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Abstract: Convolutional neural networks (CNNs), initially developed for image processing appli-
cations, have recently received significant attention within the field of medical ultrasound imaging.
In this study, passive cavitation imaging/mapping (PCI/PAM), which is used to map cavitation
sources based on the correlation of signals across an array of receivers, is evaluated. Traditional
reconstruction techniques in PCI, such as delay-and-sum, yield high spatial resolution at the cost of
a substantial computational time. This results from the resource-intensive process of determining
sensor weights for individual pixels in these methodologies. Consequently, the use of conventional
algorithms for image reconstruction does not meet the speed requirements that are essential for
real-time monitoring. Here, we show that a three-dimensional (3D) convolutional network can learn
the image reconstruction algorithm for a 16× 16 element matrix probe with a receive frequency
ranging from 256 kHz up to 1.0 MHz. The network was trained and evaluated using simulated data
representing point sources, resulting in the successful reconstruction of volumetric images with high
sensitivity, especially for single isolated sources (100% in the test set). As the number of simultaneous
sources increased, the network’s ability to detect weaker intensity sources diminished, although it
always correctly identified the main lobe. Notably, however, network inference was remarkably fast,
completing the task in approximately 178 s for a dataset comprising 650 frames of 413 volume images
with signal duration of 20 µs. This processing speed is roughly thirty times faster than a parallelized
implementation of the traditional time exposure acoustics algorithm on the same GPU device. This
would open a new door for PCI application in the real-time monitoring of ultrasound ablation.

Keywords: deep learning; beamforming; passive cavitation imaging; convolutional neural network;
focused ultrasound

1. Introduction

The field of deep learning in medical ultrasound imaging is rapidly expanding with
many applications such as clutter suppression in Doppler [1], super-resolution imag-
ing [2,3], anomaly detection methods for breast ultrasound images [4], beamforming
pre-steered, subsampled data [5], transcranial ultrasound imaging [6,7], minimum variance
beamforming [8,9], and image reconstruction from raw channel data [10–13]. In the context
of image reconstruction from raw channel data, CNNs have proven their capability to learn
the reconstruction process without requiring explicit input information regarding receiver
array geometry, a medium speed of sound, or the spatial discretization of the imaged
region of interest (parameters which are typically essential for the standard delay and sum
algorithm). This approach has been applied specifically to plane wave imaging [14–17]
ultrasound molecular imaging [18], ultrasound B-mode imaging [19], ultrasound localiza-
tion microscopy [20–22], and photo-acoustic imaging [23,24]. The potential application of
deep learning in PCI has recently been explored, primarily through unsupervised learning
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using generative adversarial networks (GANs) as detailed in the work by Zeng et al. [25].
However, it is important to note that this approach was tested on simulated data involving
a single source or bubble target. In practical scenarios, such as focused ultrasound treat-
ments, it is important to investigate whether CNNs can effectively handle situations with
multiple sources or bubbles. In another research study, a deep learning denoising approach
is proposed based on a U-Net CNNs to reduce the image artifact [26]. Thus, the full extent
of CNN’s adaptability to PCI remains an area of ongoing investigation.

PCI, an imaging method used for mapping cavitation sources, works based on the
correlation of signals across an array of receivers. The greatest correlation of time-delayed
signals determines the point of maximum beamformed intensity in the reconstruction
grid. This technique, known as the ’time exposure acoustics’ (TEA) algorithm (Norton and
Won 2000 [27]), has similarities with plane wave imaging [28], involving voxel-wise delay
and sum operations along with an added time integration step. Currently, PCI is under
investigation for real-time feedback control in the context of transcranial blood–brain barrier
permeability (Jones et al., 2018 [29]). The control technique involves ramping up the driving
pressure until bubble activity is detected based on the spatial coherence of bubble acoustic
emissions and subsequently dropping the pressure incrementally. Thus, it is essential
to generate images within the timeframes of therapeutic bursts (1 s) to identify acoustic
sources. Since the image reconstruction rate is linked to the integration time, there is a keen
interest in enhancing its speed, particularly for the extended burst durations (10 ms) used
in therapeutic applications. To this end, the TEA algorithm can be implemented on GPU
devices, resulting in significant performance enhancements, and ongoing optimization
efforts are underway. Nevertheless, these classical PCI reconstruction methods, like TEA,
need an intensive process of calculating the sensor weights for each pixel. As a result,
employing these techniques for image reconstruction is not fast enough to meet the speed
criteria necessary for real-time monitoring. An alternative approach could involve training
a CNN to handle the image reconstruction process directly from raw channel data, and this
paper explores the feasibility of such an approach.

CNNs are often employed to efficiently learn complex operations, as seen in the case
of the minimum variance beamformer. However, in the case of TEA, the primary bottleneck
is not the computational complexity but rather the number of global memory reads, the
uncoalesced nature of these memory reads, and the number of parallel reduction operations
performed for each voxel in the image. Consequently, one would not expect significant
speed improvements from a CNN designed to mimic the delay, sum, and integration
procedure (e.g., as in the approach of Mor and Bar-Hillel 2020 [10] to plane wave imaging).
Nevertheless, with a suitable architecture, a CNN could potentially learn an efficient,
alternative nonlinear mapping between raw channel data and the reconstructed image.
This paper presents an evaluation of a CNN’s performance, trained to execute the PCI
beamforming technique using simulated point source data. The primary objective of this
evaluation was to assess the prediction accuracy, with a secondary focus on assessing
the prediction speed. The outcomes of this study have the potential to create a novel
opportunity for the use of PCI based on CNN in the real-time monitoring and controlling
of ultrasound ablation procedures.

2. Materials and Methods
2.1. Passive Acoustic Monitoring

For over two decades, it has been demonstrated that low-intensity pulsed ultrasound
can temporarily and selectively enhance the permeability of the blood–brain barrier (BBB)
when microbubble contrast agents are present, all without causing damage to the surround-
ing brain tissue. This significant discovery, reported by Hynynen et al. [30], presents a
promising approach for targets delivering therapeutic agents to the brain. However, the pri-
mary obstacle to the widespread clinical adoption of cavitation-based focused ultrasound
(FUS) lies in the limitations of current techniques for the real-time monitoring and control
of acoustic cavitation during treatment, as highlighted by Jones et al. [31].
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The acoustic cavitation detection techniques are classified as active and passive acous-
tic monitoring. In the active detection approach, a focused high-frequency transducer, such
as 30 MHz, emits a pulse during the transmit mode and captures the returning echo signal
in the receive mode. Conversely, the passive detection method involves an unfocused,
untuned transducer with a lower frequency, typically around 1 MHz, and it does not
actively probe the cavitation zone [32,33].

Active acoustic monitoring comes with significant limitations. Since the intensity of
therapeutic ultrasound signals is usually on a similar scale or much higher than those used
for diagnostic purposes, it is necessary to deactivate the therapy beam while transmitting
diagnostic pulses to prevent interference. Moreover, active techniques face the same chal-
lenges as transcranial acoustic imaging due to the aberration nature caused by the human
skull bone, as noted by Jones et al. [31]. In contrast, passive acoustic monitoring has been
frequently utilized to observe the acoustic emissions resulting from therapeutic exposures
without involving the excitation of the region of interest. In this study, multi-element
passive detector arrays were employed to spatially image the simulated cavitation activity.

2.2. Ray-Acoustic Model to Generate Radio-Frequency Data

A variety of numerical models have been developed for simulating the propagation
of ultrasound waves. These models include ray-acoustics-based approaches [34,35], the
angular spectrum method [36], full-wave methods [37], and hybrid models. In this research,
a numerical model employing ray-acoustics has been utilized to simulate the propagation of
ultrasound through water. The ray-acoustic models can accurately simulate high-frequency
ultrasound waves, which is essential for medical ultrasound imaging [31,38]. Additionally,
the ray-acoustic models are computationally efficient and suitable for simulating large-scale
ultrasound wave propagation. They are often faster than full-wave methods [39].

Ray-acoustics is an approximation technique that calculates sound fields using the
homogeneous, linearized wave equation of point-source response functions. In this method,
discrete sound sources are subdivided into smaller sub-elements, and the resultant field
is determined by summing the contributions from each sub-element. These sub-elements
are subdivided to a degree where they can be accurately represented as point source
emitters [31,34].

A small vibrating surface can be represented by an area of ds and a normal velocity
of u, with its source strength indicated as uds. Assuming that the simple vibrating sub-
element is positioned at coordinates (x1, y1, z1), because of its baffled harmonic radiation,
we can express the acoustic pressure p at the point (x, y, z) as follows:

p(x, y, z) =
jkcw ρwcw

2π
· e−jkcw R

R
· (uds) (1)

In this case, the longitudinal particle velocity can be expressed as [31]:

u(x, y, z) =
jkcw

2π
· e−jkcw R

R
· (uds) · (1− j

kcw R
) (2)

In Equations (1) and (2), kcw is a complex wave number that can be calculated as:

kcw = ω/cw − jαw (3)

where ω = 2π f is the angular frequency of the sub-element, j is the imaginary unit
(j2 = −1), αw is the attenuation coefficient, ρw and cw are the density and sound speed
of the medium, respectively. The variable R corresponds to the distance between the
source coordinates (x1, y1, z1) and the point of the receiver (x, y, z). Equation (1) presents
an alternative expression of the classical Rayleigh–Sommerfeld integral, specifically for a
single simple source [40].
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2.3. Time Exposure Acoustics for Image Reconstruction

The acoustic images, often referred to as "ground-truth" images, were generated using
the time exposure acoustics (TEA) algorithm, which is detailed in Norton and Won [27]
(2000) and Norton et al. [41] (2006). This algorithm is closely related to the conventional
delay-and-sum (DAS) beamforming technique [42,43].

To generate an image using the TEA method, a set of control points within a ROI, where
image reconstruction is to be carried out, needs to be defined. To create the beamformed
signal at each control point, the signals received from the detector array are independently
scaled, delayed, and summed together [31]. Then, an image is constructed by calculating
intensity per each voxel using the temporal mean of the beamformed signal intensity
(Norton and Won, 2000 [27]). In this study, receive beamforming was executed in the time
domain, following the approach outlined by Gyongy and Coussios [44].

The image intensity within an integration window ranging from to to t f is calculated
as follows:

I(r) =
∫ t f

to

[
N

∑
i=1

Qi(r; t)2

]
dt (4)

where Qi is the time delayed signal for the receiver number i at the reconstruction point r:

Qi(r; t) = pi

(
|Ri|
cw

+ t
)
· |Ri| (5)

Here, pi is the signal received by array element i, delayed by the time of flight in water
(|Ri|/cw), |Ri| is the magnitude of the vector between the receiver and the reconstruction
point r, and cw is the speed of sound in water. The beamforming process was carried out
with an integration time of 20 µs. For the reconstructions, a 3D region of interest with
dimensions of 10× 10× 10 cubic millimeters (0.253 mm voxel size) was selected. The center
of this ROI was positioned at distances of 2 cm, 4 cm, and 6 cm away from the center of the
receiver array. Figure 1 shows the 2D array receivers probe (16× 16) which were located
4 cm away from the 3D ROI. Table 1 provides details regarding the ultrasound parameters
and material properties used for simulating the ray-acoustics model for radio-frequency
(RF) generation, along with the parameters employed for TEA beamforming. The speed of
sound and attenuation properties of water were determined using the values reported in
Duck [45] and Pajek and Hynynen [34].

Table 1. The parameters used in the simulation of the ray-acoustic model, along with the parameters
employed for TEA beamforming.

Description Parameter Value Unit

Receiver frequency fo 256, 612, 1000 kHz
Attenuation of sound in water α 4.32× 10−4 Np/m

Density of water ρ 1000 kg/m3

Speed of sound in water cw 1500 m/s
Size of receiver probe d 1.5, 5.8, 2.48 mm

Sampling rate fs 40 MHz
Signal-to-noise ratio SNR −4 dB

Standard deviation of SNR σSNR 0.3 –
Region of interest dimensions ROIl 10× 10× 10 mm3

Number of receiver probes NRxy × NRxz 16× 16 –
Distance between center of source and probe LROI−Probe 2, 4, 6 cm

Number of points per wavelength for discretization ppwl 4 –
Length of signal in time RxDuration 140 µs

Number of sample in one duration Rxsamples 140× 40 = 5600 –
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Figure 1. (a) The 3D region of interest (ROI) had dimensions of 10× 10× 10 m3 and was positioned
at a distance of 4 cm from the center of 2D receiver probes with 16 × 16 elements. A separate
set of network weights have been employed for different ROI locations. (b) Five (5) sources are
randomly located in 10× 10× 10 m3 for one dataset (c) Zoom-in window on receiver probes which
are discretized and subdivided into smaller sub-elements.

2.4. Convolutional Network Architecture for Image Reconstruction

In this study, we employed a 3D CNN-based approach to reconstruct passive acoustic
images from raw RF signals. The architecture of the 3D CNN was adapted from a 2D CNN
employed by Anas et al. in their 2018 work on photoacoustic imaging [13].

In essence, this network consists of a series of dense blocks, each with an increasing
size of dilated convolutions. In this approach, as illustrated in Figure 2 and detailed in
Table 2, we introduced strided convolution layers in the time domain for downsampling
and a transposed convolution layer in the spatial domain for upsampling between these
dense blocks. This step-by-step process gradually reshaped the input data with dimensions
(1521, 16, 16) into the desired image dimensions (41, 41, 41). Within the dense blocks, batch
normalization layers were incorporated, and for the skip connections, we used the addition
of layer outputs rather than concatenation, as depicted in Figure 2.

Table 2. The output shape, dilation, and kernel size details of the convolutional network architecture.

Layer Type Output Dimension Kernel Size Dilation Stride Number of
Kernels

Input shape 1521, 16, 16 – – – –
Convolutional layer 1521, 16, 16 9 – 1 2

Dense block (1) 1521, 16, 16 9, 3, 3 1 1 2
Convolutional layer 761, 16, 16 9 – 2, 1, 1 4

Dense block (2) 761, 16, 16 9, 3, 3 2 1 4
Convolutional layer 381, 16, 16 9 – 2, 1, 1 8

Dense block (3) 381, 16, 16 9, 3, 3 4 1 8
Convolutional layer 191, 16, 16 5 – 2, 1, 1 8

Convolutional transpose layer 191, 48, 48 6 – 1, 3, 3 8
Dense block (4) 191, 48, 48 9, 3, 3 4 1 8

Convolutional layer 96, 48, 48 5 – 2, 1, 1 8
Dense block (5) 96, 48, 48 9, 3, 3 4 1 8

Convolutional layer 48, 48, 48 8 – 2, 1, 1 8
Dense block (6) 48, 48, 48 9, 3, 3 4 1 8

Convolutional layer 44, 44, 44 5 – 1 8
Convolutional layer 41, 41, 41 4 – 1 8

Output shape 41, 41, 41 – – – –
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The network comprises a total of 21 convolutional layers, and it contains 150,317 learn-
able parameters. The rectified linear unit (ReLU) activation function was applied to all
layer outputs except for the final layer. It is worth noting that the output of the final layer
was normalized, as our primary interest lay in the relative differences in voxel values rather
than in their absolute values.

Convolution Layer

Batch Normalization 
Layer

Concatenation Layer

Convolution Layer

Batch Normalization 
Layer

Dense Block

Input Layer

Convolution Layer

Dense Block

Convolution Layer

Dense Block

Convolution Layer

Dense Block

Convolution Layer

Transposed Convolution 
Layer

Dense Block

Convolution Layer

Dense Block

Convolution Layer

Dense Block

Convolution Layer

Convolution Layer

Output Layer

Network Layout

Figure 2. The CNN architecture to map the channel data to a passive acoustic image. The network
consists of six (6) dense blocks, where each dense block includes two densely connected convolutional
layers followed by batch normalization layer. The difference among six (6) dense blocks lies in the
amount of dilation factor.

3. Simulation and CNN Input Materials

Simulation data were employed to train, validate, and test the proposed network. The
training data were generated with point sources randomly positioned within a 3D volume
that covered the entire volumetric reconstruction grid. The number of point sources per
reconstruction varied between 1 and 5. Each source had the same amplitude and was
modeled as a continuous wave, monochromatic emitter with a separate set of frequencies
including 256 kHz, 612 kHz, and 1.0 MHz. The ray acoustics model was utilized to
propagate these point sources to a 16 × 16 matrix probe of receivers. The simulation and
data training were carried out on three distinct datasets. The first dataset used a source
frequency of 612 kHz, a receiver element size of 2.48 mm, and a distance of 4 cm between
the source’s center and the probe. The second dataset employed a source frequency of
256 kHz, a receiver element size of 5.8 mm, and a distance of 6 cm between the source’s
center and the probe. The third dataset involved a source frequency of 1000 kHz, a receiver
element size of 1.5 mm, and a distance of 2 cm between the source’s center and the probe.
It’s noteworthy that in all these datasets, the receiver element size, center-to-center spacing,
was set to a wavelength of the ultrasound frequency. A separate set of network weights
have been employed for different dataset.

To enhance the network’s robustness against noise, white noise with a Gaussian
distribution was introduced into the channel data. Simulated cavitation signals were
generated at a 40 MHz sampling rate, and noise was added to achieve a mean signal-to-
noise ratio (SNR) of −4 dB across all channels. The standard deviation across different
receive elements was set to 0.3 〈SNR〉, which was based on typical variations observed in
experimental data, as reported by Acconcia et al. in 2017 [46].

Before beamforming using the TEA method, the received signals were digitally filtered
using a sixth-order Butterworth filter with bandpass frequencies centered around the source



Sensors 2023, 23, 8760 7 of 16

frequency, with a half-bandwidth of 300 kHz. All the generated images were divided into
three groups to form the training, validation, and test sets. These images were distributed
independently, with 2000 images for training, 25 for validation, and 500 for testing.

3.1. Network Evaluation and Optimization

To prepare the input data for the network, the raw RF channel data (without time de-
lays) underwent temporal trimming to retain only the essential information. This involved
selecting time points ranging from the minimum delay among all receivers to the maximum
delay among all receivers, plus the integration time. Consequently, when beamforming the
trimmed data using the traditional algorithm, relative time delays between the elements
were used instead of absolute delays. Following trimming, during the preprocessing stage,
each input was z-score normalized.

The target consisted of 3D beamformed volumes generated by the standard TEA
algorithm. In the preprocessing stage, these target volumes were normalized and converted
into pressure values (i.e., the square root of the beamformed intensity). This conversion
aimed to distribute the L1 loss function’s weighting more evenly between the side lobe
regions and main lobe regions.

Various image quality metrics are commonly used to assess the quality of images,
including normalized root mean squared error (NRMSE), peak signal-to-noise ratio (PSNR),
and structural similarity index measure (SSIM). In this study, we specifically focused on
evaluating the suitability of SSIM, NRMSE, and PSNR for the task at hand.

Following the approach of Simson et al. in 2018 [5], we utilized a loss function that
incorporated both the SSIM loss and the l1 loss. The l1 loss function, also known as the
mean absolute error (MAE), is used to measure the absolute differences between predicted
and actual values. The formula for the l1 loss can be expressed as [5]:

l1(Itru, Ipred) =
1
N

N

∑
i=1
|Itru(i)− Ipred(i)| (6)

where Itru and Ipred (both sizes of N) indicate the intensity values in ground truth and
predicted images, respectively.

To assess the model’s accuracy, a custom version of SSIM was employed, using a 3D
Gaussian kernel to calculate variance at each point. The formula for Custom SSIM is:

SSIM(Itru, Ipred) =
(2µtruµpred + C1)(2σtru/pred + C2)

(µ2
tru + µ2

pred + C1)(σ
2
tru + σ2

pred + C2)
(7)

where µtru and µpred represent the means of Itru and Ipred, respectively; σtru and σpred are
the standard deviations of Itru and Ipred, σtru/pred is the covariance between Itru and Ipred,
and C1 and C2 are small constants to stabilize the division with weak denominators.

It is important to note that all these values are in tensor form, and the overall SSIM
was calculated by taking the mean across all cells.

In terms of the relative weighting of the two loss functions, we placed a higher
emphasis on the SSIM loss, attributing it to 84% of the total loss. It is worth mentioning that
the L1 loss function, when used in isolation, proved insufficient for overfitting even when
applied to a small subset of the training data. To leverage the local 3D statistical information
within the target volumes, we implemented a 3D version of SSIM using TensorFlow’s basic
operations. This utilized a Gaussian window with a size of 11 voxels and a standard
deviation of 1.5 voxels.

Furthermore, the PSNR, which is calculated in decibels (dB) based on the mean square
losses between the estimated and reference images, is defined as:

PSNR = 20 log10
Imax√
MSE

. (8)
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where

MSE =
1
N

N

∑
i=1

(Itru(i)− Ipred(i))2 (9)

where Imax represents the maximum intensity in the reference image.
As another image quality metric, NRMSE was also used to measure the differences

between the predicted images and ground truth images. It quantified the Euclidean
distance between the point of maximum intensity in the target image and the predicted
image, representing the source localization error. The NRMSE formula is defined as:

NRMSE =

√
MSE

Imax − Imin
(10)

where Imax and Imin represent the maximum and minimum intensities in the reference image.
To optimize the convolutional network, the loss function was run with a range of

learning rates. The learning rate is a hyperparameter that determines the step size at which
the model parameters are updated during training. In the context of the Adam optimizer,
the learning rate is one of the most important hyperparameters. It controls the size of
the steps taken to minimize the loss function. A larger learning rate can lead to faster
convergence but may risk overshooting the optimal solution, while a smaller learning rate
can provide a more stable convergence but might take longer to reach the optimal solution.
In this study, an optimized learning rate of 0.0003 was selected for training the network
using the learning rate scheduler in TensorFlow.

The network was trained on an NVIDIA GeForce RTX 2070 Super GPU using the
TensorFlow backend. We employed the Adam optimizer [47] and applied L2 regularization
(0.001) for training based on the training set. A batch size of five was used, and the model
was trained for 300 epochs.

3.2. Passive Acoustic Imaging Analysis and Statistical Testing

For each reconstruction, the image quality and the number of sources detected were
compared between the target and the predictions. The peak sidelobe ratio (PSLR) was
defined as the ratio between the maximum intensity of the side lobes and the main lobe’s
intensity. Furthermore, the SNR was characterized as the ratio of the maximum intensity
within the reconstruction to the standard deviation of the background signal (i.e., all
voxels greater than a wavelength from the main lobe’s maximum intensity, as detailed in
Jones et al. [48]).

The determination of the number of sources present was accomplished by applying a
threshold at the −3 dB level and subsequently identifying the count of contiguous volumes
within the binarized volume. It is important to note that the number of sources detected in
the reconstruction might not necessarily align with the number of point sources present
in the simulations. This discrepancy could arise from the potential separation distance
between point sources being smaller than the point spread function (PSF) of the receiver
array. To analyze these differences, confusion matrices were generated to compare the
number of sources detected in the target data with those in the network reconstructions.

In order to assess the similarity in image quality between the target and predicted
groups, we conducted a pair-wise sign test specifically on the image SNR and PSLR metrics.

4. Results

In this section, the performance of CNNs have been presented for a particular network
weight trained for a source frequency of 612 kHz, a receiver size of 2.48 mm, and a 4 cm
distance between the probe and the ROI location. Additional research and simulations
have demonstrated that the CNNs’ performance remains relatively stable across a range of
frequencies, receiver sizes, and ROI locations as detailed in Table 1.

The training and validation loss curves, as shown in Figure 3, do not exhibit clear
indications of overfitting. Qualitatively, it can be observed that the network has effectively
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learned the underlying beamforming process, as evidenced by the agreement between
the 3D contour plots and 2D cross-section images of the ground truth and the network
predictions (refer to Figures 4 and 5). Moreover, the network has demonstrated its capability
to accurately reconstruct not only the main lobe region but also the diffraction pattern of
the receiver array in the lower intensity regions (as shown in Figures 6 and 7).
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Figure 3. (a) Structural similarity index measure vs. epoch; and (b) normalized root mean squared
error vs. epoch.

 

Figure 4. An example of simulated passive acoustic images with varying numbers of sources. On the
left are the ground truth reconstructions, and on the right are the predictions made by the network.
One can observe that the network exhibits accurate predictions when the number of sources is less
than three. However, for cases with four sources, the prediction accuracy decreases. The red rectangle
highlights the disparities between the ground truth and the network’s predictions in the case of
four sources. The X, Y, and Z axes represent the pixel counts for image reconstruction.
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Figure 5. On the left side is a cross-section of the reconstructed data with beamforming. On the right
side, there is the same cross-section of the reconstructed data using the neural network.

Figure 6. Contour plots displaying the maximum intensity projection for a case with three (3) sources
(linear contours at 10% intervals) are presented. The top section shows the ground truth, while the
bottom section displays the CNN’s prediction. The red rectangles emphasize the differences between
the ground truth and the network’s prediction for the three sources.
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Figure 7. Contour plots displaying the maximum intensity projection for a case with five (5) sources
(linear contours at 10% intervals) are presented. The top section shows the ground truth, while the
bottom section displays the CNN’s prediction. The red rectangles emphasize the differences between
the ground truth and the network’s prediction for the three sources.

As shown in Figures 6 and 7, there is a discrepancy between the quantity of sources de-
tected in the reconstruction and the number of point sources simulated. This inconsistency,
as mentioned earlier, could be attributed to the potential scenario where the separation
distance between the point sources is smaller than the PSF of the receiver array, or it may
also result from significant variations in the strengths of the sources.

To perform a quantitative assessment of the CNN methods, we calculated SSIM, RMSE,
and PSNR indices for varying numbers of sources within the target volume. As shown
in Table 3, the results show that the highest prediction accuracy is achieved when there is
a single isolated source. Detecting and monitoring a single isolated source is crucial for
the real-time localization of therapy targets in focused ultrasound. Therefore, this CNN
model can serve as a valuable predictive tool for determining the maximum pressure and
intensity levels during ultrasound therapy. All evaluation metrics in Table 3 are computed
using the testing dataset.

Table 3. Quantitative evaluation of the proposed CNN method for different numbers of sources.

Number of Sources SSIM 1 PSNR 1 RMSE 1

1 0.978 39.4 0.019
2 0.867 38.7 0.091
3 0.812 32.3 0.192
4 0.750 25.3 0.228
5 0.425 17.8 0.336

1 SSIM: structural similarity index measure; PSNR: peak signal-to-noise ratio; RMSE: root mean squared error.

Quantitatively, this is supported by a pair-wise sign test on the target and predicted
PSLR values, which indicated that the median difference between the two was not signifi-
cantly different from zero (p > 0.05). In the case of the image SNR, the same test revealed
a significant difference (p < 0.05) between the target and predicted values, although the
median and interquartile range (IQR) of the pair-wise difference were small (−0.4, IQR = 2).

For the intended clinical application, the ability to detect and locate individual sources
is of the primary focus. In all instances where single isolated sources were identified
in the ground truth volumes, the network made accurate predictions 97% of the time (a
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summary is provided in Table 4). As the number of sources detected in the target volume
increased, the true positive rate (TPR) decreased (as shown in Table 4) to approximately
45%. Nevertheless, it is noteworthy that, in general, the network deviated by just one or
two sources and consistently identified the largest volume source or the source with the
maximum intensity.

Table 4. Confusion matrix values for correctly predicting the presence of isolated sources.

Number of Sources TPR 1 FPR 1 TNR 1 FNR 1

1 0.97 0.02 0.96 0.03
2 0.88 0.09 0.92 0.12
3 0.82 0.06 0.91 0.18
4 0.70 0.06 0.91 0.25
5 0.45 0.02 0.95 0.45

1 TPR: true positive rate; FPR: false positive rate; TNR: true negative rate; FNR: false negative rate.

The network predictions also exhibited a strong performance in terms of spatial
localization accuracy and main lobe size estimates. The median error in the predicted
maximum intensity voxel location was 0.5 mm, with an interquartile range (IQR) of 0.8 mm.
Regarding the error in the main lobe radius, the median and IQR values were 0.02 mm
(IQR = 0.05 mm), 0.01 mm (IQR = 0.05 mm), and 0.3 mm (IQR = 0.6 mm) for the short axes
and the long axis, respectively.

In terms of inference time, for the detection of five sources at a distance of 2 cm
away from the receiver array, processing a batch of five volumes took an average of
1.37 s ± 6 ms, as measured by the tensorboard profiler. This duration includes the overhead
time associated with kernel launches and data transfer between the host and the device.

It is important to emphasize that the choice of loss function significantly impacted the
network’s performance. Solely employing the L1 loss function resulted in poor network
training, even when attempting to overfit a small-sized training set. This can be attributed
to the more balanced weighting of the loss function across both high- and low-intensity
regions provided by the SSIM component. When using a pure L1 loss function, the
relatively small number of high-intensity voxels becomes the primary contributor to error
backpropagation during weight parameter updates, potentially leading to a loss of valuable
training information.

5. Discussion

This paper demonstrated the CNN’s potential to effectively learn the TEA beam-
forming algorithm. The results indicate that the network can accurately predict the key
features of volumetric images, including image SNR, PSLR, main lobe size, and location.
Additionally, it can capture more complex features, particularly in the low-intensity regions
away from the main lobe.

The network accurately predicted the exact number of sources present in reconstruc-
tions when the number of sources detected was low. For instance, it achieves a true positive
rate (TPR) of 97% and a false positive rate (FPR) of only 0.02% for single-source images.
This low FPR is crucial from a safety perspective, preventing erroneous pressure amplitude
increases between bursts in the therapeutic controller schemes. However, as the number of
detected sources in the target increases, the TPR for correctly identifying the number of
sources decreases, reaching approximately 45% for cases with five sources. It is important
to note that the network still identifies local intensity maxima at the locations of these
missed sources, and the only reason they were not counted was that their local maximum
values fell below the−3 dB threshold. The decrease in TPR with increasing source numbers
could be attributed to potential bias in the training data. If multiple point sources are
simulated with a separation distance smaller than the PSF of the receiver array, they will
not be resolved as separate sources in the target reconstructions. Consequently, while equal
amounts of training data were generated for each number of point sources, cases with
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distinct sources in the beamformed volume are fewer, potentially introducing bias in favor
of detecting fewer sources.

The CNN’s reconstruction speed was found to be quite fast, approximately 178 s for a
dataset of 650× 413 volume images. This speed is approximately thirty times faster than
a parallelized implementation of the TEA algorithm on the same GPU device used for
network inference. It is worth noting that no specific optimization for inference speed,
such as network pruning or exploiting 16-bit floating-point operations with tensor cores,
was attempted in this study, which primarily aimed to investigate the network’s feasibility
for image reconstruction. That being said, there is also potential room for improvement
through the further optimization of the CUDA implementation, so this comparison should
be made with caution.

An interesting observation in Figure 3 is the sharp increase in accuracy at around
100 epochs. While several factors could contribute to this phenomenon, one speculative
reason is that the model has not yet adequately learned all "types" of data until that point.
Once it has learned the desired patterns, accuracy sharply improves as predictions align
with more stable patterns.

This paper introduced an initial investigation of employing a CNN for PCI beamform-
ing. However, it’s important to note that the chosen approach has few limitations that
worth further discussion. Firstly, the performance evaluation was conducted solely on
simulated data. However, some efforts were made to incorporate the variability one might
encounter experimentally, such as variable receiver sensitivity and noise profiles. The noise
profiles were randomly assigned to receivers for each simulation, meaning that the sensitiv-
ity of a particular receiver was not constant across the dataset. The network’s performance
on experimental data as input is a subject of ongoing research. Secondly, the training
data only involve continuous wave sources, whereas experimental studies can exhibit
time-dependent behaviors during long therapeutic bursts or may be transient in nature.
Future investigations will assess the network’s ability to handle finite-duration sources and
distinguish between the sources of variable durations. Thirdly, the receiver center-to-center
spacing in this study was set to a wavelength of the ultrasound frequency, which is suitable
for imaging along the center axis of the array without grating lobes. The grating lobes could
become prominent for source locations and reconstruction points far away from the main
axis (i.e. for large steering angles). In this study, the imaging locations were situated in front
of the array within a relatively small volume, which prevented grating lobes from entering
the imaging field. In cases with large fields, smaller receivers in fully populate form with
a center-to-center spacing of half a wavelength or randomly populated arrays may be
required to avoid grating lobes. Lastly, some specific clinical applications (e.g., Jones et al.,
2018 [31]) may involve sparsely populated, hemispherical receiver arrays, which would
necessitate the design of a different network architecture. Improved networks, possibly
employing graph convolutional networks (GNNs) [49,50], or extreme learning machine
(ELM) [51,52], may be needed to account for the added complexity of the receiver geometry
and non-uniform receiver positioning. The similar challenges have been encountered in
cosmology (Perraudin et al., 2019) and climate prediction, where observations are made
over an approximately spherical geometry and at unevenly separated locations on the
surface. These advancements will constitute a focal point for our forthcoming research.

6. Conclusions

This study has demonstrated the effective application of a CNN in implementing
the time exposure acoustics algorithm for PCI. By incorporating a custom loss function
consisting of L1 and SSIM components, the network achieved the highest SSIM and PSNR
scores across a dataset of 2000 simulations. The spatial localization of sources exhibited
a high degree of accuracy, with a median error and interquartile range of 0.5 mm and
0.8 mm, respectively. It exhibited the robustness to noise and sensitivity in identifying
image reconstructions with isolated single sources. These findings indicate that the use
of 3D-CNN in simulated ultrasound acquisition can lead to faster acquisitions without
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compromising the image quality. This technique holds promise for medical applications,
particularly in cavitation-based-focused ultrasound, where rapid acquisition and reduced
processing times are critical. Future research will focus on assessing the performance of
3D-CNN using experimental data in a more comprehensive clinical study aimed at the
real-time monitoring and control of acoustic cavitation.
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