based on traditional
coarse-graining methods, composite multiscale entropy was proposed [22]. Although the
problem of a high variance of entropy value at multiscale was solved, the issue of utilizing
the high-frequency information has not yet been resolved. Hierarchical entropy [23] is
considered as an entropy method that takes into account the high-frequency information
of a sequence and essentially coarse-grains the sequence using two operators—difference
and average. However, hierarchical entropy is unable to consider multiscale information
concurrently, and the coarse-grained sequences in different layers do not distribute as high-
frequency components or low-frequency components [24]. In addition, after the multiscale
entropy feature extraction of the sequences, the feature selection was not considered in most
cases, which could create the problem of redundancy of feature information. Therefore, it
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has become necessary to introduce a new method which is able to take advantage of the
full frequency information and minimize possible feature redundancy.

The fuzzy dispersion entropy (FDE) has been proven to be a promising method
for feature extraction [25]. However, it also suffers from the drawback of a single scale,
which makes it difficult to reflect information from multiple scales. To fully extract the
entropy feature information of the full frequency band of the signal while avoiding feature
information redundancy and achieving better diagnosis, an intelligent diagnosis framework
for rolling bearing fault identification based on a combination of the bidirectional composite
multiscale fuzzy dispersion entropy (BCMFDE), Random Forest (RF) algorithm, Maximum
Relevance Minimum Redundancy (mRMR) algorithm, and the K-nearest neighbor (KNN)
classifier is proposed. A numerical simulation and two experiments are used to demonstrate
the effectiveness and versatility of the proposed method.

The rest of this paper is organized as follows. Section 2 describes the basic definitions
of the proposed methodology. Section 3 describes the framework of the proposed fault
diagnosis method. Section 4 simulates the signals of different faults of rolling bearings and
verifies the effectiveness of the proposed method using the simulated signals. Section 5
verifies the effectiveness of the proposed method by two experimental examples. Section 6
summarizes the conclusions.

2. Methods
2.1. BCMFDE

The BCMFDE method is formed by combining the FDE method and the bidirectional
composite coarse-graining process (BCCGP).

2.1.1. FDE

The FDE is a method used to characterize the complexity of a time series and estimate
the dynamic changes of signal fluctuations. The calculation procedure is as follows [26]:

1. The time series x = {x(i), i = 1, 2, . . . , N} is mapped to y = {y(i), i = 1, 2, . . . , N}
through the Normal Cumulative Distribution Function (NCDF). Each element in
vector y is defined as:

y(i) =
1

σ
√

2π

∫ x(i)

−∞
e
−(t−µ)2

2σ2 dt (1)

where i = 1, 2, . . . , N, y(i) ∈ (0, 1), σ and µ are the standard deviation and the expectation
of x, respectively, and N is the number of data points.

2. Each element y(i) is mapped to a new symbolic sequence Zc =
{

zc
1, zc

2, . . . , zc
N
}

using
a linear transformation as follows:

zc
i = c·y(i) + 0.5 (2)

where c is the number of categories.

3. The series Zc with the embedding dimension m and the delay time d are constructed
as follows:

zm,c
j =

{
zc

j , zc
j+(1)d, · · · , zc

j+(m−1)d

}
, j = 1, 2, · · · , N − (m + 1)d (3)

4. The fuzzy membership function is introduced in sequence Zc as follows:

µM1(zc
i ) =


0

2− zc
i

1

zc
i > 2

1 ≤ zc
i ≤ 2

zc
i < 1

(4)
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µMk(zc
i ) =


0 zc

i > k + 1
k + 1− zc

i k ≤ zc
i ≤ k + 1

zc
i − k + 1 k− 1 ≤ zc

i ≤ k
0 zc

i < k− 1

(5)

µMc(zc
i ) =


1

zc
i − c + 1

0

zc
i > c

c− 1 ≤ zc
i ≤ c

zc
i < c− 1

(6)

5. Each vector zm,c
j is mapped to a dispersion pattern πv0,v1,...,v(m−1) according to its

degrees of membership. where zc
j is class v0, zc

j+(1)d is class v1,. . ., and zc
j+(m−1)d is

class vm−1. The membership degree of each vector zm,c
j is calculated to obtain the

membership degree of each dispersion pattern:

µπv0,v1,...,vm−1

(
zm,c

j

)
=

m−1

∏
i=0

µMvi(zc
j+(i)d) (7)

In general, the number of dispersion patterns that are attributed to each vector zm,c
j in

FDE is equal to cm.

6. The probability of each dispersion pattern πv0,v1,...,vm−1 is calculated as follows:

p(πv0,v1,...,vm−1) =
∑

N−(m−1)d
j=1 µπv0,v1,...,vm−1

(
zm,c

j

)
N − (m− 1)d

(8)

7. Finally, the FDE is calculated according to the theory of Shannon’s entropy as follows:

FDE(x, m, c, d) = −
cm

∑
π=1

p
(
πv0,v1,...,vm−1

)
ln
(

p
(
πv0,v1,...,vm−1

))
(9)

2.1.2. BCCGP

The BCCGP is based on an improvement of the composite coarse-graining process [27],
which has the advantage of making BCCGP capable of dealing with the multiscale decom-
position of the low- and high-frequency components of the time series. The calculation
procedure of the BCCGP is as follows:

1. For time series x = {x(i); i = 1, 2, . . . , N} of length, N is a positive integer, and the
bidirectional composite coarse-graining operator at τ scales factors is expressed as

d(τ)o,j = x(τ × j + (o− 1))− 1
τ−1

τ−2
∑

f=0
x(τ(j− 1) + o + f ), j = 1, 2, . . . ,

⌊
N
τ

⌋
, o = 1, 2, . . . , τ.

a(τ)o,j = 1
τ

τ

∑
f

x(τ(j− 1) + o + f ), j = 1, 2, . . . ,
⌊

N
τ

⌋
, o = 1, 2, . . . , τ.

(10)

where d(τ)o,j and a(τ)o,j represent for difference operators and average operators, respec-
tively.

2. The coarse-grained series form of operators d(τ)o,j and a(τ)o,j is expressed as:H(τ)
o =

{
d(τ)o,1 , d(τ)o,2 , . . . , d(τ)o,j

}
L(τ)

o =
{

a(τ)o,1 , a(τ)o,2 , . . . , a(τ)o,j

} (11)

where H(τ)
o and L(τ)

o represent the coarse-grained series for high-frequency components
and low-frequency components, respectively.
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3. According to the definition of FDE, the BCMFDE is obtained by

BCMFDE(x, m, c, d, τ) =
1
τ

τ

∑
o

FDE
(

d(τ)o,j , m, c, d
)

,
1
τ

τ

∑
o

FDE
(

a(τ)o,j , m, c, d
)

(12)

The BCCGP with scale factors τ = 2 and τ = 3 is shown in Figure 1. In the process of
bidirectional composite coarse-graining, the difference and average operators are used to
process the original time series, so the BCCGP is capable of capturing more comprehensive
time series feature information from the low-frequency components and the high-frequency
components of the time series simultaneously.
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2.2. Feature Selection

The advantage of BCMFDE is that the information of low- and high-frequency com-
ponents at different scales is considered. However, the more sequence scales that are
considered, the more information features that can be constructed, and consequently, the
more computational effort that is required. To balance feature richness and the computa-
tional burden, it is necessary to make a reasonable selection of the extracted feature set. To
this end, the RF-mRMR is used for feature selection.

2.2.1. RF

The RF is an ensemble learning algorithm composed of decision tree models as its
basic units [28]. The essence of the algorithm is generated by integrating the results from
all decision tree models and determining the final result with votes. The RF algorithm
is capable of evaluating the importance of features, and the main idea is to calculate the
contribution of different features to each decision tree model. The contribution is able to
be represented using the calculation of the out-of-bag (OOB) data error rate [29], where
the OOB data are unused data each time the decision tree is built. The importance of the
features is measured by calculating the average contribution of each feature.

To evaluate the importance of a feature, the steps are as follows:

1. The corresponding OOB data are selected for each decision tree to calculate the OOB
data error rate, denoted as eOOB1.

2. The OOB data error rate is calculated again after adding random noise interference to
all samples of OOB data and is denoted as eOOB2.
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3. The importance ψ of the feature when there are Nt decision trees in the forest can be
expressed as:

ψ =
∑Nt

i=1 eOOB1(i)− eOOB2(i)
Nt

(13)

The reason that ψ reflects the importance of the feature is that when random noise is
added, the accuracy of the OOB data decreases sharply (eOOB2 increases), which indicates
that the feature has a major impact on the model results and that the importance of the
feature is relatively significant. The parameters of RF are set based on the suggestions given
in [30], where the decision tree Nt = 50.

2.2.2. mRMR

The mRMR is acting as a filter for feature evaluation and selection [31,32]. The
core concept of the mRMR algorithm is to maximize the relevance between features and
categorical variables while minimizing the redundancy between different features. The
basic theory of the mRMR algorithm is summarized below [33].

The mutual information amount is used to measure the similarity between variables, and
the corresponding score is assigned to achieve feature selection according to the size of the
score. For the two given random variables X and Y, their mutual information is defined as:

I(X; Y) = ∑
a∈X

∑
b∈Y

p(a, b)log
p(a, b)

p(a)p(b)
(14)

where p(a) and p(b) represent the probabilities of X and Y, respectively, and p(a, b) is the
joint probability density function of X and Y.

Assume that Ti represents each feature and that v represents a category. In order
to ensure the maximum relevance between the feature and the category, the maximum
relevance criterion is expressed as:

maxD(S, v), D =
1
|S| ∑

Ti∈S
I(Ti; v) (15)

where S is a feature subset, and I(Ti; v) is the mutual information between features Ti in
different categories v.

The defined maximum relevance criterion is able to find the feature subset S that
has the greatest information correlation with each type of feature; however, the feature
subset selected based on this criterion may have redundancy. In order to ensure minimum
redundancy among features, the minimum redundancy criterion needs to be applied. The
minimum redundancy criterion is expressed as:

minR(S), R =
1

|S|2 ∑
Ti ,Tj∈S

I
(
Ti; Tj

)
(16)

In order to retrieve the feature sets with maximum relevance and minimum redun-
dancy, D and R need to be optimized simultaneously. To achieve this, we define a feature
sensitivity Φ for each feature as:

maxΦ(D, R), Φ =
D
R

(17)

2.3. KNN

The KNN [34] classifier, which is widely used in mechanical fault diagnosis, was used
to achieve the classification of rolling bearings with different types and severity of faults.

The KNN classifier is used for classification by measuring the distance between
different feature data. The basic idea is that a sample h is assumed to have K nearest
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neighboring samples hK in the feature space. If most of the samples hK belong to category
L, then, that sample h also belongs to category L.

The basic steps of KNN include:

1. Calculating the distance between the feature data of the test sample and the feature
data of each training sample.

2. Ranking the distance according to its magnitude.
3. Selecting the K samples with the smallest distance.
4. Calculating the frequency of occurrence of the category in which the top K samples

are located.
5. Returning the category with the highest occurrence frequency among the top

K samples as the classification of the test sample.

The value of the nearest neighbor number K affects the results of the model, as shown
in Figure 2. As shown in Figure 2, the judgment results under K = 5 or K = 10 are
inconsistent with those under K = 1. This indicates that the number of nearest neighbors
K affects the complexity and generalization of the model. Therefore, in order to make the
model have better generalization, in this paper, K = 5 is chosen as the number of nearest
neighbors for the KNN classifier.
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3. Intelligent Fault Diagnosis Framework

Based on the above discussions, we propose a rolling bearing fault feature sets con-
struction method based on the BCMFDE feature extraction method combined with the
RF-mRMR feature selection method, aiming at extracting features in the whole frequency
range of the signal while minimizing the information redundancy. And, it is combined with
the KNN classifier to form an intelligent fault diagnosis framework. The procedures of the
proposed intelligent fault diagnosis framework are depicted in Figure 3, which include the
following steps:

• Step 1: Signal acquisition as shown in Figure 3a. The vibration sensor is used to collect
the dynamic response for bearing condition diagnosis. The collected vibration signal
is segmented with equal length before the signal being analyzed.

• Step 2: Feature sets construction as shown in Figure 3b. Firstly, the analyzed signal
is subjected to BCCGP processing to obtain the low-frequency and high-frequency
component series in different scales. The FDE of each series is calculated using Equa-
tion (12). The alternative feature set of rolling bearing faults consisting of BCMFDE is
constructed. Secondly, the RF-mRMR is used to select the dominant features from the
rolling bearing alternative feature set based on the importance ψ and sensitivity Φ of
features at each scale to obtain a new rolling bearing fault feature set.

• Step 3: Failure identification and classification as shown in Figure 3c. The new rolling
bearing fault feature set is randomly divided into a training sample set and a test
sample set. The training sample set is used to train the KNN classifier. The test samples
are used as input to the trained KNN classifier to test the classifier’s ability to identify
rolling bearing health conditions in rotating machinery.
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Figure 3. Schematic diagram of the intelligent fault diagnosis framework.

4. Simulation
4.1. Simulated Bearing Damage Vibration Response

In this section, simulated signals of rolling bearings with different faults are used to
evaluate the effectiveness of the proposed signal processing framework [35]. Simulated
bearing faults include: the roller fault, the inner race fault, and the outer race fault. The
sampling frequency is 10.24 kHz. The shaft rotating speed is 1800 rpm. The bearing
parameters are listed in Table 1. The schematic diagram of the simulated bearing is shown
in Figure 4.
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Table 1. Parameters of the simulation bearing.

Parameter Value

Natural frequency of bearing 4000 Hz
Pitch diameter 34 mm
Roller diameter 7.5 mm

Number of rollers 11
Contact angle 0◦
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Figure 4. Schematic diagram simulating rolling bearing state.

Assuming at time t = 0, the local defect begins to make contact with a roller. The
impact force excited by the local defect on the outer ring can be expressed as:

Do(t) =
+∞

∑
t=−∞

doδ(t− k
fo
) (18)

Then, the impact force excited by the local defect on the inner ring can be expressed as:

Di(t) =
+∞

∑
t=−∞

diδ(t−
k
fi
) (19)

and the impact force excited by the local defect on the roller can be expressed as:

Db(t) =
+∞

∑
t=−∞

dboδ(t− k
fb
) +

+∞

∑
t=−∞

dbiδ(t−
k− β

fb
) (20)

In Equations (18)–(20), do represents the pulse intensity of the outer race; di is the
inner race pulse intensity; dbo is the pulse intensity of the outer race to the roller; dbi is
the pulse intensity of the inner race to the roller; δ is the unit impulse function; k is the
number of pulses; β is the pulse phase difference coefficient, which is β = 0.5; fo is the
characteristic frequency of the bearing outer race damage; fi is the characteristic frequency
of the bearing inner race damage; and fb is the characteristic frequency of the roller damage.
For simplicity, the pulse intensity in the simulation is assumed to be unity.

The vibration amplitude decay envelope function due to damping can be expressed
as:

e(t) =
{

e−2πζe fet

0
t > 0
t ≤ 0

(21)

where ζe and fe are the damping ratio and the natural frequency of the bearing
system, respectively.

The amplitude transfer function is expressed as:

p(θ) = cos(θ) (22)
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The load distribution can be expressed as:

q(θ) = qmax[1− (1/2ε)(1− cosθ)]n (23)

where qmax represents the maximum load intensity, and ε represents the load distribution
coefficient.

The simulated outer race fault signal can be expressed as:

xo(t) = Do(t) ∗ e(t) (24)

The simulated inner race fault signal can be expressed as:

xi(t) = Di(t)q(2π frt)p(2π frt) ∗ e(t) (25)

where fr is the rotating frequency of the shaft.
The simulated roller fault signal can be expressed as:

xb(t) = Db(t)q(2π fct)p(2π fct) ∗ e(t) (26)

where fc is the rotating frequency of the bearing cage.
In order to simulate the actual working conditions, Gaussian white noise is added

into the analog signal, and the signal noise ratio is 5 dB. The time history of the simulated
bearing vibration response with normal, roller fault, inner race fault, and outer race fault
are plotted in Figure 5.
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4.2. Simulation Analysis

The vibration signal is processed according to the procedures outlined in Section 3.
Based on suggestions given in [27], for each vibration response, a sliding window of
2048 points is applied to extract 300 samples from the original signal. The BCMFDE
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features are extracted for each sample to construct the feature set. For the purpose of
comparisons, other entropy feature extraction methods are also applied to the same signal,
including HFDE (Hierarchical fuzzy dispersion entropy), CMFDE (Composite multiscale
fuzzy dispersion entropy), MFDE (Multiscale fuzzy dispersion entropy), MDE (Multiscale
dispersion entropy), MPE (Multiscale permutation entropy) and MSE (Multiscale sample
entropy). Based on suggestions given in [25,36], the parameters used for feature calculation
are listed in Table 2.

Table 2. Parameters of the entropy-based methods.

Entropy Dimension m Classes c Delay d Tolerance r Scale τ Layer k
BCMFDE

2
5

1 -

16 -
CMFDE
HFDE - 4
MFDE

16 -MDE
MPE -
MSE - 0.25 std

The feature sets constructed by different entropy methods are visualized by using
the t-SNE [37] algorithm first, as shown in Figure 6. According to [30], in a feature set,
when the distance between samples of the same category is small and the distance between
samples of different categories is large, it indicates that the constructed feature set has good
separability for feature categorization. Therefore, judging by visualization, from Figure 6,
the feature set constructed by the BCMFDE method has the best separability among the
methods used.
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In order to quantitatively evaluate the feature extraction ability of different entropy
methods, the classification effect of the feature set was tested. The KNN classifier was used
in the evaluation, and the test accuracy was adopted as the evaluation measure.

The KNN classifier was trained first. Eighty percent of the feature sets were randomly
selected to form the training set and the rest were used as the test set. The training sets
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were used to train the classifier model first. The test sets were then fed to the trained model
to validate the classification accuracy. This process was repeated 10 times and the mean,
standard deviation, and mean time values of the test accuracies were calculated and listed
in Table 3 for comparisons.

Table 3. Testing accuracy and time obtained using different methods.

Different
Methods

Number of Tests
Mean SD

Time
(s)1 2 3 4 5 6 7 8 9 10

BCMFDE 98.33% 99.17% 99.17% 98.75% 98.75% 98.75% 99.17% 99.17% 98.75% 99.58% 98.96% 0.35% 45.92
HFDE 83.33% 86.25% 90.00% 87.08% 86.25% 86.67% 87.92% 84.58% 86.67% 85.42% 86.42% 1.81% 131.01

CMFDE 97.08% 97.92% 97.92% 96.25% 97.50% 99.17% 98.33% 97.92% 97.50% 98.75% 97.83% 0.83% 23.92
MFDE 92.5% 94.58% 95.00% 92.50% 94.17% 94.58% 94.17% 94.17% 93.33% 94.58% 93.96% 0.88% 4.60
MDE 90.83% 93.75% 94.58% 92.92% 90.83% 92.50% 92.08% 93.75% 92.08% 95.83% 92.92% 1.60% 1.31
MPE 28.75% 23.75% 30.42% 29.58% 30.00% 19.58% 25.83% 30.00% 25.83% 30.83% 27.46% 3.66% 4.75
MSE 89.17% 90.00% 92.08% 92.50% 90.42% 92.50% 92.08% 94.58% 88.75% 92.50% 91.46% 1.81% 239.59

It can be seen from Table 3 that among the MFDE, MDE, MPE, and MSE methods, the
MFDE method obtained the highest mean accuracy and the smallest standard deviation.
This indicates that the sensitivity of FDE features is higher. In addition, feature extraction
based on BCMFDE produced the best mean accuracy and standard deviation compared
with the other traditional coarse-grained methods, indicating that the bidirectional compos-
ite coarse-graining-based approach indeed increased information richness and, therefore,
provided better classification accuracy.

The confusion matrix can intuitively show the category and number of samples that
were misclassified. The confusion matrix of the fifth test result was visualized and analyzed,
as shown in Figure 7. It can be seen from Figure 7 that in the feature set constructed using
the BCMFDE method, the number of misclassified samples is the smallest. At the same
time, it coincides with the t-SNE visualization results of the feature set in Figure 6. This
indicates that the BCMFDE method has the best feature extraction capability.

Although the method based on BCMFDE improves classification accuracy, its dis-
advantages are an increased computational burden and the risk of feature information
redundancy. Compared with traditional coarse-graining, bidirectional composite coarse-
graining considers not only the information of low-frequency components but also the
additional information of high-frequency components, which will double the number of
extracted features. To avoid redundancy of feature information while minimizing the
computation cost, the RF-mRMR is used to select important and sensitive features (assessed
by importance ψ and sensitivity Φ and ranked from highest to lowest) from the raw fea-
ture set. The features with importance ψ and sensitivity Φ in the top τ are selected and
then used to construct a new feature set. This feature selection procedure formulates the
RF-mRMR–BCMFDE process.

In the RF-mRMR–BCMFDE process, for each feature, the importance ψ and sensitivity
Φ were calculated based on Equations (13) and (17), respectively, and the results are
shown in Figure 8. In Figure 8, feature indexes 1–16 indicate information about high-
frequency component information, and feature indexes 17–32 indicate information about
low-frequency component information. It can be found that the high-frequency component
contains rich information, which is helpful for classification and compensates for the
incomplete feature extraction of the low-frequency components. In addition, the sensitivity
and importance of different features have significant differences, and therefore, a weighted
feature selection strategy is necessary.
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Figure 8. The normalized importance and sensitivity of each feature.

To quantitatively evaluate the RF-mRMR feature selection method, the KNN classifier
was trained and tested as before. For comparison, other feature selection methods, including
the RF method and the mRMR method, were also used. The test results are shown in
Figure 9. From Figure 9, it can be observed that the RF-mRMR method produced the
highest mean accuracy and relatively small standard deviation. At the same time, the
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RF-mRMR method has higher mean accuracy and smaller standard deviation compared
with the results of the BCMFDE method (without using the feature selection algorithm) in
Table 3. This indicates that the RF-mRMR method can effectively reduce the redundancy of
the feature set, further proving the effectiveness of the method.
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5. Experimental Validation

In this section, two experimental examples are used to verify the bearing damage
detection effectiveness and generalization capability of the proposed signal processing
framework. The first example is focused on the diagnosis of different fault categories, while
the second example emphasizes the fault categories as well as the fault severities.

5.1. Example 1: Rolling Bearing Fault Category Identification
5.1.1. Test Setup

The experimental setup is shown in Figure 10, which is composed of a motor, a shaft
supported by a test bearing and a healthy bearing, and a belt-wheel loading system. The
shaft is driven by the motor at 1800 rpm. The driving side bearing is healthy, and the
driven side bearing is the test bearing which can be embedded with different faults. The
kinematics parameters of the test bearing are listed in Table 4.
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Figure 10. Experimental setup.

Table 4. Parameters of the test bearing.

Parameter Value

Bearing type NU204 ECP
Pitch diameter 34 mm
Roller diameter 7.5 mm

Number of rollers 11
Contact angle 0◦
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The vibration is picked up by an accelerometer fixed on the test bearing seat and
digitized by using an NI9185-based data acquisition system. The sampling frequency
is 10.24 kHz, and the sampling duration is 60 s. As shown in Figure 11, three different
bearing component faults and three different fault combinations are simulated by artificially
introducing damage to the bearing parts with electrical discharge machining (EDM).
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Figure 11. Rolling bearings with artificial pitting defect.

Including the healthy baseline, eight categories of bearing conditions were tested, as
listed in Table 5. The typical time histories of the vibration signal corresponding to eight
bearing categories are shown in Figure 12.

Table 5. Tested bearings.

Bearing State Abbreviation

Normal N
Roller fault R

Inner race fault I
Outer race fault O

Inner and outer race fault IO
Roller and inner race fault RI
Roller and outer race fault RO

Roller and inner and outer race fault RIO

5.1.2. Diagnosis Results and Analysis

The vibration signals corresponding to the eight bearing categories are processed ac-
cording to the procedure outlined in Section 4. For each bearing vibration response, a sliding
window of 2048 points is applied and 300 samples are extracted from the original signal.

The evaluation procedure used is similar to the one described in Section 4.2. For
comparison purposes, the entropy feature extraction methods based on BCMFDE, HFDE,
CMFDE, MFDE, MDE, MPE, and MSE are used. The feature sets constructed by different
entropy methods are visualized using the t-SNE algorithm, as shown in Figure 13. Accord-
ing to Figure 13, qualitatively, the feature set constructed by the BCMFDE method has the
best separability among all the methods used.
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For the quantitative evaluation, the test results of the BCMFDE method and the other
entropy feature extraction methods on the KNN classifier are listed in Table 6. It can be
seen from Table 6 that the feature extraction method based on BCMFDE obtained the best
mean accuracy and the smallest standard deviation.

Table 6. Testing accuracy and time obtained using different methods.

Different
Methods

Number of Tests
Mean SD

Time
(s)1 2 3 4 5 6 7 8 9 10

BCMFDE 99.79% 99.79% 100% 99.79% 99.79% 100% 100% 99.79% 99.58% 99.79% 99.83% 0.13% 91.93
HFDE 93.75% 94.58% 95.21% 96.46% 94.38% 94.79% 97.08% 95.63% 96.04% 95.83% 95.37% 1.02% 292.82

CMFDE 99.79% 99.79% 100% 99.79% 99.58% 99.79% 100% 99.58% 99.58% 99.79% 99.77% 0.15% 76.46
MFDE 97.71% 97.92% 97.71% 96.88% 97.08% 97.29% 97.92% 98.13% 97.92% 96.46% 97.50% 0.55% 8.81
MDE 96.46% 96.25% 97.50% 96.25% 96.46% 96.88% 97.08% 97.50% 96.88% 95.63% 96.69% 0.59% 2.61
MPE 15.83% 16.67% 17.29% 17.29% 15.83% 16.25% 17.71% 14.79% 16.67% 19.58% 16.79% 1.30% 9.72
MSE 84.38% 84.17% 83.33% 86.04% 83.33% 84.17% 85.83% 82.29% 82.92% 83.75% 84.02% 1.19% 308.12
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The confusion matrix of the results of the fifth test was visually analyzed, as shown
in Figure 14. As can be seen from Figure 14, the number of misclassified samples is the
smallest in the feature set constructed using the BCMFDE method. This indicates that the
BCMFDE method has the best feature extraction capability for different fault categories
of bearings.
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In the RF-mRMR–BCMFDE process, the results of the calculation of importance ψ
and sensitivity Φ for each feature are shown in Figure 15. As can be seen in Figure 15, the
high-frequency components also contain features of high sensitivity and high importance.
In addition, the sensitivity and importance of different features have significant differences
and, therefore, suitable feature selection is necessary. In this section, the features with
importance ψ and sensitivity Φ in the top τ = 16 are selected. The selected features are
then used to construct a new feature set.

For quantitative evaluation, the test results of the RF-mRMR, RF, and mRMR feature
selection methods on the KNN classifier are shown in Figure 16. As can be seen from
Figure 16, the RF-mRMR-based feature selection method obtained the best mean accuracy
and the smallest standard deviation.
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In addition, the RF-mRMR method has the same mean accuracy and standard deviation
compared with the results of the BCMFDE method (without using the feature selection
algorithm) in Table 6. This demonstrates that the RF-mRMR feature selection method can
effectively reduce the redundancy of the feature set without affecting the classification effect.

5.2. Example 2: Rolling Bearing Fault Category and Severity Identification
5.2.1. The Test Data

In order to verify the effectiveness of the proposed fault diagnosis method in diag-
nosing different fault categories, as well as the fault severities of rolling bearings, the
experimental verification is carried out on the rolling bearing vibration dataset of Case
Western Reserve University (CWRU). The rolling bearing fault simulation test rig is shown
in Figure 17, which is composed of a motor, a torque transducer, and a dynamometer. The
test bearings support the motor shaft. The kinematics parameters of the test bearing are
listed in Table 7.

Table 7. Parameters of the test bearing.

Parameter Value

Bearing type 6205–2RS JEM SKF
Pitch diameter 39.04 (mm)
Roller diameter 7.94 (mm)

Number of the roller 9
Contact angle 0◦
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Figure 17. Rolling bearing fault simulation test rig.

The accelerometer is placed near the drive end of the motor and is used to acquire
vibration signals. The vibration signals are collected with a 16-channel DAT recorder. The
sampling frequency is 12.00 kHz. Single-point faults are introduced to the test bearing
parts using EDM with fault diameters of 0.18 mm, 0.36 mm, and 0.53 mm, respectively. The
fault depth is 0.28 mm.

The bearing vibration signal acquired at a motor speed of 1797 rpm is selected as
the data sample for analysis. Data samples consist of 10 categories of bearing conditions,
including health baseline and different failure categories and severities, as listed in Table 8.
The typical time histories of the vibration signals corresponding to the 10 categories of
bearings are shown in Figure 18.

Table 8. The detailed descriptions for 10 different working conditions.

Bearing State Defect Size (mm) Abbreviation

Normal 0 N
Roller fault 0.18 R1
Roller fault 0.36 R2
Roller fault 0.53 R3

Inner race fault 0.18 I1
Inner race fault 0.36 I2
Inner race fault 0.53 I3
Outer race fault 0.18 O1
Outer race fault 0.36 O2
Outer race fault 0.53 O3

5.2.2. Diagnosis Results and Analysis

In this section, the vibration signals corresponding to the 10 categories of bearings
obtained in the experiments are processed according to the procedure outlined in Section 4.
For each bearing vibration response, a sliding window of 2048 points is applied and 55
samples are extracted from the original signal.

The evaluation procedure used is similar to Section 4.2. For comparison purposes, the
entropy feature extraction methods based on BCMFDE, HFDE, CMFDE, MFDE, MDE, MPE,
and MSE are used to extract the entropy features of each sample and construct different
feature sets, respectively. The feature sets constructed by different entropy methods are
visualized using the t-SNE algorithm, as shown in Figure 19. According to Figure 19,
qualitatively, the feature set constructed by the BCMFDE method has the best separability
among all the methods used.
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For the quantitative evaluation, the test results of the BCMFDE method and the other
entropy feature extraction methods on the KNN classifier are listed in Table 9. It can be
seen from Table 9 that the feature extraction method based on BCMFDE obtained the best
mean accuracy and the smallest standard deviation.
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Table 9. Testing accuracy and time obtained using different methods.

Different
Methods

Number of Tests
Mean SD

Time
(s)1 2 3 4 5 6 7 8 9 10

BCMFDE 98.18% 98.18% 98.18% 98.18% 98.18% 98.18% 99.09% 99.09% 98.18% 97.27% 98.27% 0.52% 21.30
HFDE 94.55% 92.73% 93.64% 95.45% 92.73% 96.36% 90.90% 95.45% 93.64% 95.45% 94.09% 1.67% 54.83

CMFDE 96.36% 95.45% 98.18% 98.18% 95.45% 97.27% 97.27% 99.09% 96.36% 97.27% 97.09% 1.20% 10.72
MFDE 94.55% 95.45% 94.55% 94.55% 95.45% 96.36% 98.18% 95.45% 96.36% 93.64% 95.45% 1.29% 1.98
MDE 93.64% 91.82% 90.91% 91.82% 92.73% 96.36% 98.18% 91.82% 88.18% 90.91% 92.64% 2.86% 0.63
MPE 19.09% 20.91% 19.09% 19.09% 18.18% 24.55% 20.91% 23.64% 19.09% 19.09% 20.36% 2.15% 2.24
MSE 79.09% 80.91% 80.00% 82.73% 80.00% 81.82% 84.55% 85.45% 82.73% 80.00% 81.73% 2.12% 71.63

The confusion matrix of the results of the fifth test was visually analyzed, as shown
in Figure 20. As can be seen from Figure 20, the number of misclassified samples is the
smallest in the feature set constructed using the BCMFDE method. This indicates that the
BCMFDE method has the best feature extraction capability for different fault severities
of bearings.
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In the RF-mRMR-BCMFDE process, the results of the calculation of importance ψ and
sensitivity Φ for each feature are shown in Figure 21. As can be seen in Figure 21, the
high-frequency components also contain features of higher sensitivity and importance. This
indicates that the high-frequency component information is also important for classification.
In addition, the sensitivity and importance of different features have significant differences
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and, therefore, suitable feature selection is necessary. In this section, the features with
importance ψ and sensitivity Φ in the top τ = 16 are selected.
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For quantitative evaluation, the test results of the RF-mRMR, RF, and mRMR feature
selection methods on the KNN classifier are shown in Figure 22. As can be seen from
Figure 22, the RF-mRMR-based feature selection method obtained the best mean accuracy
and the smallest standard deviation. At the same time, the RF-mRMR method had a higher
mean accuracy and relatively similar standard deviation compared with the results of the
BCMFDE method (without using the feature selection algorithm) in Table 9. The validity of
the RF-mRMR method was further demonstrated.
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6. Conclusions 
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Figure 22. Test accuracy of KNN classifier.

6. Conclusions

For condition assessment of rolling bearings in rotating machinery, a combination of
the BCMFDE-based feature extraction method and RF-mRMR feature selection method
is proposed for the construction of rolling bearing fault feature sets. The BCMFDE can
extract richer feature information from high-frequency components and low-frequency
components for characterizing bearing fault features while The application of RF-mRMR
can effectively select features with high importance and sensitivity suitable for classification,
thus improving efficiency in the classification and identification of fault categories and
reducing the redundancy of the feature sets. The validation results of numerical simulations
and two experiments demonstrate that using the proposed framework, i.e., the combination
of the fault feature sets construction process and the KNN classifier, is able to automatically
identify bearing fault categories, in addition to bearing fault severity. The proposed
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framework provides a new perspective for intelligent bearing fault diagnosis. With some
modifications, it is expected that the framework can be expanded to the intelligent diagnosis
of other types of faults such as gear damage or to the intelligent condition monitoring of a
complete system.
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