
Citation: Tulkinbekov, K.; Kim, D.-H.

Data Modifications in Blockchain

Architecture for Big-Data Processing.

Sensors 2023, 23, 8762. https://

doi.org/10.3390/s23218762

Academic Editor: Alexander

Horst Norta

Received: 3 October 2023

Revised: 21 October 2023

Accepted: 25 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Data Modifications in Blockchain Architecture for
Big-Data Processing
Khikmatullo Tulkinbekov and Deok-Hwan Kim *

Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea;
22202364@inha.edu
* Correspondence: deokhwan@inha.ac.kr; Tel.: +82-(32)-860-7424

Abstract: Due to the immutability of blockchain, the integration with big-data systems creates
limitations on redundancy, scalability, cost, and latency. Additionally, large amounts of invaluable
data result in the waste of energy and storage resources. As a result, the demand for data deletion
possibilities in blockchain has risen over the last decade. Although several prior studies have
introduced methods to address data modification features in blockchain, most of the proposed
systems need shorter deletion delays and security requirements. This study proposes a novel
blockchain architecture called Unlichain that provides data-modification features within public
blockchain architecture. To achieve this goal, Unlichain employed a new indexing technique that
defines the deletion time for predefined lifetime data. The indexing technique also enables the
deletion possibility for unknown lifetime data. Unlichain employs a new metadata verification
consensus among full and meta nodes to avoid delays and extra storage usage. Moreover, Unlichain
motivates network nodes to include more transactions in a new block, which motivates nodes to
scan for expired data during block mining. The evaluations proved that Unlichain architecture
successfully enables instant data deletion while the existing solutions suffer from block dependency
issues. Additionally, storage usage is reduced by up to 10%.

Keywords: blockchain; IoT; big data; data modifications; selective deletion; edge computing

1. Introduction

In recent years, blockchain technology has emerged in several fields. Distributed and
secure peer-to-peer (P2P) networks were first employed in the financial world, leading to
the emergence of new cryptocurrencies and nonfungible token (NFT) exchanges, such as
Bitcoin [1] and Ethereum [2]. These dramatic advancements in modern financial systems
have attracted academic interest in the integration of blockchain into numerous other
fields [3–5], including edge computing [6–8]. Edge computing enables a decentralized
approach to Internet of Things (IoT) data processing to address the centralization limitations
of cloud-based data centers. The edge nodes are located geographically close to the
user plane, which allows localized data handling. Edge computing employs distributed
edge nodes, making it a likely candidate for implementing blockchain protocols. Recent
architectures, such as Recordchain [9] and Groupchain [10], have demonstrated the benefits
of blockchain integration in edge-computing environments.

However, the data processing requirements of these two systems present challenges
owing to technological mismatch. Edge-computing nodes typically handle IoT devices
that generate big data through frequent data updates and deletion operations. However,
a traditional blockchain requires all nodes to share the same database for reliability and
immutability, thereby preventing data alteration upon insertion into the blockchain. Be-
cause all nodes share a single copy of blockchain data, the network can easily reject any
malicious modification. This simple rule has been implemented in cryptocurrencies since
2009, enabling a secure money-exchange protocol without government interference. In

Sensors 2023, 23, 8762. https://doi.org/10.3390/s23218762 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23218762
https://doi.org/10.3390/s23218762
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6048-9392
https://doi.org/10.3390/s23218762
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23218762?type=check_update&version=2

Sensors 2023, 23, 8762 2 of 24

2014, a network called Ethereum [2] offered expanded blockchain capabilities with the
introduction of a smart contract, an executable source code deployed in a blockchain, with
execution on an Ethereum virtual machine (EVM). As a smart contract can include logic,
it allows data modification. However, limitations in size and cost render smart contracts
inapplicable to big-data processing.

Recently, academic attempts have been made to enable data modification in blockchain-
based IoT environments. Although many state-of-the-art methods have been developed [11–14],
no complete approach handles both big data and instant modification operations. Furthermore,
most existing approaches fail to retain the security advantages of blockchains because the
longest-chain rule is broken by deleting existing blocks. Most of these approaches require data
with predefined lifetimes to enable deletions in the blockchain architecture.

Motivated from the limitations mentioned above, this paper proposes a new archi-
tecture called Unlichain (short for Unlimited Blockchain), which inherits all blockchain
features while enabling predefined and on-demand data-modification operations. Similar
to the existing state-of-the-art blockchains, Unlichain employs full and light nodes for
scalability. In addition, Unlichain extends light-node capabilities with metadata-based
transaction verifications to accelerate the confirmation speed. Unlike other existing ap-
proaches, Unlichain focuses on integrity, even for modified and deleted records, and
employs a new block/transaction-indexing method with the possibility of hash and status
referencing. Based on these new indexing methods, Unlichain achieves immediate deletion
over predefined lifetime records. Moreover, on-demand modifications can be performed
using delete/update API. Consequently, Unlichain exhibited advantages in storage utiliza-
tion while retaining the longest-chain rule, proving its effectiveness in terms of security.
Within this scope, this study makes four main contributions:

• Delay-free metadata-based verification of new transactions to achieve high-throughput;
• New block-indexing method to maintain blockchain reliability while enabling deletions;
• Automatic deletion of data with predefined lifetimes;
• Possibility of on-demand deletions through API for undefined lifetime transactions.

The remainder of this paper is organized as follows. Section 2 discusses the related
work, and Section 3 discusses the background and motivations for our research. Section 4
discusses Unlichain architecture and its newly employed features, and Section 5 presents a
detailed discussion of the data-modification features. Section 6 presents the evaluation of
the proposed method and discusses the experimental results. Finally, Section 7 concludes
the paper.

2. Related Work

Because the original purpose of blockchain was to create a distributed and immutable
database with high emphasis on data security, data-deletion operations were initially con-
sidered unnecessary. As the number of application fields has increased, many researchers
have begun to consider the use of blockchain in big-data-oriented systems. Although
data-deletion techniques have not been explicitly discussed in most related studies, these
approaches have focused on enabling new research topics. This section discusses these
state-of-the-art projects, most of which are related to data modification in the blockchain.

This research originated from Ethereum [1], which was introduced as a breakthrough
in blockchain technology with the ability to store executable source codes. This has
motivated developers to digitalize physical and virtual assets and store them in secure
blockchain networks for secure ownership. In addition to their ability to store and execute
logic, smart contracts have also been extended to enable data modification. By calling the
correct logic, developers can update and delete the existing data within a smart contract.
Motivated by smart contracts, projects such as Binance Smart Chains [15], polygons [16],
and Solana [17] have been developed. However, the underlying blockchains continue to
extend most of the consensus from Bitcoin, in which all databases must be broadcast on the
network. This incurs limitations in terms of the latency and storage costs. To avoid these
issues, Ethereum limited the size of each smart contract to 24 KB. Furthermore, the publica-

Sensors 2023, 23, 8762 3 of 24

tion of a smart contract incurs a fee that will be given to the nodes as a reward for securing
the network. In other words, these requirements have motivated developers to avoid
excessively large smart contracts, owing to increased costs. Although this is sufficient for
digitalizing valuable assets and enabling businesses to use new types of cryptocurrencies,
it is not affordable in edge-computing environments. Hyperledger Fabric [18], on the other
hand, introduces the method called “data pruning” and “private data collections”, which
allows the data to have an expiration time and can be deleted later. Even though it seems
like a solution for data modification issues, Hyperledger is only available as a private or
permissioned network where the deployment and maintenance costs are affordable by only
big companies and enterprises. Additionally, due to unpredictable network constraints,
the exact data pruning solutions cannot be applied in public networks. As an alterna-
tive, Sayeed et al. [19] proposed a trustworthy and privacy-preserving framework named
TRUSTEE, integrating Hyperledger Fabric, IPFS, and the latest encryption techniques for
all data operations. Nevertheless, the usage of permissioned networks makes it impractical
in public environments. IPFS is also widely used to integrate different blockchains as
data storage [20]. For example, de Brito Gonçalves et al. [21] proposed IoT data storage
on IPFS with integration of Ethereum smart contracts. This approach can be promising
for precious data management, but integrating smart contracts makes it not affordable in
typical big-data systems.

Another deletion-oriented method was introduced by Yang et al. [22] who devel-
oped a blockchain-based deletion technique for cloud storage. The authors enhanced the
cloud server honesty by employing blockchain network verification for data modification.
However, this technique does not fully focus on deleting blockchain data, but on securing
deletion operations using blockchain. Zhu and Kouhizadeh [23] employed blockchain
because of its traceability features in supply-chain systems where redundant data deletions
are common. Here, a blockchain is implemented to avoid unintended product deletions
and recover deleted data using traceability features. Bosona et al. [24] and Li et al. [25]
also worked on the traceability and access management solutions on supply chain using
the blockchain technology. El Khanboubi et al. [26] employed a blockchain protocol to
enable the smart deletion of duplicated data. In this method, deduplication is easily veri-
fied using blockchain features, and automatic deletions are enabled for duplicate data. Li
et al. [27] introduced another state-of-the-art approach for data auditing in cloud computing
using a blockchain protocol that automates data management. Ra et al. [28] propose a
blockchain-based XOR global-state injection method for content modification. Moreover,
Kim et al. [29] proposed an evaluation model to measure the immutability in different
blockchain technologies. However, all the aforementioned methods focus on employing
blockchain as an additional feature to enable or monitor data modification in cloud-based
systems. Another state-of-the-art approach for secure data management was introduced
by Xu et al. [30] with the implementation of a distributed redactable blockchain free of
third-party participation. Guo et al. [31] also proposed transaction redaction features in
a policy-hidden manner using blockchain. Lu [32] and Valadares et al. [33] compiled a
survey discussing current issues and research gaps pertaining to the use of blockchain in
big-data systems and their privacy features.

Although data deletion from blockchain has not been a central topic in most previ-
ous studies, the adaptation of blockchain to big-data systems has been a research subject
for a long time. Huang et al. [34] proposed the BlockSense architecture, which is a fully
distributed approach to mobile crowd-sensing techniques using a proof-of-data consen-
sus. The authors achieved promising results in terms of data privacy and performance
compared with the Ethereum network. Taloba et al. [35] proposed a hybrid platform for
multimedia data processing designed for IoT–healthcare systems to manage patient-related
data. Heo et al. [36] proposed a storage optimization technique with the help of employing
blockchain for distributed caching. Zhaofeng et al. [37] introduced a trusted data man-
agement system for edge computing. Umoren et al. [38] proposed decentralized storage
for user authentication in fog computing. Kwak et al. [39] proposed a blockchain-based

Sensors 2023, 23, 8762 4 of 24

solar energy trading platform mainly applicable for a smart city environment. On the other
hand, Lian et al. [40] took a different approach to the meaning of big data by designing a
secure and trusted system for storing large transactions generated by international trad-
ing. The IoTA Research Papers [41] employed tangle and coordinator nodes to maintain
consensus in microtransactions. Xu et al. [42] introduced a trustless crowd-sensing tech-
nique for mobile edge using blockchain. Li et al. [43], MEVerse PTE Ltd. [44], and Chia
Network [45] represent group-based consensus approaches for blockchain protocols to
handle the higher throughput inherent in IoT data systems. Although these techniques
do not focus solely on data deletion, the applied environment theoretically provides new
research directions for general data modifications. In parallel to blockchain integration
with big-data-related systems, its security is always becoming an emerging topic. In their
survey paper, Yassine et al. [46] discuss the possible challenges and practical applications
of blockchain in cybersecurity and data privacy. Ali et al. [47] also listed the cutting-edge
secrets of cyberphysical systems in consortium blockchain. Hameed et al. [48] made even
more narrowed discussions addressing the blockchain-based industrial applications, their
perspectives, and possible security threads.

Summarizing, Table 1 compares the related literature regarding data modification
requirements in big-data systems. Since not all related literature describes data modification,
only the closely related works have been selected for comparison. As the table shows, as
the basic blockchain architecture, Bitcoin only has security-related requirements regarding
big-data handling. Ethereum, on the other hand, offers more complex membership rules
with light and full nodes. Also, the smart contracts enable the possibility of data updates.
LiTichain uses a permissioned network for faster block verification. It offers a state-of-the-
art solution for block deletions, direct updates are not provided, and the longest-chain
rule is broken due to deleted blocks. Hillman et al. employ data deletions and updates on
public networks. But still, the longest-chain rule needs to be preserved. Hyperledger Fabric
is a famous blockchain solution that already offers data pruning. Due to its permissioned
nature, Hyperledger does not follow the longest-chain rule and does not affect its security.
However, it still has limitations in terms of instant deletions. Even if the data expires on
Hyperledger Fabric, its removal is delayed until the data pruning occurs. Also, Hyperledger
Fabric uses a private database for an expirable database and only stores the hash in the
blockchain, which means the corresponding hash is never deleted. Kuperberg et al. and
Sayeed et al. employ their solution based on Hyperledger Fabric, and there are many
similarities, except that Kuperberg et al. do not employ off-chain data storage. Kanboubi
et al., on the other hand, take a different approach by using blockchain to control data
deletions on the central cloud. For this purpose, the authors employ a private blockchain
with authorized entity participation. With this help, they can achieve an advantage on
instant deletions, but this idea does not directly employ deletion inside the blockchain
structure. Guo et al. also use a permissioned blockchain and achieve similar achievements
to others. IOTA is also included in comparisons despite not employing data deletions.
However, IOTA stands as one of the popular public blockchains that provides the highest
transaction confirmation at low cost. The table shows that most successful solutions
are based on the permissioned or private blockchain. The reason is that consensus is
more accessible in consortium blockchain when the block structure and rules are changed.
However, the same rules do not apply to public networks. For this reason, Unlichain stands
as the complete solution that offers data modifications in the public blockchain network.

Table 1. Comparison of related literature.

Ref Type D 1 U 2 OC 3 LCR 4 NC 5 IC 6 SD 7 MO 8

Bitcoin [1] Public X X X X X X X X

Ethereum [2] Public X X X X X X X X

LiTichain [11] Permissioned X X X X X X X X

Hillman et al. [12] Public X X X X X X X X

Sensors 2023, 23, 8762 5 of 24

Table 1. Cont.

Ref Type D 1 U 2 OC 3 LCR 4 NC 5 IC 6 SD 7 MO 8

Kuperberg et al. [13] Permissioned X X X X X X X X

Hyperledger Fabric [18] Permissioned X X X X X X X X

Sayeed et al. [19] Permissioned X X X X X X X X

Kanboubi et al. [26] Private X X X X X X X X

Guo et al. [31] Permissioned X X X X X X X X

IOTA [41] Public X X X X X X X X

Unlichain (Proposed) Public X X X X X X X X

1 Delete, 2 Update, 3 On-Chain data handling, 4 Longest-Chain Rule preservation, 5 Node Classification, 6 Instant
Confirmation, 7 Selective Deletion, 8 Membership Optimization. X: feature is available; X: feature is not available.

3. Background and Motivations

Edge computing is a widespread concept with significant advantages in IoT environ-
ments [49–51]. Because they are applied in big-data-processing systems, data security and
dynamic node management are key issues in establishing a reliable environment. By providing
a distributed network, blockchain offers the easiest solution to these problems. These issues and
their possible solutions are discussed in detail in related studies [9,10,52–54]. Particularly, Deepa
et al. [52] writes about the increasing demand for blockchain technology in storing, sharing,
and auditing big data and possible practical applications it may benefit. Because the objective
of the present study was to enable data modification, the content presented herein relates to
topics such as the maintenance of basic features in the presence of new features. When applied
to an IoT environment, edge-computing stores unpredictable user data, where the majority is
meaningful only for a short time. Considering the example of a connected-car environment,
traffic data are valuable only if they can be updated regularly using the most recent information.
Similarly, older data lose their value after the corresponding traffic problems are resolved and
can be deleted to ensure storage efficiency. Because the time sensitivity inherent in IoT data
requires appropriate data management, the blockchain network must fulfill these requirements
for long-term support and avoid data duplication and excess storage costs.

3.1. Blockchain

Figure 1 presents a general overview of blockchain architecture. A blockchain is a
database in which data is stored in linked blocks to form a chain. This database is shared in a
P2P network that comprises several nodes with the same role. As shown in the figure, each
block has header and data components alongside version and size information. The data
component includes the list of transactions the block stores and header includes its metadata.
Because this is a distributed network free of centralized authority, data management and
processing are controlled by general agreement or consensus among nodes.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 25

Figure 1. Blockchain overview.

3.1.1. Consensus
The main purpose of consensus is to enable data security and consistency in distri-

bution, and to avoid byzantine nodes [55] that harm valuable data. According to this
general agreement, the nodes decide whether to accept or reject each new block. A con-
sensus is shared among all nodes, and any malicious activity or changes in general rules
can be easily dismissed by the network. A traditional blockchain (e.g., Bitcoin) employs a
proof-of-work (PoW) consensus, wherein all nodes are required to maintain a copy of the
blockchain. Consensus starts by agreeing with the transaction list when added to a new
block. In the case of Bitcoin, every node employs a data structure called Mempool, which
stores all pending transactions to be saved in future blocks. Whenever a node receives a
new transaction, it propagates to the network, allowing every node to add it to the
Mempool. Each new block was created through a mining process. As the Mempool size is
unbounded, the blockchain protocol sets a threshold for the block size. Subsequently,
block mining is initiated by selecting the transactions. Due to size limitations, the nodes
are expected to sort the pending transactions before selections. The selected transactions
are stored in the data segment with the count, as shown in Figure 1. Based on these
transactions, a unique Merkle root was generated and set with the other parameters in
the header. After calculating the Merkle root, the hash of the final block was set to create a
chain. This method assumes the content of a block and generates a unique hash for the
subsequent block. This process challenges nodes in generating new nonce values, where
H(nonce + data + metadata) satisfies a specified condition. The task of meeting this con-
dition is referred to as difficulty and is updated dynamically by the network at certain
intervals. Complexity increases when more nodes join a network. In Bitcoin, the
block-mining difficulty is managed by the Bits field and usually set as a new block gen-
eration delay (approximately ten minutes). The first node that completes a job (work)
propagates its results to the network for confirmation. The other nodes verify the calcu-
lations and respond to confirmation (proof). Upon receiving sufficient confirmation, the
node appends a new block to the blockchain and receives rewards (coins) for its contri-
bution. Thus, all nodes compete with each other for the right to create new blocks
through mining. PoW is a time- and energy-consuming process that requires significant
output from many nodes in the network.

3.1.2. Transaction Lifecycle
A transaction may have different forms and meanings based on the blockchain

network’s purpose. In most cryptocurrencies like Bitcoin, the transaction refers to a
crypto asset exchange between wallets. However, in smart contract-based blockchains
like Ethereum, transactions may have more advanced forms like new smart contract cre-

Figure 1. Blockchain overview.

Sensors 2023, 23, 8762 6 of 24

3.1.1. Consensus

The main purpose of consensus is to enable data security and consistency in distribu-
tion, and to avoid byzantine nodes [55] that harm valuable data. According to this general
agreement, the nodes decide whether to accept or reject each new block. A consensus is
shared among all nodes, and any malicious activity or changes in general rules can be easily
dismissed by the network. A traditional blockchain (e.g., Bitcoin) employs a proof-of-work
(PoW) consensus, wherein all nodes are required to maintain a copy of the blockchain.
Consensus starts by agreeing with the transaction list when added to a new block. In
the case of Bitcoin, every node employs a data structure called Mempool, which stores
all pending transactions to be saved in future blocks. Whenever a node receives a new
transaction, it propagates to the network, allowing every node to add it to the Mempool.
Each new block was created through a mining process. As the Mempool size is unbounded,
the blockchain protocol sets a threshold for the block size. Subsequently, block mining is
initiated by selecting the transactions. Due to size limitations, the nodes are expected to sort
the pending transactions before selections. The selected transactions are stored in the data
segment with the count, as shown in Figure 1. Based on these transactions, a unique Merkle
root was generated and set with the other parameters in the header. After calculating the
Merkle root, the hash of the final block was set to create a chain. This method assumes
the content of a block and generates a unique hash for the subsequent block. This process
challenges nodes in generating new nonce values, where H(nonce + data + metadata)
satisfies a specified condition. The task of meeting this condition is referred to as difficulty
and is updated dynamically by the network at certain intervals. Complexity increases when
more nodes join a network. In Bitcoin, the block-mining difficulty is managed by the Bits
field and usually set as a new block generation delay (approximately ten minutes). The first
node that completes a job (work) propagates its results to the network for confirmation. The
other nodes verify the calculations and respond to confirmation (proof). Upon receiving
sufficient confirmation, the node appends a new block to the blockchain and receives
rewards (coins) for its contribution. Thus, all nodes compete with each other for the right
to create new blocks through mining. PoW is a time- and energy-consuming process that
requires significant output from many nodes in the network.

3.1.2. Transaction Lifecycle

A transaction may have different forms and meanings based on the blockchain net-
work’s purpose. In most cryptocurrencies like Bitcoin, the transaction refers to a crypto asset
exchange between wallets. However, in smart contract-based blockchains like Ethereum,
transactions may have more advanced forms like new smart contract creation or state
changes. In all cases, a transaction refers to the data that needs to be saved in the distributed
ledger. Compared to a centralized approach, validating transactions in a distributed net-
work is a multistep process. The first challenge starts with the correct propagation to
Mempool. Because Mempool is an in-memory data structure, nodes usually have different
versions. When mining a block, the miner uses the available version, but it does not nec-
essarily mean the latest Mempool. The second step would be a successful selection from
Mempool. As explained in the previous section, the blocks are created in certain intervals
and have size limitations. As a result, transactions are usually sorted by the transaction fee
during the block mining. It may result in a long delay for the small transactions. To avoid
delays, modern blockchains like the updated version of Ethereum offer a “tipping technique”
in which transaction owners pay a tip for the miner to approve the transaction faster. The
final step would be successfully winning the consensus. If another node with a different
Mempool version wins the consensus, the transaction verification may be delayed until the
next block creation.

3.1.3. Merkle Tree

As the blockchain is a distributed network, one of the biggest challenges would be
avoiding multiple confirmations of the same transaction. A Merkle tree is employed as a

Sensors 2023, 23, 8762 7 of 24

part of block mining to achieve integrity. As shown in Figure 1, the Merkle tree uses the
hashes of all selected transactions. One new hash is generated from each of the two hashes,
and the process continues until only one hash is left in the root. The root is saved as a
Merkle root in the block header. This structure allows for efficient and rapid verification of
transactions: to prove the inclusion of a specific transaction within a block, one only needs
to provide a path of hashes up to the Merkle root rather than the entire set of transactions.
Furthermore, any alteration to a single transaction results in a change to the Merkle root,
effectively highlighting any discrepancies in data. This mechanism greatly enhances the
security and scalability of blockchains, making Merkle trees a foundational element in
blockchain’s cryptographic toolkit.

3.1.4. Longest-Chain Rule

As mentioned previously, a traditional blockchain is designed for public networks,
where integrity and security are the highest priorities. Owing to the nature of distributed
computing, different versions of the blockchain may exist during block creation, as shown
in Figure 2. The longest-chain rule has been proven to be the most effective approach
in blockchain protocols to achieve universal reliability in public blockchains. According
to this rule, the node that holds the longest chain achieves consensus and its blockchain
is accepted by all nodes in the network. As shown in the figure, there is more than one
possible candidate for a new block (B2, B4, or B5), shown as dotted squares in red color.
A network usually struggles to choose which version of the chain to select and ignore.
Therefore, blockchain nodes agree on the longest-chain rule, in which the nodes wait until
one of the chains becomes longer with more blocks. In this scenario, all nodes constantly
update their copies of the blockchain with a longer chain to keep their database up to date.
Whenever one of the chains becomes longer as the figure shows in the order of dotted
rectangles in black color, the chain can be accepted by the network and the other versions
are ignored. If an attacker wants to modify existing blockchain data, they must create
a longer chain with updated data and ensure acceptance by the network. However, the
creation of new blocks requires heavy computation and network confirmation from at least
51% of nodes. Thus, an attacker cannot create a longer chain without a consensus. Any
other trial is easily rejected by network nodes with the longest chain.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 25

Figure 2. Longest-chain rule.

3.2. Data Modifications
As explained in the previous section, traditional blockchain consensus strictly pre-

vents data modification after validating a block. This is the primary factor that maintains
blockchain security and is the biggest problem in blockchain integration into big-data
systems. Because the data are stored inside blocks and mutually linked using a hashing
technique, there is no practical possibility of deleting or updating specific data inside
these blocks. Instead, the simplest way to delete data from the blockchain is to delete the
corresponding blocks without violating the chain protocol. Theoretically, there are two
possible ways to enable block deletion without breaching the consensus: (1) deleting the
last block prior to the next block confirmation and (2) deleting the first block by updating
the genesis block location.

The last block deletion (LBD) method was proven to be practically effective by
Pyoung and Baek, who implemented LiTichain [10] for finite-lifetime blocks. They cre-
ated two graphs and sorted the blocks in descending order according to their lifetimes. To
preserve the physical locations and sorting order, each block contains references to both
the preceding and parent blocks. In this scenario, the block to be deleted first is situated
last, thus allowing it to be deleted before the next block arrives. A deletion delay occurs if
a subsequent block arrives before the last block is deleted. To minimize delays, LiTichain
employs a k-height insertion method, in which blocks are not restricted to arrival-time
ordering. Because the parent block-ordering chain is maintained, consensus can be
reached by following the expiration time order. Although this approach represents a
unique solution for implementing the LBD method, it is limited in terms of implementa-
tion because preprocessing is required to sort the data according to expiration time.
Whenever a block is deleted, its entire data storage is lost; therefore, each block can only
store data with a similar expiration time to maintain its integrity. Furthermore, block de-
letions are delayed if a child block has not yet expired and may consume excessive stor-
age. Although LiTichain effectively enables block deletions, this end-to-end delay is not
acceptable for edge computing. Furthermore, block deletion requires a predefined life-
time for each block, which in turn requires data with predefined lifetimes. Consequently,
this method could not be applied to dynamic workloads.

The first block deletion (FBD) approach appears to be inefficient if changing hash
references is required in the blockchain structure. Hillmann et al. introduced a possible
implementation that enables selective deletion [11]. In this approach, a new summary
block is created after a specific threshold, which does not store new data, but summarizes
the previous blocks. In this scenario, the deleted data are skipped, and the new summary
block references the genesis blocks directly. The references to the old blocks are then re-
placed with a new chain extended with summary blocks. This simple approach focuses
on deleting the first block by logically forgetting the path, thereby enabling a new chain
to store only the latest data. Although this technique may seem practical, easy, and effec-
tive, it also incurs a delay until the summary block is created, which has the same draw-
backs as LiTichain in terms of edge-computing requirements. Moreover, both the meth-
ods focus on deleting entire blocks that may violate the longest-chain rule in a block-
chain.

Figure 2. Longest-chain rule.

3.2. Data Modifications

As explained in the previous section, traditional blockchain consensus strictly pre-
vents data modification after validating a block. This is the primary factor that maintains
blockchain security and is the biggest problem in blockchain integration into big-data
systems. Because the data are stored inside blocks and mutually linked using a hashing
technique, there is no practical possibility of deleting or updating specific data inside
these blocks. Instead, the simplest way to delete data from the blockchain is to delete the
corresponding blocks without violating the chain protocol. Theoretically, there are two
possible ways to enable block deletion without breaching the consensus: (1) deleting the
last block prior to the next block confirmation and (2) deleting the first block by updating
the genesis block location.

Sensors 2023, 23, 8762 8 of 24

The last block deletion (LBD) method was proven to be practically effective by Py-
oung and Baek, who implemented LiTichain [10] for finite-lifetime blocks. They created
two graphs and sorted the blocks in descending order according to their lifetimes. To
preserve the physical locations and sorting order, each block contains references to both
the preceding and parent blocks. In this scenario, the block to be deleted first is situated
last, thus allowing it to be deleted before the next block arrives. A deletion delay occurs if a
subsequent block arrives before the last block is deleted. To minimize delays, LiTichain
employs a k-height insertion method, in which blocks are not restricted to arrival-time
ordering. Because the parent block-ordering chain is maintained, consensus can be reached
by following the expiration time order. Although this approach represents a unique solu-
tion for implementing the LBD method, it is limited in terms of implementation because
preprocessing is required to sort the data according to expiration time. Whenever a block
is deleted, its entire data storage is lost; therefore, each block can only store data with a
similar expiration time to maintain its integrity. Furthermore, block deletions are delayed if
a child block has not yet expired and may consume excessive storage. Although LiTichain
effectively enables block deletions, this end-to-end delay is not acceptable for edge com-
puting. Furthermore, block deletion requires a predefined lifetime for each block, which
in turn requires data with predefined lifetimes. Consequently, this method could not be
applied to dynamic workloads.

The first block deletion (FBD) approach appears to be inefficient if changing hash
references is required in the blockchain structure. Hillmann et al. introduced a possible
implementation that enables selective deletion [11]. In this approach, a new summary block
is created after a specific threshold, which does not store new data, but summarizes the
previous blocks. In this scenario, the deleted data are skipped, and the new summary block
references the genesis blocks directly. The references to the old blocks are then replaced
with a new chain extended with summary blocks. This simple approach focuses on deleting
the first block by logically forgetting the path, thereby enabling a new chain to store only the
latest data. Although this technique may seem practical, easy, and effective, it also incurs
a delay until the summary block is created, which has the same drawbacks as LiTichain
in terms of edge-computing requirements. Moreover, both the methods focus on deleting
entire blocks that may violate the longest-chain rule in a blockchain.

Considering the data-modification scenario, both the LBD and FBD approaches focus
on deleting existing blocks from the blockchain, rendering the blockchain vulnerable to
attacks. Therefore, the design of a new architecture with data-modification features requires
careful consideration of the longest-chain rules for reliability and security.

3.3. Motivations

Because the traditional blockchain protocol prevents data modification after block ver-
ification, its integration into edge-computing faces issues related to big-data management.
Although several existing state-of-the-art approaches enable data deletion, there is still a
significant research gap in fulfilling all edge-computing requirements and security con-
cerns. First, the deletion of all blocks from the chain violates the longest-chain rule, thereby
losing the protocol reliability. However, selective deletion of data from within blocks is
impossible because of complex hash-based calculations. Furthermore, the deletion of entire
blocks requires a predefined data lifetime, which cannot be ensured by on-demand data
deletion. Although several studies have focused on the specific elements of data deletion,
the field remains open to a complete solution. Motivated by these observations, we propose
Unlichain as a universal blockchain architecture with unlimited data modification features
for an unlimited workload. Unlichain employs a novel approach for data modification
while maintaining the longest-chain rule. Furthermore, both predefined and on-demand
data deletions were approved using the new indexing method.

Sensors 2023, 23, 8762 9 of 24

4. Unlichain Architecture

This section discusses the implementation and features of Unlichain architecture in
detail. Because the Unlichain network is designed to handle and process big data in
edge-computing environments using key-value storage [56], transactions usually contain
unpredictable and different sized IoT data that may originate from sensors or media devices.
The propagation of large transactions in a blockchain network is expensive in terms of
storage time. To avoid long transmission delays and excessive maintenance costs, Unlichain
uniquely employs two consensus procedures, as shown in Figure 3. Meta-verification
consensus ensures fast transaction verification even prior to the creation of corresponding
blocks, whereas block-creation consensus confirms the transactions are saved without extra
delay and maintains network integrity. Furthermore, the updated membership rules allow
nodes to join the network faster and participate in transaction verification. Ultimately,
Unlichain employs a new data-indexing method within the blocks, which allows users to
modify transactions while maintaining the trace. All these features are discussed in detail
in the following subsections.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 25

Considering the data-modification scenario, both the LBD and FBD approaches focus
on deleting existing blocks from the blockchain, rendering the blockchain vulnerable to
attacks. Therefore, the design of a new architecture with data-modification features re-
quires careful consideration of the longest-chain rules for reliability and security.

3.3. Motivations
Because the traditional blockchain protocol prevents data modification after block

verification, its integration into edge-computing faces issues related to big-data manage-
ment. Although several existing state-of-the-art approaches enable data deletion, there is
still a significant research gap in fulfilling all edge-computing requirements and security
concerns. First, the deletion of all blocks from the chain violates the longest-chain rule,
thereby losing the protocol reliability. However, selective deletion of data from within
blocks is impossible because of complex hash-based calculations. Furthermore, the deletion
of entire blocks requires a predefined data lifetime, which cannot be ensured by
on-demand data deletion. Although several studies have focused on the specific elements
of data deletion, the field remains open to a complete solution. Motivated by these obser-
vations, we propose Unlichain as a universal blockchain architecture with unlimited data
modification features for an unlimited workload. Unlichain employs a novel approach for
data modification while maintaining the longest-chain rule. Furthermore, both predefined
and on-demand data deletions were approved using the new indexing method.

4. Unlichain Architecture
This section discusses the implementation and features of Unlichain architecture in

detail. Because the Unlichain network is designed to handle and process big data in
edge-computing environments using key-value storage [56], transactions usually contain
unpredictable and different sized IoT data that may originate from sensors or media de-
vices. The propagation of large transactions in a blockchain network is expensive in terms
of storage time. To avoid long transmission delays and excessive maintenance costs, Un-
lichain uniquely employs two consensus procedures, as shown in Figure 3. Me-
ta-verification consensus ensures fast transaction verification even prior to the creation of
corresponding blocks, whereas block-creation consensus confirms the transactions are
saved without extra delay and maintains network integrity. Furthermore, the updated
membership rules allow nodes to join the network faster and participate in transaction
verification. Ultimately, Unlichain employs a new data-indexing method within the
blocks, which allows users to modify transactions while maintaining the trace. All these
features are discussed in detail in the following subsections.

Figure 3. Unlichain architecture. Figure 3. Unlichain architecture.

4.1. Nodes

As shown in Figure 3, Unlichain nodes can be categorized into four types:

• Hash node: The lightweight Unlichain node that stores only the chain of blocks con-
structed by fixed-size hashes. Hash nodes play a primary role in verifying new
transactions before creating corresponding blocks.

• Full node: A node containing a full copy of the blockchain data. Full nodes store copies
of the lightweight chain equivalent to hash blocks in addition to copies of actual data.
When participating in a consensus, full nodes can verify transactions without loading
the actual data by using only hashes. However, all the verified data must be further
synchronized. Also, full nodes play an important role in performing deletions on the
expired transactions.

• Owner node: Simultaneously, a node writing a new transaction becomes the owner of
the data. Furthermore, when custom data modification is required, the owner node
plays a primary role in the operation. Due to data privacy constraints, the on-demand
data modifications are allowed only by the owner nodes. With the given privileges,
the owner node has the roles in new data creation, and updates and deletes.

• New node: A new node is one attempting to join the network. According to the
evaluation results, new nodes can be hashed or full nodes. In both cases, right after

Sensors 2023, 23, 8762 10 of 24

importing the hashes, the new node can participate in meta-verification consensus
with the help of optimized membership rules.

Within Unlichain architecture, each node type plays a crucial role in achieving con-
sensus. Although a hash node appears weaker in power than a full node, this node
classification allows servers or computers with low computing power and limited resources
to join a network. Consequently, although these nodes may not have sufficient resources
to mine a block, they are crucial for achieving a meta-verification consensus and verify-
ing newly mined blocks. Furthermore, hash node implementation allows the Unlichain
network to reach a wider area, thereby improving security.

4.2. Consensus

The Unlichain network was designed to satisfy the data processing requirements in
edge-computing environments. Because big-data-oriented systems generally encompass
dynamic IoT devices, end-to-end latency is crucial for reliability. In the traditional approach,
blockchain consensus focuses on heavy computation and continuous broadcasting through
a network to verify transactions. However, this approach requires long transmission delays.
In the context of cryptocurrencies, transaction owners can generally wait as long as they
need to verify their transactions, and security has a higher priority than performance.
However, the same rule cannot be applied to the IoT data. IoT devices generally involve
dynamic motion that requires rapid response times. To satisfy the IoT environmental
requirements while maintaining blockchain security features, Unlichain employs two types
of consensus protocols.

As shown in Figure 3, Unlichain employs a meta-verification consensus (MVC) that is
executed independent from block creation on each transaction creation. As discussed in
Section 3.1, a traditional blockchain uses a data structure called Mempool to store pending
transactions. Unlichain extended the propagation rules of Mempool data using MVC, as
shown in Algorithm 1. When the owner node writes new data, a unique hash is generated
by the hash nodes and broadcast to the network as a new transaction (lines 8~11). At this
step, the hash node waits only a few confirmations enough to generate collective signature
(lines 13~18). The number of confirmations is configurable depending on the network
requirements by the global variable named THRESHOLD, as shown in line 15. After signing
the transaction (line 21), the hash node synchronizes the corresponding data with full nodes,
as shown in line 22. After signing, it is taken as a verified transaction and visible to the
network. In the next step, the block-creation consensus (BCC) is held by full nodes and
ensures that the transaction is written in the next block.

Traditionally, the block size has been fixed; however, the number of transactions has
gradually increased. As a result, the nodes must sort transactions from Mempool to avoid
exceeding the size limitations, which results in a long delay for small transactions. In
the case of Unlichain, Mempool only includes metadata, which requires considerably less
storage. Instead of limiting the block size, Unlichain employs a new rule that allows a node
with more transactions to win the BCC. According to BCC, nodes not only need to solve
the common puzzle, but also need to prove they have the most transaction in the mined
blocks. Thus, miner nodes must select as many transactions as possible from Mempool
and calculate the block hash. Since Mempool is visible to all nodes, claiming all pending
transactions would be insufficient for winning consensus. For creating a longer list of new
transactions, the nodes run an expired data traversing procedure, which is discussed in detail
in the next sections. When verifying the mined block, other nodes check all the selected
transactions with the corresponding data in the full nodes, preventing malicious nodes from
adding falsified transactions to win a consensus. This simple update motivates the nodes
to collect all the pending transactions in the new block. Moreover, this motivates nodes to
actively verify new transactions. In simple terms, a node that verifies more transactions
has a higher probability of winning a consensus.

Sensors 2023, 23, 8762 11 of 24

Algorithm 1 Meta-Verification Consensus

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

Input: entry→ new block to write
network→ current state of network

Output: mempool→ updated list of pending transactions

Procedure

mempool← network.getMempool()
tx← NewTransaction(entry)
tx.status← 0xFFFF. . .
tx.expire← CURRENT_TIMESTAMP + entry.lifetime
Broadcast(network.getAllNodes(), tx)

confirmed← new List
confirmations← 0
while confirmations <= THRESHOLD do

if callback then
confirmed.add(callback.ID)

confirmations← confirmations + 1

CS← Hash(tx.hash + confirmed)
tx.sign(CS)
Broadcast(network.getFullNodes(), entry)
mempool.add(tx)

return mempool

4.3. Membership

Another distinguishable feature of Unlichain compared to related literature would be
its optimized membership rules, as shown in Figure 3. Upon implementation of node clas-
sification, a suitable type must be selected for the new nodes. For this purpose, Unlichain
employs initial evaluation-based membership rules. Whenever a new node wants to join
the network, it receives the latest network metadata and performs self-evaluation. In this
step, the node resources are compared with the expected block-mining difficulty and data
size. If all requirements are satisfied, the node joins the network as a full node. Even if
not, any type of device is allowed to join the Unlichain network as a hash node. Importing
starts with Mempool, which allows the node to join the MVC directly without waiting for
the full blockchain to be imported. If the node passes the evaluations, it imports the latest
chain from the closest full nodes while participating in MVC. Thus, Unlichain allows nodes
to participate in a suitable consensus even with limited hardware resources. Furthermore,
allowing new nodes to join the consensus instantly improves network scalability.

4.4. Block Indexing

Unlichain employs a new block-indexing technique to enable data update and deletion.
The block structure and an example of data modification are shown in Figure 4. Methods
for creating chains by linking block hashes and maintaining block data are inherited from
a common blockchain structure. The figure shows only the most important components
of the block structure used to implement the new method. Traditionally, the transaction
hash and index are used as primary index variables. Unlichain employs a slightly modified
transaction-indexing procedure with two additional variables. The hash stores a unique
hash for the original data that cannot be altered. Modifications to the corresponding data
are stored in the status variable, which defines the type of modification.

The hash is duplicated for the modified data and the latest copy stores the latest
version. Accordingly, the read method scans the hash in the reverse order of the blocks
and finds the latest version. Moreover, all bits of the status field are initially set to one,
indicating that the corresponding data have not yet been modified. Whenever the data
are updated by an external request, a new transaction is created with the same hash as
the original data, and the value of the status field is set as the hash of the updated data.

Sensors 2023, 23, 8762 12 of 24

The presence of a hash value in the status field indicates that the data have been updated
from the previous state. In the case of deletion, the value of the status field was set to
zero so that the state of the original data could be determined. Finally, Unlichain employs
an expire field to track transaction lifetime. When the data have a predefined lifetime,
the field stores the expiration time; otherwise, the value is set to UNDEFINED. Figure 4
illustrates the data-modification interactions with the corresponding records according to
the block-creation timeline. The first block (Block A) was created at the initial point (t0). All
records in Block A had the same value in the status field, indicating that the corresponding
data were not modified. Before creating Block B in t1, two update requests are sent to
T2 and the expiration time is reached at T10. Unlichain protocol allows the creation of a
new transaction for each change in the data, as opposed to deleting the old transaction.
As shown in Block B, records T11 and R23 correspond to records T2 and T10 in Block A,
respectively, based on the hash field. When the data are updated (T2→ T11), a new hash
is generated based on the updated data and is stored in the status field of the new record.
However, the original data hash does not change and is instead stored in the hash field.
This results in different values for the hash and status fields, indicating that the data were
updated. Moreover, there may be cases where multiple updates are requested prior to the
creation of a new block. For example, Block B includes another update for the same record
(T2→ T11→ T19) and the status field stores a different value. During the delete operations
(T10→ T23), data are removed from the full nodes; therefore, the status field is filled with
zeros. Following this rule, T19 of Block B is requested to be deleted at t3, which means
that the operation results are shown when Block C is created using new records. In other
words, data-modification methods do not update or delete existing data or blocks from the
chain. Instead, they create new transactions for modified data in the chain. This approach
may waste storage when maintaining old transactions for deleted data. However, the
maintained data included only metadata from the original data, which were negligible in
size. Furthermore, maintaining a data-modification history enables tracing of transactions
whenever needed, which in turn improves network reliability. Consequently, Unlichain
achieves efficient and utilitarian data modification in the blockchain architecture. Moreover,
a record of the modification history allows browsing of the data history, which provides
integrity to the system.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 25

lichain employs initial evaluation-based membership rules. Whenever a new node wants
to join the network, it receives the latest network metadata and performs self-evaluation.
In this step, the node resources are compared with the expected block-mining difficulty
and data size. If all requirements are satisfied, the node joins the network as a full node.
Even if not, any type of device is allowed to join the Unlichain network as a hash node.
Importing starts with Mempool, which allows the node to join the MVC directly without
waiting for the full blockchain to be imported. If the node passes the evaluations, it im-
ports the latest chain from the closest full nodes while participating in MVC. Thus, Un-
lichain allows nodes to participate in a suitable consensus even with limited hardware
resources. Furthermore, allowing new nodes to join the consensus instantly improves
network scalability.

4.4. Block Indexing
Unlichain employs a new block-indexing technique to enable data update and dele-

tion. The block structure and an example of data modification are shown in Figure 4.
Methods for creating chains by linking block hashes and maintaining block data are in-
herited from a common blockchain structure. The figure shows only the most important
components of the block structure used to implement the new method. Traditionally, the
transaction hash and index are used as primary index variables. Unlichain employs a
slightly modified transaction-indexing procedure with two additional variables. The
hash stores a unique hash for the original data that cannot be altered. Modifications to the
corresponding data are stored in the status variable, which defines the type of modifica-
tion.

Figure 4. Unlichain block indexing.

The hash is duplicated for the modified data and the latest copy stores the latest
version. Accordingly, the read method scans the hash in the reverse order of the blocks
and finds the latest version. Moreover, all bits of the status field are initially set to one,
indicating that the corresponding data have not yet been modified. Whenever the data
are updated by an external request, a new transaction is created with the same hash as
the original data, and the value of the status field is set as the hash of the updated data.
The presence of a hash value in the status field indicates that the data have been updated
from the previous state. In the case of deletion, the value of the status field was set to zero
so that the state of the original data could be determined. Finally, Unlichain employs an
expire field to track transaction lifetime. When the data have a predefined lifetime, the
field stores the expiration time; otherwise, the value is set to UNDEFINED. Figure 4 il-
lustrates the data-modification interactions with the corresponding records according to

Figure 4. Unlichain block indexing.

5. Data Modifications

This section presents a further discussion of Unlichain architecture in terms of han-
dling data modifications. As mentioned in previous sections, Unlichain allows for both
predefined and on-demand data modifications. Based on the block-indexing example

Sensors 2023, 23, 8762 13 of 24

shown in Figure 3, each type is discussed in detail, and its effectiveness is compared with
that of existing solutions.

5.1. Predefined Lifetime

Lifetime-predefined data are the basic type of data used in deletion-oriented blockchain
architectures. Because the blockchain protocol is run by distributed nodes, each node must
agree to a deletion to ensure its integrity. Therefore, the optimal approach writes data with
a predefined expiration time, thereby enabling each node to easily verify deletions using the
original data. Accordingly, Unlichain allows transactions with a predefined expiration time,
which is saved in the “expire” field, as explained in the previous section. After verifying a
transaction, the expiration time cannot be changed, and a countdown is initiated when the
corresponding block is created.

Unlichain employs a new block-indexing method that enables nodes to verify deletions
independently for each datum. Unit-chain consensus forces the nodes to include more
data in each new block. However, according to ordinary rules, the capacity of each node is
limited by its Mempool size. To obtain more transactions, nodes continuously check for
older blocks and expired transactions. When an expired transaction is found, the node
generates a new transaction, indicating that the old transaction has been deleted. Thus, the
nodes achieve longer transaction lists and higher probability of reaching consensus. Nodes
achieve this goal by running the procedure in Algorithm 2 as a part of block mining. As
shown in the procedure, the entire chain is examined (lines 7–17) for an expired transaction.
Whenever an expired transaction is found (line 13), it is added to Mempool (lines 14–17).
When a new block is mined and shared with the network, the other nodes thoroughly
verify each transaction in terms of expiration dates. If a malicious node attempts to delete
an unexpired transaction to gain consensus, the network invalidates the request and block
mining is rejected. Upon creation of a block, the full nodes perform any required deletions
on the original data and update the blockchain state.

Algorithm 2 Expired data traversing procedure

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Input: chain→ chain of blocks
mempool→ new transactions to be added in a new block

Output: mempool→ updated list of transactions

Procedure

for i = 0; i < chain.length(); i++ do
block← chain.get(i)

for j = 0; j < block.data.length(); j++ do
tx← block.data.get(j)

if block.timestamp + tx.expire >= date.now() then
tx.status← 0x00. . .00
tx.expire← NULL
tx.data← NULL
mempool.add(tx)

return mempool

This unique approach for enabling deletions among predefined transactions allows
Unlichain architecture to eliminate data without deleting all the blocks from the chain.
Simultaneously, it forces nodes to continuously check for expirations, thereby avoiding
long delays before deletions. Moreover, the procedure requires only metadata that contain
expiration information. Therefore, both meta nodes and full nodes can easily participate in
the mining process.

Sensors 2023, 23, 8762 14 of 24

5.2. Custom Modifications

Although predefined lifetime transactions are efficient in achieving deletion consensus,
the IoT data environment is dynamic and cannot always provide the expected lifetime for
all data. Deletion requests are typically generated dynamically under specific circumstances.
Blockchain networks must handle these requests accordingly. To satisfy this requirement,
Unlichain employs delete() and update() methods that enable custom data modifications.
However, verification of a network is challenging when deleting data without a predefined
lifetime. Consequently, these modification requests can only be approved by the owner’s
device by following specified steps:

1. A deletion request is made using an IoT device. As IoT devices move unpredictably,
requests are sent to the closest node.

2. The receiving node verifies the request source by using the original data. Because
only the data owner can make modifications, a request from a different IoT device is
rejected by the node.

3. The receiving node then broadcasts the request to the network. In this step, the delete()
or update() API is used, depending on the request type.

4. Network nodes verify the source once more and confirm the transaction, thereby
enabling modifications.

5. The new transaction indicating the data modification is added to the Mempool.

When a corresponding block is created, all nodes update the blockchain state based on
new transactions. Thus, Unlichain achieved an efficient approach to custom data modification.

The final step of data deletion is synchronizing the deleted transactions with the full
nodes. Full nodes execute the data removal procedure during every new block creation,
as shown in Algorithm 3. The procedure takes the new block as input parameters. Since
predefined and custom deletions are saved as new transactions in the global blockchain
state, the new block keeps the information about both deletions. First, the entire block
is checked for transactions that contain the deletion information, as shown in lines 5–10.
The transaction is deleted if the status field is set to 0x00. . .00 (line 9). When the deleted
transaction is found, the address of its corresponding data is deleted (line 10). It is a simple
procedure that does not have much energy in full nodes. However, executing the same
steps in each block creation allows all full nodes to keep updating the latest state of the
blockchain without broadcasting and confirmations.

Algorithm 3 Data removal procedure

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

Input: block→ new verified block

Procedure

for i = 0; i < block.data.length(); i++) do
tx← block.data.get(j)

if tx.status == 0x00. . .00 then
tx_old← getTransaction(tx.hash)
Delete(&tx_old.data)

5.3. Efficiency

Because data deletion is a central advantage of Unlichain, it is important to examine
its efficiency. As discussed in previous sections, Unlichain employs an efficient consensus
technique to verify data modifications, allowing for both deletions and updates when
custom requests are sent by the owner’s device. When these modifications are made, the
result is reflected in the subsequent block and the state is updated for all nodes. Ultimately,
it is safe to say that Unlichain achieves almost constant delay when deleting data. The
deletion efficiency of Unlichain has also been proven using a computational approach.

Sensors 2023, 23, 8762 15 of 24

First, let us consider the general case of performing deletions on the distributed network.
According to the blockchain hashing protocol, the deletions can only be performed in the
opposite order of block creation. Algorithm 4 shows the calculation steps of possible delay
caused by this rule. When we want to calculate the expected delay, the first step is to find
the optimal case without any block dependency. In this way, the deletion only waits until
the next block generation, in other words, only one block generation interval (lines 7~10).
The next step is calculating the dependent blocks until the data become available to delete.
The same interval delay and garbage collection delay (GC_DELAY) are added for each
dependent block (lines 12~17). For comparison purposes, let us generalize the procedure for
all deletion protocols. The block creation interval (line 9) can be taken as the unavoidable
constant delay. Also, additional intervals for each dependent block (line 14) may vary for
different blockchains. So, it can be taken as a configurable delay function. Finally, the
garbage collection delay (line 15) may not necessarily take a role in creating delays since
it can be performed in the background. Instead, we can introduce a control function for
extra delay for block indexing. Based on these observations, and motivated by adapting
the optimal control law [57] to the deletion delay cost scenario, the mathematical form of
the generalized delay function would be as follows:

D = C0 +
n

∑
k=1

(G(k) + u(k)), (1)

where C0 is a constant for deleting the selected data or blocks. Assuming that there are
n parent or child blocks on which the selected data are dependent, G(k) is defined as the
delay function for notifying or deleting each parent/child block, and u(k) is the control
function for directing between blocks.

Algorithm 4 Generalized delay calculation procedure

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Input: tx→ transaction to be deleted
chain→ current state of blockchain

Output: D→ expected delay until the deletion

Procedure

last_block← chain.get(chain.length - 1)
prev_block← chain.get(chain.length - 2)
interval← last_block.timestamp – prev_block.timestamp
D← interval

tx_block← chain.get(tx.block)
while tx_block != last_block do

D← D + interval
D← D + GC_DELAY

tx_block← chain.get(tx_block + 1)

return D

As discussed in Section 3, LiTichain focuses on deleting the last block. If data from the
middle block were selected for deletion, there would be a delay until all child blocks were
located after the selected block was deleted. The deletion cost and delay for each child block
are equivalent and defined as G(1) = G(2) =. . . = G(n). Furthermore, there is no requirement
for a control or preprocessing function prior to each block deletion, because the blocks are
located in order. Therefore, u(0) = u(1) = . . . = u(n) = 0. Based on these observations, the
total delay function for LiTichain (DL) for deleting arbitrarily selected data from LiTichain
can be defined as

DL = C0 + n× G(n), (2)

Sensors 2023, 23, 8762 16 of 24

The equation shows that the effect of u(k) is zero, where LiTichain does not need to
depend on routing between blocks to perform deletion. However, deleting each of the last
blocks marked for deletion is expensive. Therefore, the deletion cost is defined as n ×G(n).

The SDM technique focuses on forgetting the first n blocks by mining a new summary
block and changing its location within the genesis block. In addition to LiTichain, SDM
does not delete each block individually; instead, it creates a single new block. Thus,
∑n

k=1 G(k) = G(0). Moreover, the control function costs for each forgotten block are
equivalent until the summary block is created. Thus, u(0) = u(1) = . . . = u(n). Therefore, the
final equation for the deletion delay in the SDM (DSDM) of arbitrarily selected data is

DSDM = C0 + G(0) + n× u(n), (3)

In other words, deletion is performed by creating only one block using SDM; thus, the
cost is G(0). However, before creating the blocks, the SDM reads all the deleted blocks to
create summary transactions, and there is an additional cost n ×u(n).

Finally, unlike the other two methods, Unlichain does not rely on parent or child blocks
to delete the data. Instead, the selected data can be deleted from the full nodes, irrespective of
the reference hash location in the blockchain. Thus, G(1) = G(2) =. . . = G(n) = 0, and u(0) = u(1)
= . . . = u(n) = 0. Substituting these values into the original equation yields the following delay
for Unlichain (DU):

DU = C0, (4)

Equations (2) and (3) are still ambiguous in drawing a conclusion regarding better
performance, as they rely on configuration-dependent variables, such as G and u. However,
Equation (4) proves that Unlichain deletion offers superior performance with a nearly
constant time delay.

6. Discussion

This section discusses the importance of data modifications in blockchain architecture
and Unlichain’s advantages over the existing state-of-the-art solutions.

Table 2 shows the key differences among four blockchain solutions employing data
deletions in different consensus techniques. LiTichain uses a permissioned network to
achieve more secure and faster transaction confirmation. The authors mention that PBFT
can be an acceptable consensus technique considering the organization-managed network
environment. Within this scope, they employ arrival-time and expiration-time ordering
techniques that locate the blocks in the tree-like structure based on their expiration time.
When the expiration time is reached, the block can be deleted if it does not have a child
block. Using this approach, the write performance can vary depending on the configura-
tion and applied environment. In the best-case situations, PBFT consensus may achieve a
promisingly fast performance in private networks. Hillman et al. introduced the concept of
selective deletions (SDM) free of specific consensus dependency. The authors claim that
the concept can be applied to any consensus. The deletion approach involves creating
the summary blocks in certain intervals that tend to forget expired data from previous
blocks. The write performance is highly dependent on the applied consensus technique,
and it can either be very fast (private network) or slow (PoW). The deletion performance,
conversely, depends on the creation of summary blocks and the block creation interval.
Hyperledger Fabric also employs a configurable consensus based on the organization’s
needs. However, in most cases, the transactions are confirmed using the endorsement
technique instead of common consensus. Also, this benefits in achieving very fast write
performance (~2000 TPS). Hyperledger Fabric also offers a deletion technique by data prun-
ing. This approach stores the actual data in world-state databases as key-value pairs. The
corresponding hash is shared in the blockchain. When the data state is changed to delete,
the key-value pairs can be deleted from the world state. However, data pruning is not
automated but depends on the administrator command. So, there might be unpredictable
delays before the data are deleted.

Sensors 2023, 23, 8762 17 of 24

Table 2. Key differences among four blockchain solutions.

Ref. Consensus Deletion Method Write
Performance

Delete
Performance

LiTichain [11] Permissioned/
PBFT

Sort the blocks in deletion
order: First to delete is

confirmed last

Configuration
dependent

(private/fast)

Configurable
(instant at k = 0)

Hillman et al. [12] Public/
Configurable

Creating a summary block:
Forget the deleted data

Consensus
dependent

Configurable:
BI 1 × SBI 2

Hyperledger Fabric
[18]

Permissioned/
Endorsement

On-demand data pruning on
world state: Transaction

history remains in
blockchain

Configuration
dependent

(very fast ~2000 TPS 3)

Dependent on
external command

Unlichain (Proposed) Public
MVC/BCC

Automated data cleaning on
each block creation:

Transaction history remains
in blockchain

Proportional to
network size
(1000 TPS~)

Instant

1 block creation interval, 2 summary block creation interval, 3 transactions per second.

On the other hand, Unlichain employs the combination of MVC and BCC for verifying
and confirming transactions. First, MVC plays an essential role in achieving scalability in
write performance. As Algorithm 1 states, the MVC waits for the confirmations only long
enough to sign the transaction. As the network becomes larger, more confirmations are
possible. Naturally, it results in increasing the write performance. Based on the evaluations
for the simulation environment, which will be discussed in the next section, Unlichain can
achieve over 1000 TPS, and this performance increases proportional to the network size.
Considering the public blockchain scenario, this performance is very promising in big-data
processing. In addition to MVC, Unlichain employs node classification by separating full
and meta nodes. Apart from Hyperledger Fabric, it creates the opportunity to automate
data cleaning for each block creation. Considering these advantages, Unlichain achieves
instant data deletion.

7. Evaluations

Evaluations of Unlichain performance and its comparison with other techniques were
performed in two ways: (1) in an edge-computing environment as the target goal and
(2) MATLAB (version: R2019a) simulations on different use cases.

7.1. Environment and Workload Setup

The evaluations were performed on a sample edge-computing environment setup
using different types of nodes, as listed in Table 3. Because Unlichain architecture is
designed for both high- and low-computing nodes to achieve mutual consensus, it is
important for the testing environment to satisfy these requirements. For this purpose,
Amazon EC2 instances and local servers were selected as examples of higher resources.
Moreover, embedded devices, such as Jetson AGX Xavier, were selected to fill the network
with fewer computing nodes. All of these nodes are connected to each other as an edge-
computing network. Thus, the Amazon EC2 instance is not used for cloud storage but
instead as an ordinary edge-node simulating different locations in the network. Thus, the
simulated environment helps to evaluate the locality factors in data transmission. Moreover,
considering the computing capabilities of the embedded devices, the hardware resources
of the three Jetson AGX Xavier boards were orchestrated for one edge node (one master
and two workers). This technique allows a blockchain node to remain active, even if the
number of tasks increases at the edge. The master node ensures that one board always
runs an unlicensed instance. Considering the big-data environment, the storage parameters
shown in Table 3 may seem limited. However, the primary purpose of the evaluations is to
address the data deletion capabilities of the proposed blockchain. So, the workloads are

Sensors 2023, 23, 8762 18 of 24

designed in a deletion-intensive manner where the total storage usage would stay the same
over 500 GB. Even in the worst cases, the total storage usage would increase to 2.5 TB. So,
the nodes are capable of dynamically allocating enough storage in runtime.

Table 3. Node specifications.

Name CPU DRAM Storage

Jetson AGX Xavier 4 × ARMv7 Processors 16 GB 1 TB

Local servers
8 × AMD Ryzen 7 1700 CPUs 3.0 GHz 16 GB 3 TB

2 × Intel Core i5 CPUs 3.3 GHz 8 GB 3 TB
Amazon EC2 (i3en.xlarge) 4 × vCPUs 2.5 GHz 32 GB 2.5 TB

Furthermore, three evaluation workloads were prepared, as shown in Figure 5. Be-
cause the existing approaches cannot perform on-demand deletions, the default config-
uration of workloads encompasses only predefined lifetime data. A total of 2.5 million
entries were uniformly distributed for more than 4900 different lifetimes, ranging between
100 and 5000 s. In this scenario, each range includes approximately 500 entries. According
to the nature of the blockchain, all data are converted to bytecodes before storage is saved.
Moreover, the Unlichain protocol uses metadata based on a fixed-size hash. This implies
that the size of the data does not affect performance. Based on these observations, entries
were generated using a random algorithm with sizes varying from 50 B to 1 MB to simulate
an edge-computing environment. All the data were rearranged into three types of work-
loads, as shown in Figure 5. The workloads were designed as the longest first in Figure 5a,
the shortest first in Figure 5b, and bimodal distributions in Figure 5c. For an independent
evaluation, each workload was mixed with a certain percentage of undefined lifetime data.
For example, Workload A (30%) indicates that Workload A was employed, and 30% of the
entries had no predefined lifetimes.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 25

Table 3. Node specifications.

Name CPU DRAM Storage
Jetson AGX Xavier 4 × ARMv7 Processors 16 GB 1 TB

Local servers 8 × AMD Ryzen 7 1700 CPUs 3.0 GHz 16 GB 3 TB
2 × Intel Core i5 CPUs 3.3 GHz 8 GB 3 TB

Amazon EC2 (i3en.xlarge) 4 × vCPUs 2.5GHz 32 GB 2.5 TB

Furthermore, three evaluation workloads were prepared, as shown in Figure 5. Be-
cause the existing approaches cannot perform on-demand deletions, the default config-
uration of workloads encompasses only predefined lifetime data. A total of 2.5 million
entries were uniformly distributed for more than 4900 different lifetimes, ranging be-
tween 100 and 5000 s. In this scenario, each range includes approximately 500 entries.
According to the nature of the blockchain, all data are converted to bytecodes before
storage is saved. Moreover, the Unlichain protocol uses metadata based on a fixed-size
hash. This implies that the size of the data does not affect performance. Based on these
observations, entries were generated using a random algorithm with sizes varying from
50 B to 1 MB to simulate an edge-computing environment. All the data were rearranged
into three types of workloads, as shown in Figure 5. The workloads were designed as the
longest first in Figure 5a, the shortest first in Figure 5b, and bimodal distributions in
Figure 5c. For an independent evaluation, each workload was mixed with a certain per-
centage of undefined lifetime data. For example, Workload A (30%) indicates that Work-
load A was employed, and 30% of the entries had no predefined lifetimes.

(a) (b) (c)

Figure 5. Evaluation workload setup: (a) Workload A; (b) Workload B; (c) Workload C.

7.2. Delete Performance
For real-world evaluations, we selected prototypes of LiTichain and SDM block-

chains as the sample LBD and FBD methods, respectively. Because none of these methods
have been deployed in public blockchains, we used the previously described simulation
edge-computing environment. To ensure a realistic and fair evaluation, the written order
was distributed randomly without a specific order for a random workload. The block
dependencies for the workloads with three blockchains are plotted in Figure 6. The
evaluations confirm the observations and mathematical analysis in Section 5.3. As de-
scribed in Section 3.2, LiTichain implemented a k-height insertion architecture with a
configurable variable k; smaller values for k result in following only the expiration time
ordering, where the linear order of blocks is lost, in turn providing more space to locate
the latest blocks and minimize deletion delay. Three values of k (∞, 10, and 0) were used
for the evaluations. As shown in the figure, by decreasing the value of k, LiTichain

Figure 5. Evaluation workload setup: (a) Workload A; (b) Workload B; (c) Workload C.

7.2. Delete Performance

For real-world evaluations, we selected prototypes of LiTichain and SDM blockchains
as the sample LBD and FBD methods, respectively. Because none of these methods have
been deployed in public blockchains, we used the previously described simulation edge-
computing environment. To ensure a realistic and fair evaluation, the written order was dis-
tributed randomly without a specific order for a random workload. The block dependencies
for the workloads with three blockchains are plotted in Figure 6. The evaluations confirm
the observations and mathematical analysis in Section 5.3. As described in Section 3.2,
LiTichain implemented a k-height insertion architecture with a configurable variable k;
smaller values for k result in following only the expiration time ordering, where the linear
order of blocks is lost, in turn providing more space to locate the latest blocks and minimize

Sensors 2023, 23, 8762 19 of 24

deletion delay. Three values of k (∞, 10, and 0) were used for the evaluations. As shown
in the figure, by decreasing the value of k, LiTichain achieves more stable performance,
changing from an exponential rate to an almost constant performance. This behavior can
also be explained using Equation (2), which shows the block dependency of LiTichain.
However, setting k = 0 makes the LiTichain architecture the most vulnerable to possible
attacks; thus, its performance advantage is leveraged. Furthermore, as the sampling size in-
creased, LiTichain still converged after approximately two block dependencies on average,
which is unacceptable in an edge-computing environment. In contrast, SDM exhibited a
more unpredictable performance than the FBD method as its deletion performance depends
mostly on the control function, as shown in Equation (3). In the real-life environment,
the cost of control function increases as the data size becomes larger. According to the
SDM protocol, summary blocks were generated based on a threshold. Consequently, the
number of block dependencies approaches a threshold value with an increase in sampling.
Under sample threshold values of 10 and 15, the figure shows a linear increase in SDM
dependencies. Because Unlichain does not rely on deleting entire blocks to perform data
deletion, it exhibits the most promising results with a constant performance in the edge
environment. The unit-chain protocol motivates the confirmation of data modification in
each subsequent block, keeping the dependent block constant at one.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 25

achieves more stable performance, changing from an exponential rate to an almost con-
stant performance. This behavior can also be explained using Equation (2), which shows
the block dependency of LiTichain. However, setting k = 0 makes the LiTichain archi-
tecture the most vulnerable to possible attacks; thus, its performance advantage is lev-
eraged. Furthermore, as the sampling size increased, LiTichain still converged after ap-
proximately two block dependencies on average, which is unacceptable in an
edge-computing environment. In contrast, SDM exhibited a more unpredictable perfor-
mance than the FBD method as its deletion performance depends mostly on the control
function, as shown in Equation (3). In the real-life environment, the cost of control func-
tion increases as the data size becomes larger. According to the SDM protocol, summary
blocks were generated based on a threshold. Consequently, the number of block de-
pendencies approaches a threshold value with an increase in sampling. Under sample
threshold values of 10 and 15, the figure shows a linear increase in SDM dependencies.
Because Unlichain does not rely on deleting entire blocks to perform data deletion, it ex-
hibits the most promising results with a constant performance in the edge environment.
The unit-chain protocol motivates the confirmation of data modification in each subse-
quent block, keeping the dependent block constant at one.

Figure 6. Delete performance.

7.3. Block Height
The block height is a fundamental blockchain feature that maintains security. Be-

cause new blocks are created owing to certain difficulties, gaining height requires multi-
ple time-consuming iterations for the same procedure. Even if malicious nodes provide
sufficient resources to recalculate hashes, they may quickly reach the original block
height owing to time constraints. Consequently, maintaining the latest block height and
following the longest-chain rule is a basic, unreplaceable blockchain protocol. The eval-
uation of the maintenance of block height is also an important factor. The results of this
evaluation criterion are shown in Figure 7, with the default configurations used for all
methods. The block height for LiTichain varies with respect to the workload according to
its architecture, whereas SDM and Unlichain maintain the same block height for all
workloads. As shown in the results, LiTichain yielded the best performance on Workload
B. However, this also proves that LiTichain exhibited the worst performance on the exact
workload in terms of delete latency. Furthermore, changes in block height are unpre-
dictable for Workloads A and C because certain blocks rely on the next blocks before de-
letion. Once the requirements were satisfied, several blocks were deleted simultaneously,
thereby reducing the chain height. It is also noteworthy that the LiTichain block height
converges to zero at the end of the workload, indicating that the architecture does not
have a chain in finite-lifetime environments. In contrast, SDM repeats the block height
based on the summary block interval, with new blocks created until the interval is met
and replaced by one block. Consequently, SDM has only one block at the end of the
workload. In terms of block height, Unlichain exhibited the most stable performance,

Figure 6. Delete performance.

7.3. Block Height

The block height is a fundamental blockchain feature that maintains security. Because
new blocks are created owing to certain difficulties, gaining height requires multiple time-
consuming iterations for the same procedure. Even if malicious nodes provide sufficient
resources to recalculate hashes, they may quickly reach the original block height owing
to time constraints. Consequently, maintaining the latest block height and following the
longest-chain rule is a basic, unreplaceable blockchain protocol. The evaluation of the
maintenance of block height is also an important factor. The results of this evaluation
criterion are shown in Figure 7, with the default configurations used for all methods. The
block height for LiTichain varies with respect to the workload according to its architecture,
whereas SDM and Unlichain maintain the same block height for all workloads. As shown
in the results, LiTichain yielded the best performance on Workload B. However, this also
proves that LiTichain exhibited the worst performance on the exact workload in terms of
delete latency. Furthermore, changes in block height are unpredictable for Workloads A
and C because certain blocks rely on the next blocks before deletion. Once the requirements
were satisfied, several blocks were deleted simultaneously, thereby reducing the chain
height. It is also noteworthy that the LiTichain block height converges to zero at the end
of the workload, indicating that the architecture does not have a chain in finite-lifetime
environments. In contrast, SDM repeats the block height based on the summary block
interval, with new blocks created until the interval is met and replaced by one block.
Consequently, SDM has only one block at the end of the workload. In terms of block height,

Sensors 2023, 23, 8762 20 of 24

Unlichain exhibited the most stable performance, maintaining all blocks irrespective of the
deleted data. Even for deleted data, Unlichain maintains the metadata in the blockchain.
Thus, only Unlichain maintains the longest-chain rule and achieves sufficient reliability.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 25

maintaining all blocks irrespective of the deleted data. Even for deleted data, Unlichain
maintains the metadata in the blockchain. Thus, only Unlichain maintains the long-
est-chain rule and achieves sufficient reliability.

Figure 7. Block height.

7.4. Storage Efficiency
Subsequent evaluations of the three blockchains were performed to determine the

storage efficiency while employing the deletion technique. The storage cost was recorded
for each blockchain after each workload was tested; the results are shown in Figure 8. In
these evaluations, the storage cost defines the storage usage from data-lifetime expiration
to when the next value is written. This indicates that the storage is used even when it is
freed for the next data to be written. With the help of higher values for the configurable
variable k, LiTichain achieved better performance than SDM with Workloads A and C;
however, it still could not handle random workloads. Generally, both LiTichain and SDM
use at least 70% of the storage and incur unacceptable costs in terms of efficiency. By
contrast, Unlichain deletes the data within the next block creation and preserves the
corresponding metadata in the blockchain. The total cost to maintain the data until syn-
chronization was complete and the metadata size reached was up to 10%, relative to the
actual size. Although this may seem unnecessary for storage usage, it is more efficient
than the other two methods while offering additional reliability features.

Figure 8. Storage efficiency.

7.5. MATLAB Simulations
For comparison, prototypes of LiTichain, SDM, and Unlichain were implemented in

the MATLAB environment, and the evaluation results are shown in Figure 9. To obtain
results, each method was tested for each workload at different sampling intervals. In
these experiments, sampling defined the number of entries per second. Assuming that
the blocks were created in order at constant time intervals, the average result for each

Figure 7. Block height.

7.4. Storage Efficiency

Subsequent evaluations of the three blockchains were performed to determine the
storage efficiency while employing the deletion technique. The storage cost was recorded
for each blockchain after each workload was tested; the results are shown in Figure 8. In
these evaluations, the storage cost defines the storage usage from data-lifetime expiration to
when the next value is written. This indicates that the storage is used even when it is freed
for the next data to be written. With the help of higher values for the configurable variable k,
LiTichain achieved better performance than SDM with Workloads A and C; however, it still
could not handle random workloads. Generally, both LiTichain and SDM use at least 70%
of the storage and incur unacceptable costs in terms of efficiency. By contrast, Unlichain
deletes the data within the next block creation and preserves the corresponding metadata
in the blockchain. The total cost to maintain the data until synchronization was complete
and the metadata size reached was up to 10%, relative to the actual size. Although this may
seem unnecessary for storage usage, it is more efficient than the other two methods while
offering additional reliability features.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 25

maintaining all blocks irrespective of the deleted data. Even for deleted data, Unlichain
maintains the metadata in the blockchain. Thus, only Unlichain maintains the long-
est-chain rule and achieves sufficient reliability.

Figure 7. Block height.

7.4. Storage Efficiency
Subsequent evaluations of the three blockchains were performed to determine the

storage efficiency while employing the deletion technique. The storage cost was recorded
for each blockchain after each workload was tested; the results are shown in Figure 8. In
these evaluations, the storage cost defines the storage usage from data-lifetime expiration
to when the next value is written. This indicates that the storage is used even when it is
freed for the next data to be written. With the help of higher values for the configurable
variable k, LiTichain achieved better performance than SDM with Workloads A and C;
however, it still could not handle random workloads. Generally, both LiTichain and SDM
use at least 70% of the storage and incur unacceptable costs in terms of efficiency. By
contrast, Unlichain deletes the data within the next block creation and preserves the
corresponding metadata in the blockchain. The total cost to maintain the data until syn-
chronization was complete and the metadata size reached was up to 10%, relative to the
actual size. Although this may seem unnecessary for storage usage, it is more efficient
than the other two methods while offering additional reliability features.

Figure 8. Storage efficiency.

7.5. MATLAB Simulations
For comparison, prototypes of LiTichain, SDM, and Unlichain were implemented in

the MATLAB environment, and the evaluation results are shown in Figure 9. To obtain
results, each method was tested for each workload at different sampling intervals. In
these experiments, sampling defined the number of entries per second. Assuming that
the blocks were created in order at constant time intervals, the average result for each

Figure 8. Storage efficiency.

7.5. MATLAB Simulations

For comparison, prototypes of LiTichain, SDM, and Unlichain were implemented in
the MATLAB environment, and the evaluation results are shown in Figure 9. To obtain
results, each method was tested for each workload at different sampling intervals. In
these experiments, sampling defined the number of entries per second. Assuming that
the blocks were created in order at constant time intervals, the average result for each

Sensors 2023, 23, 8762 21 of 24

interval was recorded. The simulations showed that the general behavior of all methods
came to a general view for all workloads, as depicted in Figure 9a. The figure shows the
average number of dependent blocks that the expired data must wait for. Because the
LiTichain and SDM methods focus on deleting entire blocks, the expiration times of the
first-to-expire data from each block were used for evaluation. LiTichain exhibited the worst
overall performance for smaller samplings, with an exponential decrease as the sampling
increased. This may be explained by reliance on subsequent blocks to expire before deletion.
Because the blocks are generated in order with a specific time interval, the lifetime count
starts only after the data are written to each block. As the definition states, new blocks are
always be created prior to the expiration time for the previous block, which means that
in small samplings, the first blocks have to wait until the last block is deleted, resulting
in an excessively high dependency. Even for different workloads, the general scenario is
comparable. Unlike LiTichain, the SDM method does not rely on the lifetime of the next
block, allowing blocks to be deleted immediately upon expiration. Consequently, SDM
exhibited more promising results, with a linear decrease as the sampling increased. Even
though the general view is similar, the heights of the graphs changed according to different
workloads and block-creation intervals. From the simulations, Unlichain produced the
most promising results with an almost constant dependency for all workloads and cases.
Unlichain protocol does not require block deletions to perform the operation; instead, it
relies solely on the validation of new transactions. As a result, there is always a single-block
dependency: a new block to write the deletion record.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 25

interval was recorded. The simulations showed that the general behavior of all methods
came to a general view for all workloads, as depicted in Figure 9a. The figure shows the
average number of dependent blocks that the expired data must wait for. Because the
LiTichain and SDM methods focus on deleting entire blocks, the expiration times of the
first-to-expire data from each block were used for evaluation. LiTichain exhibited the
worst overall performance for smaller samplings, with an exponential decrease as the
sampling increased. This may be explained by reliance on subsequent blocks to expire
before deletion. Because the blocks are generated in order with a specific time interval,
the lifetime count starts only after the data are written to each block. As the definition
states, new blocks are always be created prior to the expiration time for the previous
block, which means that in small samplings, the first blocks have to wait until the last
block is deleted, resulting in an excessively high dependency. Even for different work-
loads, the general scenario is comparable. Unlike LiTichain, the SDM method does not
rely on the lifetime of the next block, allowing blocks to be deleted immediately upon
expiration. Consequently, SDM exhibited more promising results, with a linear decrease
as the sampling increased. Even though the general view is similar, the heights of the
graphs changed according to different workloads and block-creation intervals. From the
simulations, Unlichain produced the most promising results with an almost constant
dependency for all workloads and cases. Unlichain protocol does not require block dele-
tions to perform the operation; instead, it relies solely on the validation of new transac-
tions. As a result, there is always a single-block dependency: a new block to write the
deletion record.

(a) (b)

Figure 9. MATLAB simulation results: (a) overall; (b) block dependency.

Figure 9a provides an overall view of the scenario, whereas Figure 9b presents more
detailed information pertaining to the simulation results, showing the minimum, maxi-
mum, and mean values of the block dependencies for all the workloads. As shown in the
figure, the maximum number of block dependencies for Workloads A, B, and C were
approximately 34, 73, and 58, respectively. Furthermore, the minimum (2–3) and mean
(6–10) values differed according to workload. A similar conclusion can be drawn from the
SDM results for the minimum and mean cases (between 2 and 5). However, the maxi-
mum block dependency for the SDM was always 10 for all workloads according to its
configuration. These observations prove that, although the height of the graph changes
according to the workload, the overall trend remains the same. However, Unlichain
achieved a constant block dependency, as observed in all other evaluations.

These evaluations prove that Unlichain architecture outperforms existing ap-
proaches in all cases in terms of performance and reliability.

Figure 9. MATLAB simulation results: (a) overall; (b) block dependency.

Figure 9a provides an overall view of the scenario, whereas Figure 9b presents more
detailed information pertaining to the simulation results, showing the minimum, maximum,
and mean values of the block dependencies for all the workloads. As shown in the figure,
the maximum number of block dependencies for Workloads A, B, and C were approximately
34, 73, and 58, respectively. Furthermore, the minimum (2–3) and mean (6–10) values
differed according to workload. A similar conclusion can be drawn from the SDM results
for the minimum and mean cases (between 2 and 5). However, the maximum block
dependency for the SDM was always 10 for all workloads according to its configuration.
These observations prove that, although the height of the graph changes according to the
workload, the overall trend remains the same. However, Unlichain achieved a constant
block dependency, as observed in all other evaluations.

These evaluations prove that Unlichain architecture outperforms existing approaches
in all cases in terms of performance and reliability.

8. Conclusions

The integration of blockchain into an edge-computing environment presents a new
research gap related to data deletion. Even though there are existing solutions with data

Sensors 2023, 23, 8762 22 of 24

deletion possibilities in blockchain, they all suffer from long delays not practical in big-data
systems. This study proposes a novel Unlichain approach to enable data-modification
features in blockchain architecture. Unlichain employs a meta-verification consensus for
achieving instant verifications of transaction metadata. Also, the updated block creation
consensus allows all pending transactions to be written in the next block without further de-
lays. Moreover, the new block indexing technique makes the data modification operations
possible for predefined lifetime data and on-demand delete requests. The block indexing
technique allows Unlichain to maintain the chain height even after data deletions following
the traditional longest-chain rule. Additionally, the meta and full node classification allows
participation in the Unlichain consensus even with limited hardware resources. Exten-
sive evaluations were performed in both edge-computing and MATLAB environments.
According to the results, Unlichain maintains stable performance for data deletion with
negligible delay. Compared to block dependencies of existing solutions, Unlichain achieves
instant verification on deletion and update requests. Moreover, Unlichain has proven to
be the most reliable in data modification and storage efficiency and in maintaining basic
blockchain protocols.

Author Contributions: Conceptualization, K.T.; methodology, K.T.; software, K.T.; validation, K.T.
and D.-H.K.; formal analysis, D.-H.K.; investigation, K.T.; resources, D.-H.K.; data curation, K.T.;
writing—original draft preparation, K.T.; writing—review and editing, D.-H.K.; visualization, K.T.;
supervision, D.-H.K.; project administration, D.-H.K.; funding acquisition, D.-H.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported in part by a National Research Foundation of Korea (NRF) grant
funded by the Korean Government (MSIT) under Grant NRF-2021R1F1A1050750, and in part by an
Inha University research grant.

Institutional Review Board Statement: No applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not available.

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Nakomoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: http:/bitcoin.org/bitcoin.pdf (accessed on

2 October 2023).
2. Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform. White Paper. 2014. Available

online: https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf (accessed
on 20 September 2023).

3. Yang, R.; Yu, F.R.; Si, P.; Yang, Z.; Zhang, Y. Integrated Blockchain and Edge Computing Systems: A Survey, Some Research Issues
and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 1508–1532. [CrossRef]

4. Dorri, A.; Steger, M.; Kanhere, S.S.; Jurdak, R. BlockChain: A Distributed Solution to Automotive Security and Privacy. IEEE
Commun. Mag. 2017, 55, 119–125. [CrossRef]

5. Xu, X.; Zhang, X.; Gao, H.; Xue, Y.; Qi, L.; Dou, W. BeCome: Blockchain-Enabled Computation Offloading for IoT in Mobile Edge
Computing. IEEE Trans. Ind. Inform. 2020, 16, 4187–4195. [CrossRef]

6. Guo, S.; Dai, Y.; Guo, S.; Qiu, X.; Qi, F. Blockchain Meets Edge Computing: Stackelberg Game and Double Auction Based Task
Offloading for Mobile Blockchain. IEEE Trans. Veh. Technol. 2020, 69, 5549–5561. [CrossRef]

7. He, Y.; Wang, Y.; Qiu, C.; Lin, Q.; Li, J.; Ming, Z. Blockchain-Based Edge Computing Resource Allocation in IoT: A Deep
Reinforcement Learning Approach. IEEE Internet Things J. 2021, 8, 2226–2237. [CrossRef]

8. Zaabar, B.; Cheikhrouhou, O.; Jamil, F.; Ammi, M.; Abid, M. HealthBlock: A secure blockchain-based healthcare data management
system. Comput. Netw. 2020, 200, 108500. [CrossRef]

9. Tulkinbekov, K.; Kim, D.-H. Blockchain-Enabled Approach for Big Data Processing in Edge Computing. IEEE Internet Things J.
2022, 9, 18473–18486. [CrossRef]

10. Lei, K.; Du, M.; Huang, J.; Jin, T. Groupchain: Towards a Scalable Public Blockchain in Fog Computing of IoT Services Computing.
IEEE Trans. Serv. Comput. 2020, 13, 252–262. [CrossRef]

11. Pyoung, C.K.; Baek, S.J. Blockchain of Finite-Lifetime Blocks with Applications to Edge-Based IoT. IEEE Internet Things J. 2020, 7,
2102–2116. [CrossRef]

http:/bitcoin.org/bitcoin.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://doi.org/10.1109/COMST.2019.2894727
https://doi.org/10.1109/MCOM.2017.1700879
https://doi.org/10.1109/TII.2019.2936869
https://doi.org/10.1109/TVT.2020.2982000
https://doi.org/10.1109/JIOT.2020.3035437
https://doi.org/10.1016/j.comnet.2021.108500
https://doi.org/10.1109/JIOT.2022.3160838
https://doi.org/10.1109/TSC.2019.2949801
https://doi.org/10.1109/JIOT.2019.2959599

Sensors 2023, 23, 8762 23 of 24

12. Hillmann, P.; Knupfer, M.; Heiland, E.; Karcher, A. Selective Deletion in a Blockchain. In Proceedings of the 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December 2020; pp. 1249–1256.
[CrossRef]

13. Kuperberg, M. Towards Enabling Deletion in Append-Only Blockchains to Support Data Growth Management and GDPR
Compliance. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Toronto, ON, Canada,
3–6 May 2020; pp. 393–400. [CrossRef]

14. Politou, E.; Casino, F.; Alepis, E.; Patsakis, C. Blockchain Mutability: Challenges and Proposed Solutions. IEEE Trans. Emerg. Top.
Comput. 2021, 9, 1972–1986. [CrossRef]

15. Binance Smart Chains Whitepaper. Available online: https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.
md (accessed on 20 September 2023).

16. Polygon Whitepaper. Ethereum’s Internet of Blockchains. Available online: https://whitepaper.io/document/646/polygon-
whitepaper (accessed on 20 September 2023).

17. Yekovenko, A. Solana: A New Architecture for a High Performance Blockchain v0.8.13. Available online: https://solana.com/
solana-whitepaper.pdf (accessed on 20 September 2023).

18. Pancari, S.; Rashid, A.; Zheng, J.; Patel, S.; Wang, Y.; Fu, J. A Systematic Comparison between the Ethereum and Hyperledger
Fabric Blockchain Platforms for Attribute-Based Access Control in Smart Home IoT Environments. Sensors 2023, 23, 7046.
[CrossRef] [PubMed]

19. Sayeed, S.; Pitropakis, N.; Buchanan, W.J.; Markakis, E.; Papatsaroucha, D.; Politis, I. TRUSTEE: Towards the creation of secure,
trustworthy and privacy-preserving framework. In Proceedings of the 18th International Conference on Availability, Reliability
and Security (ARES ’23), Benevento, Italy, 29 August–1 September 2023; Association for Computing Machinery: New York, NY,
USA, 2023; pp. 1–10. [CrossRef]

20. Onwubiko, A.; Singh, R.; Awan, S.; Pervez, Z.; Ramzan, N. Enabling Trust and Security in Digital Twin Management: A
Blockchain-Based Approach with Ethereum and IPFS. Sensors 2023, 23, 6641. [CrossRef] [PubMed]

21. de Brito Gonçalves, J.P.; Spelta, G.; da Silva Villaça, R.; Gomes, R.L. IoT Data Storage on a Blockchain Using Smart Contracts and
IPFS. In Proceedings of the 2022 IEEE International Conference on Blockchain (Blockchain), Espoo, Finland, 22–25 August 2022;
pp. 508–511. [CrossRef]

22. Yang, C.; Chen, X.; Xiang, Y. Blockchain-based publicly verifiable data deletion scheme for cloud storage. J. Netw. Comput. Appl.
2018, 3, 185–193. [CrossRef]

23. Zhu, Q.; Kouhizadeh, M. Blockchain Technology, Supply Chain Information, and Strategic Product Deletion Management. IEEE
Eng. Manag. Rev. 2019, 47, 36–44, Firstquarter. [CrossRef]

24. Bosona, T.; Gebresenbet, G. The Role of Blockchain Technology in Promoting Traceability Systems in Agri-Food Production and
Supply Chains. Sensors 2023, 23, 5342. [CrossRef]

25. Li, S.; Zhou, T.; Yang, H.; Wang, P. Blockchain-Based Secure Storage and Access Control Scheme for Supply Chain Ecological
Business Data: A Case Study of the Automotive Industry. Sensors 2023, 23, 7036. [CrossRef] [PubMed]

26. El Khanboubi, Y.; Hanoune, M.; El Ghazouani, M. A New Data Deletion Scheme for a Blockchain-based De-duplication System in
the Cloud. Int. J. Commun. Netw. Inf. Secur. 2021, 13, 331–339. [CrossRef]

27. Li, C.; Hu, J.; Zhou, K.; Wang, Y.; Deng, H. Using Blockchain for Data Auditing in Cloud Storage. In Lecture Notes in Computer
Science; Sun, X., Pan, Z., Bertino, E., Eds.; Cloud Computing and Security; Springer: Cham, Switzerland, 2018; Volume 11065.
[CrossRef]

28. Ra, G.-J.; Lee, I.-Y. A Study on Hybrid Blockchain-based XGS (XOR Global State) Injection Technology for Efficient Contents
Modification and Deletion. In Proceedings of the 2019 Sixth International Conference on Software Defined Systems (SDS), Rome,
Italy, 10–13 June 2019; pp. 300–305. [CrossRef]

29. Kim, H.S.; Wang, K. Immutability Measure for Different Blockchain Structures. In Proceedings of the 2018 IEEE 39th Sarnoff
Symposium, Newark, NJ, USA, 25 September 2018; pp. 1–6. [CrossRef]

30. Xu, Y.; Xiao, S.; Wang, H.; Zhang, C.; Ni, Z.; Zhao, W.; Wang, G. Redactable Blockchain-based Secure and Accountable Data
Management. IEEE Trans. Netw. Serv. Manag. 2023. [CrossRef]

31. Guo, H.; Tao, X.; Zhao, M.; Wu, T.; Zhang, C.; Xue, J.; Zhu, L. Decentralized Policy-Hidden Fine-Grained Redaction in Blockchain-
Based IoT Systems. Sensors 2023, 23, 7105. [CrossRef]

32. Lu, Y. Blockchain and the related issues: A review of current research topics. J. Manag. Anal. 2018, 5, 231–255. [CrossRef]
33. Valadares, D.C.G.; Perkusich, A.; Martins, A.F.; Kamel, M.B.M.; Seline, C. Privacy-Preserving Blockchain Technologies. Sensors

2023, 23, 7172. [CrossRef] [PubMed]
34. Huang, J.; Kong, L.; Cheng, L.; Dai, H.-N.; Qiu, M.; Chen, G.; Liu, X.; Huang, G. BlockSense: Towards Trustworthy Mobile

Crowdsensing via Proof-of-Data Blockchain. IEEE Trans. Mob. Comput. 2022. [CrossRef]
35. Taloba, A.I.; Elhadad, A.; Rayan, A.; El-Aziz, R.M.A.; Salem, M.; Alzahrani, A.A.; Alharithi, F.S.; Park, C. A blockchain-based

hybrid platform for multimedia data processing in IoT-Healthcare. Alex. Eng. J. 2023, 65, 263–274. [CrossRef]
36. Heo, J.W.; Dorri, A.; Jurdak, R. Multi-Level Distributed Caching on the Blockchain for Storage Optimisation. In Proceedings

of the 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Shanghai, China, 2–5 May 2022; pp. 1–5.
[CrossRef]

https://doi.org/10.1109/ICDCS47774.2020.00160
https://doi.org/10.1109/Blockchain50366.2020.00057
https://doi.org/10.1109/TETC.2019.2949510
https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md
https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md
https://whitepaper.io/document/646/polygon-whitepaper
https://whitepaper.io/document/646/polygon-whitepaper
https://solana.com/solana-whitepaper.pdf
https://solana.com/solana-whitepaper.pdf
https://doi.org/10.3390/s23167046
https://www.ncbi.nlm.nih.gov/pubmed/37631581
https://doi.org/10.1145/3600160.3604997
https://doi.org/10.3390/s23146641
https://www.ncbi.nlm.nih.gov/pubmed/37514938
https://doi.org/10.1109/Blockchain55522.2022.00078
https://doi.org/10.1016/j.jnca.2017.11.011
https://doi.org/10.1109/EMR.2019.2898178
https://doi.org/10.3390/s23115342
https://doi.org/10.3390/s23167036
https://www.ncbi.nlm.nih.gov/pubmed/37631574
https://doi.org/10.17762/ijcnis.v13i2.4975
https://doi.org/10.1007/978-3-030-00012-7_31
https://doi.org/10.1109/SDS.2019.8768696
https://doi.org/10.1109/SARNOF.2018.8720496
https://doi.org/10.1109/TNSM.2023.3255265
https://doi.org/10.3390/s23167105
https://doi.org/10.1080/23270012.2018.1516523
https://doi.org/10.3390/s23167172
https://www.ncbi.nlm.nih.gov/pubmed/37631709
https://doi.org/10.1109/TMC.2022.3230758
https://doi.org/10.1016/j.aej.2022.09.031
https://doi.org/10.1109/ICBC54727.2022.9805518

Sensors 2023, 23, 8762 24 of 24

37. Zhaofeng, M.; Xiaochang, W.; Jain, D.K.; Khan, H.; Hongmin, G.; Zhen, W. A Blockchain-Based Trusted Data Management
Scheme in Edge Computing. IEEE Trans. Ind. Informatics 2020, 16, 2013–2021. [CrossRef]

38. Umoren, O.; Singh, R.; Pervez, Z.; Dahal, K. Securing Fog Computing with a Decentralised User Authentication Approach Based
on Blockchain. Sensors 2022, 22, 3956. [CrossRef] [PubMed]

39. Kwak, S.; Lee, J.; Kim, J.; Oh, H. EggBlock: Design and Implementation of Solar Energy Generation and Trading Platform in
Edge-Based IoT Systems with Blockchain. Sensors 2022, 22, 2410. [CrossRef] [PubMed]

40. Lian, G. Blockchain-Based Secure and Trusted Distributed International Trade Big Data Management System. Mob. Inf. Syst. 2022,
2022, 7585288. [CrossRef]

41. IoTA Research Papers. Available online: https://www.iota.org/foundation/research-papers (accessed on 20 September 2023).
42. Xu, J.; Wang, S.; Bhargava, B.K.; Yang, F. A Blockchain-Enabled Trustless Crowd-Intelligence Ecosystem on Mobile Edge

Computing. IEEE Trans. Ind. Inform. 2019, 15, 3538–3547. [CrossRef]
43. Li, C.; Li, P.; Zhou, D.; Yang, Z.; Wu, M.; Yang, G.; Xu, W.; Long, F.; Yao, A.C.-C. A Decentralized Blockchain with High

Throughput and Fast Confirmation. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC 20), Online,
15–17 July 2020; USENIX Association: Berkeley, CA, USA; pp. 515–528.

44. Meverse Labs Whitepaper. Available online: https://www.meverse.sg/file/whitepaper1.0_meverse.pdf (accessed on 20
September 2023).

45. Chia Business Whitepaper. Available online: https://www.chia.net/wp-content/uploads/2022/07/Chia-Business-Whitepaper-
2022-02-02-v2.0.pdf (accessed on 20 September 2023).

46. Maleh, Y.; Shojafar, M.; Alazab, M.; Romdhani, I.; Ujjwal, K.C. (Eds.) Blockchain for Cybersecurity and Privacy: Architectures,
Challenges, and Applications; CRC Press: Boca Raton, FL, USA, 2020.

47. Ali, A.; Al-Rimy, B.A.S.; Almazroi, A.A.; Alsubaei, F.S.; Almazroi, A.A.; Saeed, F. Securing Secrets in Cyber-Physical Systems: A
Cutting-Edge Privacy Approach with Consortium Blockchain. Sensors 2023, 23, 7162. [CrossRef]

48. Hameed, K.; Barika, M.; Garg, S.; Amin, M.B.; Kang, B. A Taxonomy Study on Securing Blockchain-based Industrial Applications:
An Overview, Application Perspectives, Requirements, Attacks, Countermeasures, and Open Issues. arXiv 2021, arXiv:2105.11665.
[CrossRef]

49. Caprolu, M.; Di Pietro, R.; Lombardi, F.; Raponi, S. Edge Computing Perspectives: Architectures, Technologies, and Open Security
Issues. In Proceedings of the 2019 IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019;
pp. 116–123. [CrossRef]

50. Zeyu, H.; Geming, X.; Zhaohang, W.; Sen, Y. Survey on Edge Computing Security. In Proceedings of the 2020 International
Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020;
pp. 96–105. [CrossRef]

51. Battula, S.K.; Naha, R.K.; KC, U.; Hameed, K.; Garg, S.; Amin, M.B. Mobility-Based Resource Allocation and Provisioning
in Fog and Edge Computing Paradigms: Review, Challenges, and Future Directions. In Mobile Edge Computing; Springer:
Berlin/Heidelberg, Germany, 2021.

52. Deepa, N.; Pham, Q.-V.; Nguyen, D.C.; Bhattacharya, S.; Prabadevi, B.; Gadekallu, T.R.; Maddikunta, P.K.R.; Fang, F.; Pathirana,
P.N. A survey on blockchain for big data: Approaches, opportunities, and future directions. Future Gener. Comput. Syst. 2022,
131, 209–226. [CrossRef]

53. Hu, J.; Reed, M.J.; Al-Naday, M.; Thomos, N. Hybrid Blockchain for IoT—Energy Analysis and Reward Plan. Sensors 2021,
21, 305. [CrossRef]

54. Wu, C.-H.; Tsang, Y.-P.; Lee, C.K.-M.; Ching, W.-K. A Blockchain-IoT Platform for the Smart Pallet Pooling Management. Sensors
2021, 21, 6310. [CrossRef]

55. Leslie Lamport, R.S.; Pease, M. The byzantine generals problem. ACM Trans. Program. Lang. Syst. 1982, 4, 382–401. [CrossRef]
56. Tulkinbekov, K.; Kim, D.-H. CaseDB: Lightweight Key-Value Store for Edge Computing Environment. IEEE Access 2020, 8,

149775–149786. [CrossRef]
57. Kirk, D.E. Optimal Control Theory (An Introduction); Dover Publications, Inc.: Mineola, NY, USA, 2004; Chapter 3.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TII.2019.2933482
https://doi.org/10.3390/s22103956
https://www.ncbi.nlm.nih.gov/pubmed/35632364
https://doi.org/10.3390/s22062410
https://www.ncbi.nlm.nih.gov/pubmed/35336580
https://doi.org/10.1155/2022/7585288
https://www.iota.org/foundation/research-papers
https://doi.org/10.1109/TII.2019.2896965
https://www.meverse.sg/file/whitepaper1.0_meverse.pdf
https://www.chia.net/wp-content/uploads/2022/07/Chia-Business-Whitepaper-2022-02-02-v2.0.pdf
https://www.chia.net/wp-content/uploads/2022/07/Chia-Business-Whitepaper-2022-02-02-v2.0.pdf
https://doi.org/10.3390/s23167162
https://doi.org/10.1016/j.jii.2021.100312
https://doi.org/10.1109/EDGE.2019.00035
https://doi.org/10.1109/ICBAIE49996.2020.00027
https://doi.org/10.1016/j.future.2022.01.017
https://doi.org/10.3390/s21010305
https://doi.org/10.3390/s21186310
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/ACCESS.2020.3016680

	Introduction
	Related Work
	Background and Motivations
	Blockchain
	Consensus
	Transaction Lifecycle
	Merkle Tree
	Longest-Chain Rule

	Data Modifications
	Motivations

	Unlichain Architecture
	Nodes
	Consensus
	Membership
	Block Indexing

	Data Modifications
	Predefined Lifetime
	Custom Modifications
	Efficiency

	Discussion
	Evaluations
	Environment and Workload Setup
	Delete Performance
	Block Height
	Storage Efficiency
	MATLAB Simulations

	Conclusions
	References

