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Abstract: The extreme operating environment of the combined heat and power (CHP) engine is likely
to cause anomalies and defects, which can lead to engine failure; thus, detecting engine anomalies
is essential. In this study, we propose a parallel convolutional neural network–long short-term
memory (CNN-LSTM) residual blocks attention (PCLRA) anomaly detection model with engine
sensor data. To our knowledge, this is the first time that parallel CNN-LSTM-based networks have
been used in the field of CHP engine anomaly detection. In PCLRA, spatiotemporal features are
extracted via CNN-LSTM in parallel and the information loss is compensated using the residual
blocks and attention mechanism. The performance of PCLRA is compared with various hybrid
models for 15 cases. First, the performances of serial and parallel models are compared. In addition,
we evaluated the contributions of the residual blocks and attention mechanism to the performance of
the CNN–LSTM hybrid model. The results indicate that PCLRA achieves the best performance, with
a macro f1 score (mean ± standard deviation) of 0.951 ± 0.033, an anomaly f1 score of 0.903 ± 0.064,
and an accuracy of 0.999 ± 0.002. We expect that the energy efficiency and safety of CHP engines can
be improved by applying the PCLRA anomaly detection model.

Keywords: engine anomaly detection; convolutional neural network; long short-term memory;
residual block; attention mechanism; Bayesian optimization

1. Introduction

As global warming accelerates and emerges as a major problem, many countries are
striving to address carbon emissions by implementing various policies, including energy-
related regulations, incentives, and research and development subsidies [1]. In South
Korea, efforts are being made to transition from traditional thermal power generation
to ecofriendly renewable energy; however, this transition is hindered by physical space
restrictions, owing to difficulties in securing land, policies focused on quantitative supply,
and the economic support required for the transition to eco-friendly power generation
technology [2]. Therefore, combined heat and power (CHP) plants have attracted attention
as an alternative to conventional thermal power generation for simultaneously achieving
the goals of environmental protection and energy efficiency [3]. CHP plants use liquefied
natural gas as a fuel to produce and provide heat and electric power simultaneously [4].
CHP plants emit smaller quantities of greenhouse gases and are more efficient than tradi-
tional thermal power plants because the heat generated while generating electricity can
be used in the absorption system of refrigeration and heating. Despite their reliance on
fossil fuels, CHP plants are recognized for their applicability because the fuel used in
CHP engines can be replaced with renewable fuel; thus, existing thermal power plants
can be converted for eco-friendly application. Therefore, compared with conventional
thermal power generation, the power generation efficiency of CHP plants is higher and the
environmental impact is smaller [5].
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However, CHP engines are operated in high-temperature and high-pressure environ-
ments, which increases the risk of mechanical and system anomalies and faults, owing
to the strain on components. Poor management of engine anomalies increases fuel con-
sumption with reduced operational efficiency, which results in higher greenhouse gas
emissions and increases the risk of sudden engine failure and disruption [6]. Therefore,
anomaly management is essential in CHP operation management. Rule-based methods are
typically used for anomaly detection in power generator engines; however, these methods
are disadvantageous because they limit the detection performance and incur significant
costs in the design and development of the rules [7]. Data-based machine learning and deep
learning anomaly detection techniques can be utilized to mitigate these disadvantages [8].
In particular, deep learning-based anomaly detection can enhance the safety and efficiency
of engine operation by learning abnormal occurrence patterns from the sensor data of
operating engines and applying them to actual operations to detect anomalies in advance
and provide alarms to power plants.

In this study, we propose an anomaly detection model for CHP engines that has a
parallel convolutional neural network (CNN)–long short-term memory (LSTM) residual
attention (PCLRA) model, which is a hybrid model of various deep learning algorithms.

1.1. Related Works

The detection of anomalies in a power generator engine and turbine can be achieved
with classification models using multivariate time series data. The models used for this can
be categorized into shallow machine learning, deep learning, and hybrid deep learning.

Shallow machine learning involves finding and learning patterns in large amounts
of data. Wang et al. [9] proposed an anomaly detection model for an integrated energy
system that included electricity, gas, and heat using a support vector machine (SVM) [10],
and they demonstrated the superior performance of the model to statistical models.
Lee et al. [11] proposed an anomaly detection model for aircraft using an SVM.
Wang et al. [12] demonstrated the performance of a naïve Bayesian-based [13] anomaly
detection model for power plant fan systems by comparing the model with random forest
(RF) [14] and k-nearest neighbor (KNN) models [15].

While shallow machine learning models train data patterns to derive detection results,
deep learning has been used to find and learn important features that affect anomalies
in a vast amount of data, and the excellent performance of this method has been demon-
strated in numerous studies. In particular, studies have been conducted on the vanishing
gradient problem of neural network structures and deep learning has been used to solve
relevant problems in various fields [16]. First, there have been anomaly detection studies
based on the artificial neural network (ANN) and multilayer perceptron (MLP). Alblawi
et al. [17] proposed an anomaly detection model using gas turbine sensor data and ANN [18]
and they compared its performance with that of thermodynamic computational models.
Amirkhani et al. [19] proposed an anomaly detection model using gas turbine sensor data
and ANN and compared its performance with that of MLP and statistical models. Zhou
et al. [20] preprocessed sensor data with a spatial transformer network to propose an
anomaly detection model for gas turbines using MLP and compared it to a model without
a transformer. Additionally, LSTM has been used to learn time series data and perform
anomaly detection. Wang et al. [21] used principal component analysis [22] to extract key
features and proposed an anomaly detection model using LSTM for aircraft acceleration
engines. Liu et al. [23] proposed a Bayesian LSTM [24] model for detecting steam turbine
anomalies in nuclear power plants and compared its performance with that of the recurrent
neural network (RNN). Li et al. [25] proposed an LSTM model for distributed control
system anomaly detection and compared it with ANN and extreme learning machine.
RNN-based networks have been widely used for anomaly detection with multivariate time
series data. However, because it is important to comprehensively understand multiple
sensors and learn spatial features for engine anomalies, CNN-based models have also
attracted research attention. Li et al. [26] proposed an anomaly detection CNN model for
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substations and demonstrated its superior performance to ANN, KNN, and RF models.
Shahid et al. [27] used a CNN model to detect engine anomalies and compared it with
SVM-, KNN-, and CNN-based models. Lee et al. [28] transformed time-series data into two-
dimensional (2D) images, proposed an anomaly detection model for nuclear power plants
using two-channel CNN [29], and compared its performance with that of one-channel
CNN, the gated recurrent unit (GRU) [30], ANN, and SVM. Zhou et al. [31] proposed
an anomaly detection model for micro gas turbines using CNN optimized with extreme
gradient boosting and compared its performance with that of MLP [18], the deep belief
network, and CNN. Yao et al. [32] proposed an anomaly detection model for a nuclear
power plant using simulation data and a model that combines residual blocks [33] and
CNN, and they compared it with that of CNN.

Studies have been conducted to improve anomaly detection performance using deep
learning and data preprocessing techniques. In particular, hybrid deep learning models are
attracting attention because they combine different neural network models to overcome
the shortcomings of single models and improve the overall performance. Since CNN and
LSTM are effective for extracting spatial and temporal features, respectively, from the data,
models that combine CNN and LSTM are superior for training the important features
of multivariate time series data. Kong et al. [34] evaluated the performance of a CNN-
GRU-based wind turbine anomaly detection model. In addition, studies were conducted
to improve the performance by applying an attention mechanism [35] to the CNN-RNN
network. Xiang et al. [36] proposed a wind turbine anomaly detection model using CNN-
LSTM-AM, in which the CNN, LSTM, and attention mechanism were combined. The
model exhibited superior performance to the LSTM, BiLSTM, and CNN-LSTM models.
Subsequently, an improved CNN-BiGRU-AM model was proposed and compared with the
GRU, CNN-GRU, and CNN-BiGRU models [37].

Models that combine CNN and LSTM are effective for extracting and training spa-
tiotemporal features in multivariate data. However, CNN-LSTM-based anomaly detection
models for engines and turbines are mostly serially combined. In serial CNN-LSTM models,
the output of CNN is used as the input of LSTM; therefore, temporal features cannot be
extracted from the original input data using LSTM. In addition, the loss of spatial informa-
tion extracted by CNN may occur. To address these limitations, parallel CNN-LSTM (PCL),
which combines CNN and LSTM in parallel to directly extract spatiotemporal features from
the original input data, and parallel CNN-LSTM attention (PCLA), which combines the
PCL and attention mechanism, were proposed [38].

1.2. Contribution

In previous studies, hybrid deep learning models exhibited a better anomaly detection
performance than shallow machine learning and deep learning models. In this study, we
propose a parallel CNN-LSTM residual blocks attention (PCLRA) model that combines the
attention mechanism and residual blocks using engine sensor data. We applied the model
to the anomaly detection of CHP engines to evaluate its performance. The engine sensor
log data is the same as the multivariate time series data, and CNN is used to train the
spatial features by analyzing multiple sensor data that occurred at the same time, whereas
LSTM is used for training temporal features. In addition, residual blocks and an attention
mechanism are applied to compensate for information loss due to the vanishing gradient
problem in the CNN-LSTM network.

To our knowledge, this is the first time that parallel CNN-LSTM-based networks
have been introduced into the field of CHP engine anomaly detection. In PCLRA, the
input data are entered into CNN and LSTM in parallel to extract and train spatial and
temporal features. This model allows the spatiotemporal features of the original input
data to be trained more effectively compared with models that combine CNN and LSTM
in series. Residual blocks are used during this process to compensate for the information
loss caused by the vanishing gradient problem in the CNN and LSTM. Additionally, the
features extracted from the CNN and LSTM are combined and input into the attention
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mechanism to focus on important spatiotemporal features. Lastly, the anomaly detection
results for the CHP engines are derived using the softmax function. The contributions of
this study are as follows:

1. PCLRA is proposed as a model that combines CNN and LSTM in parallel and inte-
grates the residual blocks and attention mechanism. This model is applied to anomaly
detection in CHP engines.

2. The performances of the parallel CNN-LSTM models are compared with that of the
serial CNN-LSTM models, and Bayesian optimization (BO) [39] is applied to identify
the hyperparameter values that optimized the performance of each model.

3. The performances of the hybrid models with residual blocks are compared with that
of the hybrid models with the attention mechanism, and BO is applied to identify
hyperparameter values that optimized the performance of each model.

The remainder of this paper is organized as follows. Section 2 describes the methodolo-
gies used in this study, including the proposed model. Section 3 presents details regarding
the experiment, including the data, training, testing procedures, and performance compari-
son results. Section 4 presents the discussion and Section 5 concludes the study.

2. Methods
2.1. Overall Framework of Multivariate Time Series Anomaly Detection

The multivariate time series anomaly detection framework presented in this study
is shown in Figure 1. The engine sensor multivariate time series data set is preprocessed
into train, validation, and test sets for input into the model via the normalization and
dataset split. A total of 10 models, including the proposed model PCRLA, are trained to
compare the model performance of various network structures, and Bayesian optimization
is applied to find the optimal hyperparameters. The models are trained with the train set
and evaluated with the validation set to find the best hyperparameter combination. The
final selected models are retrained and anomaly detection scores for the test set are derived.
The optimal network model is selected via anomaly detection score comparison of a total of
10 models. In this chapter, the basic network elements constituting the proposed model and
the PCRLA structure are explained. In addition, nine baseline models and hyperparameter
optimization are described.
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2.2. CNN

In the CHP engine system, multiple sensors are mounted on each part of the engine
for management. Each part of the engine is connected with the others, so the collected data
are multivariate time series data based on the time and sensors. For multivariate time series
forecasting, it is important to identify the non-linear and non-periodic characteristics of the
data from short-term and long-term dynamic flows. Although RNN-based models have
received attention for time series forecasting, they have limitations in that they only extract
the temporal features of multivariate time series data. In one-dimensional CNN (1D-CNN),
the kernel moves in the time direction and extracts spatial features, so it is well suited for
multivariate time series data. The simple architecture of 1D-CNN is shown in Figure 2 and
the process is represented as Equation (1). xi is the input, k is the kernel weight, b is the
bias, and f (·) is the activation function. Additionally, xj is the output of the jth kernel in
the lth convolutional layer.

xl
j = f

(
Σi∈Mj x

l−1
i × kl

ij + bl
j

)
(1)Sensors 2023, 23, x FOR PEER REVIEW 6 of 25 
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2.3. LSTM

RNN-based models, especially LSTM, play an essential role in sequential data analysis
such as natural language and time series data. LSTM is especially designed for capturing
long-term temporal dependencies and overcoming vanishing gradient problems. LSTM
controls the flow of information using four components: cell, input gate, forget gate, and
output gate. The simple architecture of LSTM is shown in Figure 3 and the process is
represented as Equations (2)–(7), where xt is the input, ht is the output of the hidden layer,
C is the memory cell, W is the weight, and b is the bias. The input gate plays a role in
determining how much to add to the current cell state value in order to remember the
current information. The value obtained by multiplying the current time value xt by the
weight Wxi and the value obtained by multiplying the previous time hidden state ht−1
by the weight Whi leading to the input gate are added. The input gate result is the value
applied as the sigmoid function to the added value in Equation (2). The sigmoid function
results in a value between 0 and 1, which is the amount of information that has gone
through the process. Then, the tanh function is applied by adding the product of xt and the
weight Wxg, leading to the input gate and the product of ht−1 and Whg, as the amount of
information to remember at time t is derived with it and gt in Equation (3). The forget gate
is the process of deciding whether or not to discard past information. The current value
xt and the previous hidden state ht−1 pass through the sigmoid function in Equation (4).
The old cell state is updated using output values of the forget gate and the input gate in
Equation (5). Finally, the output gate is the process of determining the output value and
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plays a role in determining how much of the final cell state value to use. The output gate
value is the result of applying xt and ht−1 to the sigmoid function and is used to determine
ht in Equations (6) and (7).

it = σ(Wxixt + Whiht−1 + bi) (2)

gt = tanh
(

Wxgxt + Whght−1 + bg

)
(3)

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(4)

Ct = ft
◦Ct−1 + it

◦gt (5)

ot = σ(Wxoxt + Whoht−1 + bo) (6)

ht = ot
◦tanh(Ct) (7)
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2.4. Residual Block

CNN exhibits excellent performance in extracting and training important features from
multi-dimensional data. Furthermore, the residual block has been proposed to compensate
for the vanishing gradient problem in simple-stacked CNN model structures. The residual
block allows for forward propagation and backpropagation to be performed immediately
in the form of a shortcut connection without going through multiple CNN layers. The
residual block is given by Equation (8). The output yn is the result derived by entering
the input feature map xn and input update weight Wn in the network mapping function
F(·). The direct mapping function for the residual connection can be represented by H(·).
The final output is the sum of the F(·) and H(·) results. In the proposed model, residual
blocks are applied to both CNN and LSTM. The residual block for the CNN consists of
convolutional, batch normalization, and the activation function layers, whereas that for the
LSTM consists of LSTM, batch normalization, and the activation function layers.

yn = F(xn, Wn) + H(xn) (8)

2.5. Attention Mechanism

Attention mechanism is proposed to solve the vanishing gradient problem that occurs
in deep learning models used to train multivariate time-series data. When the input
data from the encoder are referred to every time results are detected via the decoder, the
attention mechanism is used to focus on the important features instead of referring to all
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the features at the same importance level. The attention mechanism includes four steps
that determine the attention score, attention distribution, attention value, and decoder
hidden state. First, we obtain the output at the current time t using the hidden states of the
encoder hi and decoder st by calculating the attention score corresponding to the similarity
of all hi and st using Equation (9). et is a scalar value consisting of the attention score, as
expressed in Equation (10). The attention distribution is obtained by converting this scalar
value into a probability distribution by applying the softmax function to et, as given via
Equation (11). The attention value is the final output of the attention mechanism and it
is the result of multiplying and summing the attention distribution and hidden states, as
shown in Equation (12). The weight matrix Wc bias bc and tanh function are applied to the
attention value to obtain the input s̃t for the last output layer, as given via Equation (13).
Finally, in the output layer, the weight vector Wy and bias by are applied to the input s̃t, as
given via Equation (14), and the softmax function is used to derive the anomaly detection
result. In PCLRA, the spatiotemporal features extracted from the CNN and LSTM are input
into the attention layer; thus, we focus only on the important features for training.

score(st, hi) = sT
t hi (9)

et =
[
sT

t h1, · · · , sT
t hN

]
(10)

αt = so f tmax
(
et) (11)

at = ΣN
i=1αt

i hi (12)

s̃t = tanh(Wc[at·st] + bc) (13)

ŷt = so f tmax
(
Wy s̃t + by

)
(14)

2.6. Parallel CNN-LSTM Residual Blocks Attention

In this study, the PCLRA model is proposed for CHP engine anomaly detection. The
system sensor log data of CHP engines is a multivariate time series dataset, which is used as
the input data. Identifying the non-linear and non-periodic characteristics of the data from
short and long-term dynamic flows is important to multivariate time series forecasting.
RNN- and LSTM-based models have been mainly used for time series forecasting, but they
are limited to only extracting temporal features of multivariate data. Since CNN can train
spatial features of multivariate time series data, models combining CNN with LSTM are
excellent for training spatiotemporal features. Accordingly, many serial CNN-LSTM-based
models have been proposed. However, for these models, it is difficult to extract temporal
features from the original data because the output of the CNN is used as the input of the
LSTM and the spatial information extracted from the CNN may be lost. Therefore, we
propose PCLRA, which is an advanced structure combining CNN and LSTM in parallel.

In PCLRA, the data are entered into CNN and LSTM in parallel and the spatial
and temporal features are extracted. During this process, residual blocks are applied to
compensate for the loss of information caused by the vanishing gradient problem. Finally,
the attention mechanism is applied to features with different characteristics extracted from
the networks and trains the models with a focus on the important features. Thus, the
attention value for each component is derived and the normal and anomaly probability
values can be determined using the dense layer and softmax function.

Figure 4 shows the detailed structure of the proposed model. The CNN is composed
of two layers, each consisting of the activation function and batch normalization. The
same padding and size 2 kernel are applied. A residual block is added to extract features
directly from the input data without going through the two layers of the CNN. The number
of output nodes is set to match the number of last output nodes of the second CNN to
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derive the final CNN feature values via summation. The LSTM is configured with the same
parallel structure as the CNN. The spatial and temporal features derived from the CNN
and LSTM, respectively, are concatenated and input into the attention mechanism. Then,
the importance of the features is trained, and the normal and anomaly probabilities of the
engines are derived as the final output using the softmax function.
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2.7. Baselines

This section introduces the models used as baselines for the anomaly detection per-
formance comparison with the proposed model: CNN, LSTM, serial CNN-LSTM (SCL),
serial CNN-LSTM residual (SCLR), serial CNN-LSTM attention (SCLA), serial CNN-LSTM
residual attention (SCLRA), PCL, parallel CNN-LSTM residual (PCLR), and PCLA. In
this study, we propose a combined model PCLRA to extract spatiotemporal features from
the CHP engine sensor log data, which is a multivariate time series. CNN-, LSTM-, and
CNN-LSTM-based sequential combination models are used as baselines to prove the per-
formance. These models are benchmarks that have been applied to multivariate time series
data prediction and anomaly detection in various fields and their performance is compared
with the proposed model, PCLRA.

CNN is proposed to process multidimensional data such as images and videos. Since
one-dimensional data are used as an input to the deep neural network, it is necessary to
flatten 2D data, such as images, to one dimension, which results in a significant loss in the
spatial features of the data. However, CNN learns spatial features without loss using 2D
data as an input and they achieve excellent performance.

LSTM is proposed to address the vanishing gradient problem of RNN. RNN is struc-
tured to reflect the previous trained results in the current time and it is suitable for learning
temporal features of the data. In the process of reflecting the previous trained results, LSTM
uses three gates to select the parts to remember, delete, and add, and it reflects these parts
in subsequent training.

Hybrid models that incorporate LSTM and CNN in various structures are also tested
as baselines. In SCL, CNN and LSTM are arranged in series; the input data are entered into
the CNN and the corresponding output is entered into the LSTM to obtain the final output.
In SCLR, the loss of information is overcome by combining each CNN and LSTM of SCL
with residual blocks. In SCLA, the attention mechanism is added to SCL to evaluate the
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importance of features in the LSTM output, and in SCLRA model, SCL is combined with
both the residual blocks and attention mechanism.

In PCL, CNN and LSTM are arranged in parallel and two networks receive the same
data as an input. Then, the final output is derived by combining the spatial and temporal
features extracted from CNN and LSTM, respectively. In PCLR, the loss of information is
supplemented by combining each CNN and LSTM of PCL with residual blocks, and the
PCLA model derives the final output by applying the spatiotemporal features combined in
PCL model to the attention mechanism.

2.8. Hyperparameter Optimization

In this study, optimal models are derived by applying BO to 10 models. BO consists of
a surrogate model and an acquisition function. The surrogate model estimates an objective
function using the Gaussian process based on the result of a previous experiment, and
the acquisition function recommends the subsequent input value based on the estimation
model. Through this, it is possible to obtain the combination of hyperparameters that
optimizes the performance of the deep learning model.

3. Experiments
3.1. Data Description

The CHP engine sensor log data are collected from three CHP engines at a power plant
that supply electricity and heating to approximately 12,000 households in Chungcheongnam-
do, South Korea. Of the three engines, Engines 1 and 2 were introduced in 2009 and Engine 3
was introduced in 2015, and the engines are WÄRTSILÄ products. All three engines have
operated continuously to the present day. The actual operation data per minute were
collected from 07:00 on 3 May 2019 to 16:19 on 31 August 2020.

In this study, the engines are divided into five parts for anomaly detection according
to the advice of power plant experts, as shown in Figure 5: the fuel gas part (FG), lube oil
part (LO), charge air and exhaust gas part (CE), gas engine part (GE), and cooling water
part (CW) [40,41]. Table 1 presents engine sensor feature categories for each part. As the
part related to fuel and combustion, FG consists of combustors that burn LNG and includes
sensor features related to the main duration offset, ignition timing, and knocking of the
cylinder. LO is related to engine operation and is the part that operates the turbine and
engine with the combusted LNG. It primarily includes sensor features related to the liner
temperature, main bearing temperature, and temperature and pressure of the lube oil.
CE is an exhaust gas-related part that discharges the burned LNG as waste gas via the
heat exchanger. It includes sensor features related to the exhaust gas temperature of the
cylinders, exhaust gas temperature deviation, boiler, and exhaust gas waste gate valve
position following combustion. GE encompasses the engine, turbine, and generator and
includes sensor features related to the engine speed and load, power and phase current
of the phasor measurement unit, the district heater (DH), and the power, phase current,
winding temperature, and bearing temperature of the generator. CW is the part that
converts cold water into warm water via the combustor and heat exchanger. It includes
sensor features related to the gas temperature and gas pressure of the LNG fuel and the
dew point and temperature of the charge air cooler.
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Table 1. Sensor features by engine parts.

Part Feature Category Count Total Part Feature Category Count Total

FG

Main duration offset 21

64 CE

Exhaust gas temperature 23

51
Ignition timing 20 Exhaust gas temp deviation 20

Knocking 20 Boiler/DH 4
Others 2 Exhaust gas waste gate 3

Fuel 1 Others 2

LO

Liners 40

60 GE

Load and speed 18

39
Bearings 12 Boiler/DH 14
Lube oil 6 Generator 5
Others 2 Others 2

Boiler/DH 1

CW

Fuel 9

17Charge air 5
Others 2

Cooling 1

There is no separate category for anomaly type in the engine anomaly and management
history data; instead, the abnormal engine, part, date and time of occurrence, and details
of the action are recorded manually. The engine anomaly detection target anomalies that
occur when the engine is in operation, that is, when the engine speed is 10 rpm or higher.
Anomalies during engine shutdown can be excluded from detection because they are part
of regular maintenance or inspection and repair and are used to address the anomalies
during operation. Figure 6 shows 60 feature log datapoints of Engine 2 LO and the presence
of anomalies during the month of September 2019 as an example. The figure indicates the
occurrence of anomalies during engine operation on 16 September and during the engine
shutdown on 7, 8, and 16 September.
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The anomaly rates for each engine and part are presented in Table 2. Since the data
have severe class imbalance, the macro f1 score is used as a model performance evaluation
metric in this study.

Table 2. Anomaly rates (%) of 15 data sets corresponding to three engines and five parts.

FG LO CE GE CW

Engine 1 0.97 0.62 0.15 0.78 0.15
Engine 2 0.63 0.36 0.31 0.31 0.31
Engine 3 0.83 0.34 0.28 0.28 0.28

Normalization is applied to convert the data to the range of 0–1 for model training.
Min–max scaling [42] is then applied, as shown in Equation (15). We divided the difference
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between X and Xmin by the difference between Xmax and Xmin, which yield X′, i.e., the
normalization result of X.

X′ = (X− Xmin)/(Xmax − Xmin) (15)

3.2. Anomaly Detection Model Train and Test Procedures

The experimental environment consists of an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40
GHz, 64 GB RAM, Windows 10 64 bit, and an NVIDIA GeForce RTX 3080 Ti. Python 3.8,
TensorFlow 2.3, scikit-learn 0.23, and scikit-optimization 0.8 are used. The dataset is divided
into training, validation, and test sets at a ratio of 6:2:2. Typically, the train and test set ratio
of 8:2 is used, but in this study, model validation is performed during the training process,
which is generally performed by splitting a portion of the train set. And, the three data sets
are divided equally at normal anomaly ratios, but if they are not divided at the same ratio
and are concentrated on one set, it is difficult to train, validate, and test the anomalies fairly.

The input time step of the anomaly detection model is 5 min, which is equally applied
to all 10 models for 15 cases, and engine anomalies are detected before 2 min. This means
that, for example, if the data from 20 October 2022 00:30:00 to 20 October 2022 00:34:00 is
input to the model, an abnormal status of 20 October 2022 00:36:00 will be detected. At the
power plant, the engine sensor log data is used in conjunction to manage the operation of
the engines second-by-second. Therefore, the detection of anomalies 2 min after the data
input can be useful for operating the engines and managing anomalies. The specifications
for engine operation are based on guidance from the engine experts at the power plant.
Including PCLRA, 10 deep learning models are trained for each engine and part.

BO is performed 50 times for each model and the criterion for searching is the macro
f1 score, which is described in the next section. This means optimizing the hyperparameter
in the direction of increasing this value, based on the macro f1 score. Via optimization, the
final model is generated by selecting the model hyperparameters with the largest macro f1
score for the validation set and it is then trained and tested. BO is applied to determine
the five hyperparameters, i.e., the number of output nodes and activation functions of the
first and second layers, learning rate, and batch size that optimize the performance of the
models, and Table 3 presents the search ranges.

Table 3. BO search range of 10 models.

Hyperparameter Range

Learning rate [1 × 10−4, 1 × 10−2]
Output nodes of first layer [16, 32]

Output nodes of second layer [8, 16]
Activation function {‘tanh’, ‘relu’}

Batch size [500, 5000]

3.3. Evaluation Criteria

The performances of the anomaly detection models are quantified and compared with
regard to the macro f1 score, anomaly f1 score, and accuracy [43]. Table 4 presents the
confusion matrix, which displays the anomaly detection results of the model. The number
of abnormal cases that are classified accurately is referred to as true positive (TP), and true
negative (TN) represents the number of normal cases accurately detected by the model.
False positive (FP) represents the number of normal cases detected as an anomaly, and
false negative (FN) represents the number of abnormal cases detected as normal. The
accuracy refers to the ratio of the number of cases with accurate detection to the total
number of cases, as given via Equation (16). However, in the case of imbalanced class data,
the accuracy is biased toward the majority class, making it inappropriate as a performance
evaluation criterion. Therefore, the model performance is evaluated via the f1 score using
precision and recall. Precision is the ratio of the number of correctly detected cases to the
number of abnormal results detected by the model, as given via Equation (17), and recall is



Sensors 2023, 23, 8746 12 of 22

the ratio of the number of abnormal cases detected by the model to the number of actual
abnormal cases, as given via Equation (18). The f1 score, which is the harmonic mean of
the precision and recall, is calculated using Equation (19) to identify the model with the
best precision and recall values. This is referred to as the anomaly f1 score and is based on
anomaly detection. The f1 score is calculated according to normal detection, and the macro
f1 score, which is the unweighted mean of the normal f1 score and anomaly f1 score, can be
calculated and used as a measure of the model performance.

Accuracy =
TP + TN

TP + FP + TN + FN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1− score = 2× precision× recall
precision + recall

(19)

Table 4. Confusion matrix.

Predicted

Anomaly Normal

Actual
Anomaly TP FN
Normal FP TN

3.4. Anomaly Detection Performance Evaluation of Models

The 10 models are trained and tested for 15 cases, corresponding to three CHP engines
and five parts. The results for the macro f1 score, anomaly f1 score, and accuracy are
compared in Tables 5–7, respectively.

Table 5. Anomaly detection model macro f1 score.

Engine Part CNN LSTM SCL SCLR SCLA SCLRA PCL PCLR PCLA PCLRA

Macro
F1

score

1

FG 0.883 0.834 0.723 0.752 0.834 0.844 0.752 0.835 0.742 0.858
LO 0.348 0.500 0.500 0.500 0.500 0.347 0.573 0.522 0.500 0.962
CE 0.964 0.882 0.782 0.937 0.964 0.564 0.657 0.855 0.948 0.964
GE 0.800 0.498 0.498 0.926 0.527 0.990 0.990 0.987 0.536 0.978
CW 0.552 0.964 0.500 0.500 0.523 0.937 0.601 0.818 0.964 0.964

2

FG 0.847 0.811 0.806 0.794 0.834 0.843 0.814 0.765 0.841 0.946
LO 0.982 0.974 0.422 0.977 0.984 0.977 0.982 0.982 0.982 0.984
CE 0.968 0.970 0.928 0.960 0.985 0.982 0.728 0.976 0.913 0.976
GE 0.915 0.970 0.522 0.973 0.976 0.976 0.973 0.976 0.976 0.976
CW 0.976 0.973 0.976 0.893 0.979 0.979 0.979 0.973 0.979 0.979

3

FG 0.820 0.821 0.849 0.816 0.875 0.872 0.842 0.841 0.809 0.908
LO 0.957 0.924 0.959 0.950 0.953 0.956 0.935 0.954 0.971 0.919
CE 0.961 0.938 0.965 0.948 0.842 0.951 0.735 0.938 0.961 0.958
GE 0.908 0.938 0.954 0.948 0.954 0.969 0.929 0.952 0.936 0.951
CW 0.774 0.922 0.936 0.938 0.800 0.965 0.942 0.948 0.948 0.947

mean 0.844 0.861 0.755 0.854 0.835 0.877 0.829 0.888 0.867 0.951

std 0.172 0.152 0.202 0.154 0.171 0.176 0.141 0.120 0.153 0.033

Bold score means excellent performance in each engine and part.
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Table 6. Anomaly detection model anomaly macro f1 score.

Engine Part CNN LSTM SCL SCLR SCLA SCLRA PCL PCLR PCLA PCLRA

Anomaly
F1

score

1

FG 0.769 0.672 0.455 0.513 0.672 0.692 0.513 0.674 0.493 0.720
LO 0.003 0.000 0.000 0.000 0.000 0.003 0.150 0.055 0.000 0.923
CE 0.929 0.765 0.565 0.875 0.929 0.133 0.317 0.710 0.897 0.929
GE 0.605 0.000 0.000 0.854 0.061 0.981 0.981 0.974 0.075 0.955
CW 0.115 0.929 0.000 0.000 0.049 0.875 0.205 0.636 0.929 0.929

2

FG 0.697 0.626 0.615 0.592 0.671 0.688 0.631 0.536 0.684 0.893
LO 0.963 0.948 0.023 0.953 0.969 0.953 0.964 0.964 0.964 0.969
CE 0.936 0.940 0.857 0.920 0.970 0.964 0.460 0.953 0.827 0.952
GE 0.831 0.940 0.080 0.947 0.953 0.953 0.947 0.953 0.953 0.952
CW 0.953 0.947 0.953 0.786 0.959 0.959 0.959 0.947 0.959 0.959

3

FG 0.644 0.646 0.702 0.637 0.754 0.746 0.688 0.686 0.623 0.818
LO 0.914 0.849 0.919 0.901 0.907 0.913 0.871 0.908 0.943 0.839
CE 0.923 0.876 0.930 0.896 0.686 0.902 0.472 0.876 0.923 0.916
GE 0.816 0.876 0.909 0.896 0.909 0.938 0.859 0.904 0.871 0.902
CW 0.550 0.845 0.871 0.876 0.601 0.930 0.884 0.897 0.896 0.894

mean 0.710 0.724 0.525 0.710 0.673 0.775 0.660 0.778 0.736 0.903

std 0.287 0.303 0.383 0.307 0.341 0.294 0.281 0.237 0.305 0.064

Bold score means excellent performance in each engine and part.

Table 7. Anomaly detection model accuracy.

Engine Part CNN LSTM SCL SCLR SCLA SCLRA PCL PCLR PCLA PCLRA

Accuracy

1

FG 0.994 0.991 0.981 0.982 0.991 0.992 0.982 0.991 0.981 0.993
LO 0.530 0.999 0.999 0.999 0.999 0.529 0.993 0.979 0.999 1.000
CE 1.000 0.999 0.998 1.000 1.000 0.991 0.994 0.999 1.000 1.000
GE 0.990 0.992 0.992 0.997 0.984 1.000 1.000 1.000 0.992 0.999
CW 0.979 1.000 0.999 0.999 0.992 1.000 0.994 0.999 1.000 1.000

2

FG 0.995 0.993 0.992 0.992 0.994 0.995 0.993 0.990 0.995 0.999
LO 1.000 1.000 0.699 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CE 1.000 1.000 0.999 0.999 1.000 1.000 0.993 1.000 0.999 1.000
GE 0.999 1.000 0.932 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CW 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000

3

FG 0.991 0.991 0.993 0.991 0.995 0.995 0.993 0.993 0.990 0.997
LO 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 0.999
CE 1.000 0.999 1.000 0.999 0.998 0.999 0.994 0.999 1.000 1.000
GE 0.999 0.999 0.999 0.999 0.999 1.000 0.999 0.999 0.999 0.999
CW 0.996 0.999 0.999 0.999 0.997 1.000 0.999 0.999 0. 999 0.999

mean 0.965 0.997 0.972 0.997 0.997 0.963 0.996 0.996 0.997 0.999

std 0.116 0.003 0.075 0.005 0.004 0.117 0.005 0.006 0.005 0.002

Bold score means excellent performance in each engine and part.

PCLRA, which is proposed as an anomaly detection model for CHP engines in this
study, combines PCL with the residual blocks and attention mechanism, as shown in
Figure 4. Two CNN layers and two LSTM layers are arranged in parallel and spatiotemporal
features are extracted using the same input data. During this process, residual blocks are
used to compensate for the loss of information caused by the vanishing gradient problem.
The outputs from the CNN and LSTM are combined, the attention mechanism is used for
training with a focus on the important features, and the occurrence of anomalies is derived
as the output using the softmax function.

The statistics of the test results for 10 models based on the 5 five parts of three engines are
compared, and the proposed PCLRA model exhibited the best performance. For the macro f1
score, it had the highest mean value (0.951) and the smallest standard deviation (std) (0.033),
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indicating its excellent performance. Additionally, for the anomaly f1 score, it had the highest
mean value (0.903) and the smallest std (0.064). It also had the highest accuracy: 0.999 ± 0.002
(mean ± std). Among the 10 models, PCLRA performs the best for the LO, CE, and CW of
Engine 1; FG, LO, and CW of Engine 2; and FG of Engine 3, and the second-best for the FG
of Engine 1 and GE of Engine 2. An anomaly detection example of PCLRA targeting Engine
2 LO is shown in Figure 7. Abnormal symptoms occurred in Engine 2 LO from 13:33, and
PCLRA detected that anomalies would occur at 13:31 (2 min prior).
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Table 8 presents the hyperparameters obtained by optimizing the PCLRA model for
the 15 cases. For example, in the case of the Engine 1 FG, the number of output nodes of
the first CNN and LSTM layers is set to 21, that of the second layers is set to 13, and the
activation function of each layer is set to tanh. The number of output nodes of the second
layer is set to 13, which is identical to the number of output nodes of residual blocks. The
learning rate of the model is 0.0069 and the batch size is 3533.

Table 8. PCLRA anomaly detection model hyperparameter results.

Engine Part Learning
Rate

Output
Nodes 1

Output
Nodes 2

Activation
Function Batch Size

1

FG 0.0069 21 13 tanh 3533
LO 0.0015 25 11 relu 3498
CE 0.0013 17 11 tanh 3559
GE 0.0003 29 12 relu 5000
CW 0.0033 31 8 tanh 1222

2

FG 0.0030 16 15 relu 500
LO 0.0023 16 10 relu 562
CE 0.0006 25 9 tanh 858
GE 0.0008 24 10 relu 857
CW 0.0009 31 8 relu 4156

3

FG 0.0046 30 8 tanh 4973
LO 0.0079 16 16 relu 5000
CE 0.0005 21 12 tanh 1972
GE 0.0091 32 12 tanh 4916
CW 0.0095 30 9 tanh 5000

The confusion matrices of the best and second-best models for 15 cases are compared
in Table A1. Each confusion matrix title indicates the engine, part, and model. The models
that had the same performance exhibited the same confusion matrix; therefore, only one of
the highest-performance models and one of the second-highest performance models are
selected and compared. The proposed PCLRA model is one of the top two models in 9 of
the 15 cases and it exhibited the best performance in seven cases. In the case where PCLRA
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is the second-best model, the normal misclassification rate of PCLRA is high for Engine 1
FG, whereas for Engine 2 GE, the normal misclassification rate of PCLRA is low, but the
anomaly misclassification is high. As with Engine 1 LO, the white area in the confusion
matrix heat map represents 0.

3.5. Performance for Different Methods of Combining CNN and LSTM

By training and testing 10 models for a total of 15 cases, the means and stds of the
macro f1 score, anomaly f1 score, and accuracy are obtained. They are compared in
Figures 5 and 6. CNN–LSTM hybrid models can be divided into parallel models and serial
models according to how CNN and LSTM are combined. In this study, to evaluate the
two combination methods, PCL, SCL, and the modified structures of the two models are
compared. Both PCL and SCL perform worse than uncombined CNN and LSTM models
because the information loss due to the vanishing gradient problem increases in the hybrid
model. However, PCL outperforms SCL by 8.93%, 20.45%, and 2.41% with regard to the
macro f1 score, anomaly f1 score, and accuracy, respectively. Comparing SCLR and PCLR,
which combine residual blocks with SCL and PCL, reveals that the macro f1 score and
anomaly f1 score of PCLR are superior to those of SCLR by 3.83% and 8.74%, respectively;
however, the accuracy of SCLR is 0.10% higher than that of PCLR. Comparing SCLA and
PCLA, which included an attention mechanism, revealed that the macro f1 score of PCLA is
3.69% better and that the anomaly f1 score of PCLA is 8.56% better. Comparing SCLRA and
PCLRA, which integrated both the residual block and attention mechanism into SCL and
PCL, reveals that the macro f1 score, anomaly f1 score, and accuracy are 7.78%, 14.17%, and
3.30% higher, respectively, for PCLRA. The comparison results for the various serial and
parallel combined models of CNN and LSTM confirm that parallel models more effectively
extract and train the spatiotemporal features of multivariate time series data.

3.6. Performance for Different Information Loss Compensation Methods

In this study, the residual blocks and attention mechanism are combined with PCL
and SCL to compensate for the information loss and their performance is compared in
Figures 8 and 9. Comparing SCLR and SCLA revealed that SCLR increased the macro f1
score by 2.22% and the anomaly f1 score by 5.21%. Comparing PCLR and PCLA revealed
that PCLR increases the macro f1 score by 2.36% and the anomaly f1 score by 5.40%, but the
accuracy of PCLA is 0.10% higher than that of PCLR. This indicates that residual blocks,
which supplement the important information loss in the CNN and LSTM, contributes to
the performance improvement of the model more than the attention mechanism. Finally,
when both the residual blocks and attention mechanism are combined with the SCL, the
macro f1 score of SCLRA increased by 2.62% and its anomaly f1 score increased by 8.39%,
but its accuracy decreased by 3.11%. PCLRA performed the best with increases of 6.62%,
13.84%, and 0.20% in the macro f1 score, anomaly f1 score, and accuracy, respectively.
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4. Discussion

In this section, issues related to the model proposed in this study are discussed.
First, this study uses the CNN-LSTM-based model structure to train spatiotemporal

features of multivariate time series data and compares the performance by combining residual
blocks and attention mechanisms to complement the performance. Experimental results show
that CNN and LSTM have superior performance compared to simply combined models like
SCL and PCL, but single models have the limitation of not being able to train spatiotempo-
ral features. Therefore, this study aims to improve the structure of CNN-LSTM-based for
training spatiotemporal features of multivariate time series data and proves the superior
performance of PCLRA. Structures that combine the residual blocks and attention mechanism
in a single model of CNN and LSTM have limitations in training spatiotemporal features, but
experiments on these are considered necessary and will be researched.

In addition, this study used BO to derive the best performance of 10 models and
compare them. There is a need to study how various hyperparameters affect performance
in the HO process and improve search more efficiently based on this.

We will continue to resolve these issues that need to be considered and find ways to
improve it.

5. Conclusions

The proposed PCLRA for CHP engine anomaly detection is a hybrid deep learning
model that combines the CNN, LSTM, residual blocks, and attention mechanism. The engine
sensor log data, in the form of a multivariate time series, are entered into the CNN and LSTM
in parallel to extract spatial and temporal features. During this process, residual blocks are
used to compensate for the important features that are lost in the CNN and LSTM for model
training. Finally, the spatiotemporal features extracted from CNN and LSTM are input into
the attention mechanism to focus on important features, and the probability of an engine
anomaly is derived as an output using the softmax function. The performance of the proposed
model is demonstrated by comparing the model to nine other models: CNN, LSTM, SCL,
SCLR, SCLA, SCLRA, PCL, PCLR, and PCLA. The optimal performance of each model is
determined and the performances are compared by applying BO to the 10 models.

Three CHP engines are used for the experiment and anomaly detection models are
trained and tested on the five parts of each engine: FG, LO, CE, GE, and CW. The perfor-
mance of the 10 models is compared for all 15 cases. First, we compare SCL, PCL, and
modify models that combine CNN and LSTM in different ways. The serially combined
models SCL, SCLR, SCLA, and SCLRA exhibited inferior anomaly detection performance
to the parallelly combined models PCL, PCLR, PCLA, and PCLRA. The results confirm
that serially combined models derive and train the spatiotemporal features of multivariate
time series data much better in parallelly combined models. Next, we compare models that
integrate the residual blocks and attention mechanism to improve the performance of SCL
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and PCL, which perform worse than the uncombined CNN and LSTM. SCLR and PCLR,
which integrate residual blocks, exhibit superior anomaly detection performance to SCLA
and PCLA, which integrate the attention mechanism. This result confirms that the method
of training important features by combining residual blocks with CNN and LSTM instead
of using the attention mechanism to train important spatiotemporal features extracted
from the CNN and LSTM improves the anomaly detection performance. Furthermore,
better performance is obtained when both the residual blocks and attention mechanism
are used. Accordingly, PCLRA, which combines CNN and LSTM in parallel and uses both
the residual blocks and attention mechanism, achieves the best performance among the
10 models, with a macro f1 score of 0.951 ± 0.033, an anomaly f1 score of 0.903 ± 0.064,
and an accuracy of 0.999 ± 0.002. The model does not exhibit the best performance for
all 15 cases; however, its performance is consistently superior to that of the other models,
regardless of the engine and part. The statistics calculated for the model performance in the
15 cases based on the engines suggest that PCLRA performs the best for the old Engines 1
and 2, which have a long operating time, and the second best for Engine 3, which has a
shorter operating time. The statistics calculated for the model performance in the 15 cases
based on the parts indicate that PCLRA performs the best for the LNG combustion related
FG, LO, and CE and the second best for CW.

The proposed PCLRA model for CHP engine anomaly detection achieves excellent
performance, and we expect that it can be utilized at power plants to enhance engine
stability and efficiency. In the future, we plan to expand our research on CHP anomaly
detection by collecting data over a long-term period and further subdividing the types of
anomalies experienced by CHP engines.
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Appendix A

Table A1. Anomaly detection confusion matrix heat maps of the best and second-best models.
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22. Kocuvan, P.; Hrastič, A.; Kareska, A.; Gams, M. Predicting a Fall Based on Gait Anomaly Detection: A Comparative Study of

Wrist-Worn Three-Axis and Mobile Phone-Based Accelerometer Sensors. Sensors 2023, 23, 8294. [CrossRef] [PubMed]
23. Liu, G.; Gu, H.; Shen, X.; You, D. Bayesian long short-term memory model for fault early warning of nuclear power turbine. IEEE

Access 2020, 8, 50801–50813. [CrossRef]
24. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
25. Li, X.; Liu, J.; Bai, M.; Li, J.; Li, X.; Yan, P.; Yu, D. An LSTM based method for stage performance degradation early warning with

consideration of time-series information. Energy 2021, 226, 120398. [CrossRef]
26. Li, M.; Deng, W.; Xiahou, K.; Ji, T.; Wu, Q. A data-driven method for fault detection and isolation of the integrated energy-based

district heating system. IEEE Access 2020, 8, 23787–23801. [CrossRef]
27. Shahid, S.M.; Ko, S.; Kwon, S. Real-time abnormality detection and classification in diesel engine operations with convolutional

neural network. Expert Syst. Appl. 2022, 192, 116233. [CrossRef]
28. Lee, G.; Lee, S.J.; Lee, C. A convolutional neural network model for abnormality diagnosis in a nuclear power plant. Appl. Soft

Comput. 2021, 99, 106874. [CrossRef]
29. Lecun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D.; Laboratories, H.Y.L.B.; Zhu, Z.;

Cheng, J.; et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
30. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.

[CrossRef]
31. Zhou, D.; Yao, Q.; Wu, H.; Ma, S.; Zhang, H. Fault diagnosis of gas turbine based on partly interpretable convolutional neural

networks. Energy 2020, 200, 117467. [CrossRef]
32. Yao, Y.; Wang, J.; Xie, M. Adaptive residual CNN-based fault detection and diagnosis system of small modular reactors. Appl. Soft

Comput. 2022, 114, 108064. [CrossRef]
33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
34. Kong, Z.; Tang, B.; Deng, L.; Liu, W.; Han, Y. Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA

data by convolutional neural networks and gated recurrent units. Renew. Energy 2020, 146, 760–768. [CrossRef]

https://doi.org/10.1016/j.apenergy.2015.09.020
https://doi.org/10.1109/TR.2018.2822702
https://doi.org/10.1016/j.apenergy.2020.114775
https://doi.org/10.1016/j.seta.2021.101366
https://doi.org/10.3390/s23198022
https://doi.org/10.1016/j.aei.2020.101071
https://doi.org/10.1016/j.conengprac.2020.104522
https://doi.org/10.3390/s23052426
https://www.ncbi.nlm.nih.gov/pubmed/36904632
https://doi.org/10.3390/s22197162
https://doi.org/10.3390/s23167256
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.egyr.2020.04.029
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.isatra.2019.11.035
https://doi.org/10.1016/j.ijmecsci.2020.106053
https://doi.org/10.1109/TIM.2020.3001659
https://doi.org/10.3390/s23198294
https://www.ncbi.nlm.nih.gov/pubmed/37837123
https://doi.org/10.1109/ACCESS.2020.2980244
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.energy.2021.120398
https://doi.org/10.1109/ACCESS.2020.2970273
https://doi.org/10.1016/j.eswa.2021.116233
https://doi.org/10.1016/j.asoc.2020.106874
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1016/j.energy.2020.117467
https://doi.org/10.1016/j.asoc.2021.108064
https://doi.org/10.1016/j.renene.2019.07.033


Sensors 2023, 23, 8746 22 of 22

35. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 6000–6010.

36. Xiang, L.; Wang, P.; Yang, X.; Hu, A.; Su, H. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM
with attention mechanism. Measurement 2021, 175, 109094. [CrossRef]

37. Xiang, L.; Yang, X.; Hu, A.; Su, H.; Wang, P. Condition monitoring and anomaly detection of wind turbine based on cascaded and
bidirectional deep learning networks. Appl. Energy 2022, 305, 117925. [CrossRef]

38. Chung, W.H.; Gu, Y.H.; Yoo, S.J. District heater load forecasting based on machine learning and parallel CNN-LSTM attention.
Energy 2022, 246, 123350. [CrossRef]
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