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Abstract: Electronic toll collection (ETC) data mining has become one of the hotspots in the research
of intelligent expressway extension applications. Ensuring the integrity of ETC data stands as a
critical measure in upholding data quality. ETC data are typical structured data, and although deep
learning holds great potential in the ETC data restoration field, its applications in structured data are
still in the early stages. To address these issues, we propose an expressway ETC missing transaction
data restoration model considering multi-attribute features (MAF). Initially, we employ an entity
embedding neural network (EENN) to automatically learn the representation of categorical features
in multi-dimensional space, subsequently obtaining embedding vectors from networks that have
been adequately trained. Then, we use long short-term memory (LSTM) neural networks to extract
the changing patterns of vehicle speeds across several continuous sections. Ultimately, we merge
the processed features with other features as input, using a three-layer multilayer perceptron (MLP)
to complete the ETC data restoration. To validate the effectiveness of the proposed method, we
conducted extensive tests using real ETC datasets and compared it with methods commonly used
for structured data restoration. The experimental results demonstrate that the proposed method
significantly outperforms others in restoration accuracy on two different datasets. Specifically, our
sample data size reached around 400,000 entries. Compared to the currently best method, our method
improved the restoration accuracy by 19.06% on non-holiday ETC datasets. The MAE and RMSE
values reached optimal levels of 12.394 and 23.815, respectively. The fitting degree of the model to
the dataset also reached its peak (R2 = 0.993). Meanwhile, the restoration stability of our method
on holiday datasets increased by 5.82%. An ablation experiment showed that the EENN and LSTM
modules contributed 7.60% and 9% to the restoration accuracy, as well as 4.68% and 7.29% to the
restoration stability. This study indicates that the proposed method not only significantly improves
the quality of ETC data but also meets the timeliness requirements of big data mining analysis.

Keywords: ETC data; data restoration; missing transactions; expressway; data mining

1. Introduction

ETC systems are a well-established piece of infrastructure on expressways nowadays.
As of the end of 2022, there were 27,000 ETC gantries nationwide, serving a user base
of 260 million [1]. Being the largest internet-of-vehicles system globally, the widespread
adoption of ETCs has garnered a vast amount of transaction data. Based on this data,
scholars both domestically and internationally have undertaken a series of studies on
the extension applications of intelligent expressways. The main contents include traffic
parameter analysis [2,3], traffic condition estimation [4], traffic demand visualization [5],
abnormal data detection [6], and traffic congestion identification [7]. It is evident that ETC
data mining is a current research hotspot in the traffic field. However, since ETC gantries
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generally operate outdoors, they are susceptible to adverse environmental influences,
potentially leading to equipment malfunctions. Meanwhile, as on-board units (OBU) pass
through the gantries, phenomena such as wireless interference and obstructions caused
by nearby large vehicles may occur. These issues can cause information exchange failures
between devices, generating abnormal data. An assessment of the data quality of about
69,524,770 pieces of real transaction data collected from the Fujian Province ETC system
on 1–5 May 2021 and 1–5 June 2021, revealed that the abnormal rate of ETC transaction
data reached 7.71% [1]. These abnormal transaction data not only affect the operation and
management of expressways but also increase the cost of data preprocessing, resulting in a
significant deviation between the research results of relevant expansion application topics
and the expected effects. Therefore, restoring the abnormal transaction data to ensure data
quality is not only beneficial for accelerating the construction of intelligent expressways
and achieving fine management of the transportation industry but also provides solid data
support for the extended application of ETC big data mining, which is of great significance.

ETC transaction data are a kind of typical structured data. Presently, for the restoration
of structured data, researchers often favor tree-based machine learning models. However,
due to the large volume and complex feature composition of ETC transaction data, tra-
ditional machine learning models cannot precisely identify its data patterns, resulting in
generally low restoration accuracy. On the other hand, with the deepening of research
in big data mining, deep learning has demonstrated immense potential for applications
in multiple fields. While the general framework of deep learning tends more to handle
continuous data, the research on dealing with structured data is still in the initial stage,
especially for categorical features, but this does not rule out the possibility of improvement
and application. It is worth noting that most current research on data restoration concen-
trates on the restoration of chronological order, with very few focusing on time-quantitative
restoration. Therefore, this paper summarizes the research work in the data restoration
field in recent years and proposes an ETC missing transaction data restoration method
based on the characteristics of ETC data. The main contributions are as follows:

(1) We propose a deep learning model based on multi-attribute feature analysis, which is
capable of quantitatively restoring the transaction time of expressway ETC missing
transaction data with high precision.

(2) Through analyzing data anomaly situations, we transformed the time restoration
problem into an estimation problem of the vehicle’s section travel time, extracting key
features from four perspectives.

(3) To better handle structured ETC data, we employ EENN to automatically learn the
representation of classification features in multidimensional space, and utilize LSTM
to extract the changing patterns of vehicle speeds over several consecutive sections,
providing the model with more contextual information.

(4) Our method significantly enhances the restoration effects, improving the MAE and
RMSE values by 19.06% and 10.66%, respectively, on non-holiday datasets, and
demonstrating the best comprehensive performance on holiday datasets.

The paper is structured as follows: Section 2 overviews and summarizes related works.
Section 3 elaborates on the methodology. Section 4 discusses experimental results and
analysis. The final section concludes the work and looks forward to future prospects.

2. Related Work

As a hot topic and a key research area in data mining, many experts and scholars have
made efforts in the field of data restoration. Currently, the main data restoration methods
include statistical-based restoration methods, relational-based restoration methods, and
learning-based restoration methods.

Initial studies on missing data restoration focused on statistical-based restoration
methods, which mainly used the average value of historical data for data interpolation,
referred to as historical mean interpolation. This method used the entire dataset for missing
interpolation, in which some unrelated data might affect the accuracy or complexity of



Sensors 2023, 23, 8745 3 of 26

the interpolation. Based on different data processing needs, there are mainly two types:
local average [8] and global average [9]. The historical mean imputation method generally
performs poorly in most case, hence it has not received much attention and there are not
many related studies. With the deepening of research, scholars have found that it is possible
to restore missing data by modeling the data to be restored based on the correlation between
data attributes, and estimating the missing data according to the model. Rahman et al. [10]
made a preliminary attempt, considering some attributes that are highly correlated with
the attributes with missing conditions, ignoring all other attributes with low correlation,
and combining with similarity analysis to fill in missing values. This method indeed
improved the accuracy of the restoration, but it increased the complexity of the model.
Principal component analysis (PCA) is a common method in statistical analysis. It can
reduce the complexity of the model without losing too much data information by reducing
the dimensionality of the data [11]. There are some relevant studies based on this method
and its improved methods. Representative methods mainly include functional principal
component analysis (FPCA) [12], probabilistic principal component analysis (PPCA) [13],
and kernel probabilistic principal component analysis (KPPCA) [14], among others.

It is evident that statistical-based restoration methods can to a certain extent reflect
some correlations existing internally within the data. However, this approach possesses
high complexity. To address this, some scholars have introduced relational data restoration
methods, which either delineate data consistency utilizing functional dependencies and con-
ditional constraints or convert data into matrix and tensor expressions, all capitalizing on
the correlation between data attributes [15–21]. Early research generally utilized functional
dependencies to directly describe data consistency [22,23]. There are also scholars who
have attempted to add extra constraints on the basis of functional dependencies, achieving
good results [24,25]. The method of functional dependence combined with constraints is
often used to solve strategy optimization problems for urban travel demand [26]. Due to
the strict equality relationships required by functional dependencies and rule constraints,
it is difficult to discover absolute consistency in real time series datasets. To this end,
Gao et al. [27] proposed a time series restoration method based on multi-interval velocity
constraints. Related studies indicate that, for the restoration issues pertaining to time series
data, having accurate timestamps ensures satisfactory restoration effects. It is evident that
for time series data, accurate timestamps are extremely vital. Regrettably, the research on
timestamp restoration is still immature, resulting in scant related literature. Duan et al. [28]
developed a method based on graph models for the discovery of time-sensitive rules and
the restoration of data sequences.

In recent years, machine learning has garnered considerable attention. There has also
been research leveraging machine learning models for data restoration through prediction,
known as learning-based restoration methods. In the data restoration domain, machine
learning algorithms demonstrating outstanding performance include the clustering algo-
rithm (CA) [29–33], XGBoost algorithm [34], random forests (RF) [35], and neural networks
(NN) [36–40], among others. The CA can separate markedly missing data from the dataset
based on similarity, hence some studies have undertaken missing data restoration relying
on the results of clustering [29,30]. However, the basic CA rigidly classifies data into certain
categories, which does not align with real-life scenarios. Therefore, some scholars have
introduced the fuzzy c-means (FCM) algorithm. This method assigns weights to data
categories to indicate the degree to which data belong to a certain category, offering more
flexible clustering outcomes. Related research shows that compared to the basic CA, the
FCM algorithm significantly improves restoration accuracy [31]. These methods all work
based on the results of clustering to carry out data restoration tasks, hence to some extent,
the choice of clustering-related parameters affects the effectiveness of data restoration. To
address this, some researchers have employed strategies such as particle swarm optimiza-
tion (PSO) and the genetic algorithm (GA) to optimize related parameters, achieving an
enhancement in restoration accuracy. In 2016, Duan et al. [36] pioneered the use of deep
learning in addressing missing traffic data issues. The study indicates that deep learning
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holds considerable potential in traffic data supplementation, urging the continued develop-
ment and exploration of innovative deep learning structural models for interpolation and
their practical application. Building on this, several scholars have successively conducted
research on deep learning-based data restoration algorithms. Fan et al. [37] compared three
models for predicting data with varying missing rates, finding that the general regression
neural network (GRNN) exhibited strong robustness for data with higher missing rates.
Zhang et al. [38] proposed a traffic flow data restoration model based on self-attention
mechanisms and graph autoencoders, which learns the urban road network topology
through self-attention mechanisms and captures temporal regularities and spatiotempo-
ral correlations in the data using LSTM networks combined with attention mechanisms.
Kazemi et al. [39] introduced an iterative generative adversarial network (IGAN) for miss-
ing data interpolation. Hou et al. [40] proposed a graph convolution restoration method
that integrates traffic flow spatiotemporal features. Other scholars have also made efforts
with different methods, achieving good restoration results [41–43]. We have summarized
these related works, and elaborated on the advantages and disadvantages of these methods,
as detailed in Table 1.

Table 1. Summary of related work.

Type Method Example Advantages Disadvantage

Statistical-based
Restoration Methods

Historical Mean
Interpolation

Local average [8],
global average [9]

Simple and fast,
easy to understand

Not suitable for nonlinear
relationships and classification

data, poor accuracy

PCA
FPCA [12],
PPCA [13],

KPPCA [14]

Can reduce data dimensions,
does not need labels

Not suitable for nonlinear
relationships, poor interpretability,

sensitivity to outliers

Relational-based
Restoration Methods

Low-rank Matrix
and

Tensor
Completion [15–21]

\ Fully utilizes data structure,
fewer model parameters

High algorithm complexity,
excessive reliance on single

parameter selection for restoration

Functional
Dependencies and

Conditional
Constraints [22–28]

\
Simple and intuitive,

does not need additional
data and models

There are not always clear
constraints, algorithm complexity
is high, strict linear and equality

relationships between data
attributes

Learning-based
Restoration Methods

Machine Learning
CA [29–33],

XGBoost [34],
RF [35]

The algorithm application is
relatively mature and has

strong interpretability

Requires a large amount of
annotated data,

poor adaptability to large datasets

Deep Learning
GRNN [37], SA [38],

LSTM [39],
IGAN [40], GCN [41]

Suitable for processing
complex patterns, strong

adaptability to large datasets

Poor interpretability, high data
volume requirements,

high performance requirements

After conducting a comprehensive analysis of existing data restoration methods, we
found that many methods face challenges in capturing the complex non-linear relationships
within the data. Furthermore, these methods often require strict parameter settings and
regular selection, which might lead to unstable restoration accuracy. Due to the extensive
deployment of ETC systems on expressway networks, ETC data encompass a myriad
of complex vehicle driving patterns. Concurrently, being a real dataset, ETC data are
produced by various interactive rules and constraints. These issues undoubtedly increase
the difficulty of data restoration. Although researchers have attempted to restore ETC
data [34,35], these methods still have limitations. Specifically, the former focuses on
restoring the derivative statistical data of ETC rather than the original data, while the
latter is limited to restoring data on specific expressway sections, lacking universality. Deep
learning methods can not only effectively handle large volumes of ETC data with complex
patterns, but also reduce the time complexity without the need for repetitive model training.
Most research tends to use deep learning to process unstructured data such as GPS, video
images, and weather. But since ETC data are structured data containing various attribute
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types, its restoration requires an integrated method. Therefore, we employed a combination
of various deep learning models, selecting appropriate models for each data attribute type,
to achieve efficient data restoration.

3. Methodology

To address the issue of ETC missing transaction data time restoration, we propose a
deep learning model based on multi-attribute feature analysis. First, we preprocess the ETC
data. Subsequently, we classify the trajectory data using an anomaly trajectory detection
algorithm. Then, we extract the relevant features. Finally, we use these features as the
inputs for the model. The overall architecture of this method is shown in Figure 1.
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3.1. Definitions

To facilitate the description and understanding of this paper, the following related
definitions are provided in this section:

ETC trajectory data: when a vehicle equipped with an OBU device is driving in the
expressway network, it engages in dedicated communication with the toll station or ETC
gantry it passes, generating transaction information records. According to the positions
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of the gantries and toll stations provided by the road network topology data, the driving
trajectory of the vehicle on the expressway can be restored. These trajectories take toll
stations as OD, encompassing a series of gantry nodes arranged in chronological order,
referred to as ETC trajectory data.

Section: According to the layout of ETC road equipment in the road network, both toll
stations and gantries can be regarded as nodes N, and a section consists of two adjacent
nodes and the road range between them, hence we have the node expression:

ExSec = 〈N1, N2〉 (1)

in which N1 denotes the gantry before the section, and N2 represents the gantry after the
section. If a service/parking area is present in the section, we call it a service area/parking
area section.

Road: A road is referred to as a range composed of two or more continuous sections,
and we have:

ExRos = 〈ExSec1, ExSec2, . . . , ExSecn〉
= 〈N1, N2, . . . , Nn+1〉, n ≥ 2

(2)

in which the element ExSecn of the road is called the nth section, and n must be at least 2.
The road definition can also use node expressions, with its components Nn called the nth
node. It should be noted that, unlike toll station nodes that only serve as the starting and
ending points of a section, two adjacent sections share a gantry at the connecting point of
the section.

Section/Road travel time: The time spent by a vehicle passing through a certain
section/road, called the travel time of the vehicle in this section/road ∆t, is given by:

∆t = T2 − T1 (3)

in which T1 is the transaction time at the front gantry of the section or the starting node of
the road, and T2 is the transaction time at the rear gantry of the section or the end node of
the road. If m vehicles pass through this section/road during the ith time period, the travel
time of these vehicles ∆T can be represented as:

∆T =
{

∆t1
i , ∆t2

i , . . . , ∆tm
i

}
(4)

We call the average travel time of these m vehicles passing through this section/road
during the ith time period the section/road travel time τ, which is:

τ = ∑m
a=1 ∆ta

i /m (5)

Section/Road speed: According to a vehicle’s section/road travel time ∆t and its
section/road distance ∆d, the travel speed of the vehicle in this section/road v can be
obtained using the speed formula:

v = ∆d/∆t (6)

where the speed unit is km/h. Similarly, if m vehicles pass through this section/road
during the ith time period, the travel speeds of these vehicles V can be represented as:

V =
{

v1
i , v2

i , . . . , vm
i

}
(7)

We call the average speed of these m vehicles passing through this section/road during
the ith time period the section/road speed ν, which is:

ν = ∑m
a=1 va

i /m (8)
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3.2. Problem Descriptions

Abnormal transaction events mainly include three types: missing transactions, erro-
neous transactions, and duplicate transactions [1]. Figure 2 displays the gantry transaction
order of different kinds of abnormal trajectory data. The essence of erroneous and duplicate
transactions is data redundancy, which can be directly deleted. The key issue to be ad-
dressed in this paper is the missing transaction data. According to statistics, the probability
of having more than two consecutive gantries experiencing missing transactions is less than
5% [1]. Therefore, this paper mainly targets the majority of cases for restoration, hereby
stipulating that in the missing transaction trajectory data discussed in the subsequent parts
of the article, only one gantry is missing consecutively. This mean that there are normal
transaction records for the two gantries adjacent to the missing gantry. According to the
definition, in the missing transaction trajectory data, there exists a missing transaction road
ExRos = 〈ExSec1, ExSec2〉 = 〈N1, N2, N3〉, where the N2 is the missing transaction gantry.
From the definition of travel time, based on the transaction time T1 of the vehicle at N1
and the travel time of the ExSec1 section ∆t, the transaction time T2 at N2 can be calculated
as follows:

T2 = T1 + ∆t (9)
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Hence, restoring the transaction time issue of the missing transaction gantry translates
to estimating the travel time in the section where the missing transaction gantry serves as the
section’s end gantry. We can extract numerous driving characteristics of vehicles in sections
from the ETC transaction data. Essentially, our restoration method is to mine the potential
features of the data and reveal the intrinsic connections between data characteristics.
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3.3. Data Preprocessing

Data preprocessing mainly consists of three parts: original data screening, trajectory
data construction, and normalization.

The original ETC transaction data used in this paper mainly include ETC gantry trans-
action data, ETC toll station transaction data, and ETC topology data. Gantry transaction
data mainly record the transaction information of the vehicle with the gantry and the
transaction information of the toll station at the entrance of the road network. Toll station
transaction data primarily record the transaction information of vehicles entering and
exiting the toll stations in the road network. The topology data mainly record relevant
information about the section. Firstly, we extract the necessary fields from the ETC trans-
action data as shown in Table 2.The vehicle identification in the ETC transaction data is
mainly based on the registration information at the time of ETC handling or camera license
plate recognition, so there may be phenomena of unsuccessful identification, leading to
garbled fields such as obusn, vehclass, enstation, and exstation, and it is necessary to filter
out these erroneous data based on the regular expression of field encoding, completing the
original data cleaning.

Table 2. Selected fields for ETC transaction data.

Number Field Name Field Attributes Example

1 tradetime transaction time 2021-05-01 00:00:00
2 flagid gantry number 34**17
3 obusn vehicle ID 3501********8316
4 vehclass vehicle class 1
5 entime entry time 2021-05-01 01:00:00
6 enstation entrance station 1**1
7 extime outbound time 2021-05-01 01:00:00
8 exstation exit station 1**1
9 distance section distance 1234
10 service service area name ** service area
11 tunnel number of tunnels 1
12 tunnel_distance tunnel distance 1234

Since some vehicles may enter and exit the expressway network multiple times in a
day, generating multiple travel trajectories, we combine obusn, enstation, and enstation
to form the vehicle trajectory identification field passid. Then, we group the ETC gantry
transaction data according to passid and sort them by transaction time to obtain the vehicle
gantry trajectories. As the expressway is a closed network, vehicles must use toll stations as
network ODs while traveling on the expressway, so we need to use toll station transaction
information to match the entrance and exit toll stations for gantry trajectories, forming
complete closed ETC trajectory data. For some vehicle trajectories where the starting
and ending nodes are not toll stations, they need to be screened out. Finally, based on the
topological data, we need to match the relevant information for each section in the trajectory.

Before inputting the data into the model, it is necessary to separate the discrete and
continuous data according to data attributes and normalize the continuous data as follows:

x′ =
x− xmin

xmax − xmin
(10)

where xmax and xmin represent the maximum and minimum values in the column where x
is located, and x′ is the normalized data of x. The data preprocessing algorithm is as shown
in Algorithm 1.
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Algorithm 1 ETC Trajectory Data Preprocessing Algorithm

Input: ETCGantryData, ETCTollStationData, ETCTopologyData
Output: TrajectoryDataList
1: Initialize TrajectoryDataList = []
2: for each vehicle in ETCTollStationData:
3: vehicleID = vehicle.passid
4: vehicleClass = vehicle.vehclass
5: entryStation = vehicle.enstation
6: entryTime = vehicle.entime
7: exitStation = vehicle.exstation
8: exitTime = vehicle.extime
9: # Data Cleaning
10: if isCorrupted(vehicleID) or vehicleClass == 0 or isCorrupted(entryStation) or
isCorrupted(exitStation):
11: Continue
12: # Match gantry transactions
13: matchedGantryTransactions = matchGantryTransactions(ETCGantryData, vehicleID,
vehicleClass, entryStation, entryTime)
14: # Sort transactions by time
15: sortedTransactions = sortByTransactionTime(matchedGantryTransactions)
16: # Generate trajectory data
17: trajectory = [entryStation] + sortedTransactions + [exitStation]
18: timeSequence = [entryTime] + extractTimes(sortedTransactions) + [exitTime]
19: # Data Cleaning
20: if notIsTollStation(trajectory[0]) or notIsTollStation(trajectory[−1]):
21: Continue
22: Initialize speedList = []
23: for i in range (0, len(trajectory) − 1):
24: startPoint = trajectory[i]
25: endPoint = trajectory[i+1]
26: distance = getDistance(ETCTopologyData, startPoint, endPoint)
27: timeDifference = timeSequence[i+1] − timeSequence[i]
28: speed = calculateSpeed(distance, timeDifference)
29: # Data Cleaning
30: if speed > 180:
31: Continue
32: Append speed to speedList
33: Append {“trajectory”: trajectory, “timeSequence”: timeSequence, “speed”: speedList} to
TrajectoryDataList
34: End For each vehicle
35: Return TrajectoryDataList

3.4. Data Analysis and Feature Extraction

(1) Section Geographical Features
The ETC gantry system divides the Fujian province expressway network into 2950 sec-

tions. Based on the statistical analysis of the expressway ETC topology dataset, in the
sections solely constituted by gantry nodes, there exists a service area section for every
4 sections on average. As can be inferred from Figure 3a, the section speed of the service
area sections is significantly lower than that of the common sections during certain periods,
which is due to the possibility of vehicles entering the service areas for a stop. Therefore,
the existence of a service area in a section can affect a vehicle’s section travel time ∆t, further
affecting the section speed v at certain times.
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total section length, respectively.

Related research indicates that vehicle speeds within tunnels are generally lower than
the speeds on the roads before and after the tunnels [44]. As the number and length of
tunnels in a section increase, the proportion of a vehicle’s tunnel travel state in the entire
section’s driving state increases, potentially leading to a decrease in the vehicle’s section
travel time ∆t, further affecting the overall section speed v, as can be seen from Figure 3b.
Based on the above analysis, we construct the section geographical feature vector γ, which
is defined as:

γ = (γ1, γ2, γ3, γ4)
T (11)

In which, γ1 represents the section distance (unit: m). γ2 represents whether the
section contains a service area, with values of 0 (no service area) and 1 (service area present).
γ3 represents the number of tunnels in the section. γ4 represents the total length of all
tunnels in the section (unit: m).

(2) Vehicle Classes Feature
According to the recording method of the ETC system for vehicle classes, there are a

total of 16 classes of vehicles. Vehicles are divided into three major categories based on their
functions: passenger vehicles, freight vehicles, and special operation vehicles. These major
categories are further subdivided into various subcategories based on passenger capacity,
load-bearing, and operational types. Different classes of vehicles have different proportions
in the expressway traffic flow. According to statistics, class 1 passenger vehicles, which
means passenger vehicles with a seating capacity of nine or less, account for about 70% of
the expressway traffic flow. Class 1 freight vehicles, which means those with two axles,
less than 6 m in length, and a maximum allowable total weight of 4.5 tons, account for
approximately 12% of the expressway traffic flow, while other classes of vehicles make
up the remaining 18%. Due to the different speed limits imposed on different classes of
vehicles on the expressway, coupled with differences in driving behaviors of different
vehicles, their section travel time ∆t also varies. Class 1 passenger vehicles and class 1
freight vehicles constitute a larger proportion in the traffic flow composition and can be
analyzed separately. The proportions of class 2 and above passenger and freight vehicles,
and all special operation vehicles, are too small. Excessive categorization would result in
too small sample sizes for these classes of vehicles, making it difficult to fit the distribution.

As shown in Figure 4, after the merging of vehicle classes, the three classes of vehicles
show significant differences in their travel speeds over long and short distances of sections.
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Therefore, we construct vehicle classes feature vector ε, with the value ranges being 1
(class 1 passenger vehicle), 2 (class 1 freight vehicle), and 3 (other classes of vehicles).
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(3) Driving Behavior Features
According to the driving habits on expressways, most vehicles maintain a small

fluctuation range in speed over several consecutive sections. We can see from Figure 5 that
only a few special operation vehicles show larger changes in speed. Therefore, there might
be a correlation in the speed of vehicles over several contiguous sections.
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Figure 5. Fluctuation curves of section speeds for three different classes of vehicles traveling in the
same consecutive four sections.

Based on the analysis above, we construct the vehicle driving behavior feature η,
which is defined as follows:

γ = (η1, η2, η3)
T (12)

where η1 represents the travel time of the vehicle in the missing transaction section, mea-
sured in seconds. η2 and η3 respectively denote the speeds of the vehicle in the section
before and after the missing transaction road, measured in km/h.
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(4) Traffic Situation Features
The traffic situation of a section is mainly composed of the section flow, section travel

time, and section speed, which affect each other. To accurately reflect the changes in the
traffic situation of a section, we divided the whole day (0:00 to 24:00) into time slices
of 10, 15, and 20 min, and performed corresponding statistics. As shown in Figure 6,
compared to other time intervals, the 15-min time slicing method does not lose too many
details of traffic situation changes. Moreover, this method does not overly refine the time
segments, avoiding the situation where some low-flow sections have no vehicles passing
through in some time slices, resulting in feature loss and complicating data processing and
model effects.
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Figure 6. From top to bottom, left to right, the changes in section traffic flow, section travel time, and
section speed curves over 24 h in a day are shown, with time slices of 10 min, 15 min, and 20 min.

We can observe from Figure 6 that the section flow fluctuation curve presents an
‘M’-shaped dual-peak state throughout the day, indicating higher vehicle volumes during
morning and afternoon periods. Meanwhile, as the section flow increases to a certain
threshold, the section speed shows a decreasing trend, leading to an increase in section
travel time. This might be because the number of vehicles driving in this section during
the same period exceeded the traffic carrying capacity of the section, resulting in traffic
congestion. Because the traffic condition of the section also affects the travel time of the
vehicle, we construct the traffic situation feature θ. It should be noted that, due to different
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travel times and speeds for different classes of vehicles, we selected vehicles of the same
class when calculating the section travel time and section speed.

θ = (θ1, θ2, θ3, θ4)
T (13)

where θ1 denotes the time zone to which the vehicle belongs, dividing the 24 h into 96 time
zones with 15-min slices, with a value range of [1,96]. θ2 indicates the section flow, which
means the number of vehicles passing through that section in a certain time zone. θ3 and θ4
represent the section travel time and section speed, respectively, calculated for vehicles of
the same class as the vehicle involved in the missing transaction data, measured in s and
km/h.

3.5. Model Framework

The ETC transaction time restoration represents a typical structured data regression
problem. Firstly, we transform it into an approximate function ŷ, as follows:

ŷ = f (x1, x2, . . . , xn) (14)

Given a set of input values (x1, x2, . . . , xn), which means a set of feature vectors, the
target output value ŷ is generated. Generally speaking, NN can approximate almost any
function. However, because its general form assumes a certain degree of continuity, it is
very unsuitable for approximating discontinuous functions [45]. The features reflecting
the driving patterns of vehicles on expressways have a complex composition of attribute
types. Feeding them directly into a deep learning model without appropriate processing
might lead to suboptimal estimate outcomes. Specifically, categorical features often contain
multiple categories. Without proper handling, or by solely using traditional one-hot en-
coding, this can result in high-dimensional and sparse feature vectors. That makes model
training challenging, and may even lead to the curse of dimensionality. Moreover, contin-
uous time-related data, like the driving speed across consecutive sections, often possess
time series characteristics, and conventional deep learning models might not effectively
capture their temporal dependencies. In response to these issues, we propose a combined
deep learning model. As illustrated in Figure 7, the model framework mainly consists of
three parts: EENN for handling discrete variables, LSTM for extracting speed variation
features over several continuous sections, and MLP for receiving the processed variables,
integrating them with other continuous variables, and outputting the estimated passage
time for the vehicle’s missing transaction sections, further accomplishing time restoration.

(1) Categorical Features Processing Using EENN

Structured data with categorical features might lack continuity altogether, or even
if present, it may not be so apparent. Therefore, traditional deep learning models do not
particularly excel at handling such discrete variables. Moreover, categorical features often
consist of a multitude of categories, and the conventional one-hot encoding method can
lead to dimensionality explosion. Compared to conventional encoding methods, entity
embedding can capture complex relationships within categorical variables at a much lower
dimensionality. This is not just because it offers a dimensionality reduction strategy, but also
because it provides “positions” for different categories within the embedding space, and
these “positions” reflect their relative relationships. Additionally, the embedding vectors,
being part of the neural network, can undergo end-to-end training, making them highly
relevant to downstream tasks. By utilizing EENN, we automatically learn representations
of categorical features in a multi-dimensional space. This approach not only reduces
memory usage and accelerates the neural network, but more importantly, it reveals intrinsic
properties of categorical variables by mapping similar values close to each other in the
embedding space. This makes values with similar effects in Equation (14) close to each
other. The working principle of the EENN is as follows.
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Entity embedding initially maps each state of discrete variables to a vector:

ei : xi 7−→ Xi (15)

This mapping is equivalent to adding a layer of linear neurons on the one-hot encoded
input. To illustrate this, we represent the one-hot encoding of xi as:

ui : xi 7−→ δxiα (16)

where δxiα is the Kronecker delta, and α has the same possible values as xi. If mi is the
number of values for the categorical variable xi, then δxiα is a vector with a length of mi,
where the element is non-zero only when α = xi.

Given the input xi, the output of the additional linear neuron layer is defined as:

xi ≡∑
α

ωαβδxiα = ωxi β (17)

where ωαβ is the weight value between the one-hot encoding layer and the embedding
layer, and β is the index of the embedding layer. Now, we can see that the embedding of
the mapping is merely the weights of this layer, which can be learned like the parameters
of other layers of the neural network.
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After representing all categorical variables using entity embedding, all embedding
layers and continuous variable inputs are connected. The merged layer is considered a
common input layer in the neural network. We obtain the embedding vectors from the
trained entity embedding network and input them as part of the MLP features

(2) Extraction of Speed Change Patterns on Continuous Sections Using LSTM

Continuous features in structured data, such as the speed of consecutive sections,
typically exhibit characteristics of time series. The LSTM network is an excellent recurrent
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neural network that can proficiently capture and learn the time dependencies of continuous
inputs. When a vehicle travels through several continuous sections, there may be certain
patterns in its section travel speed. If several speed variables are directly used as model
inputs, the neural network may fail to learn the patterns of speed changes. Therefore,
we need to use LSTM networks to better understand the sequential characteristics of
speed, such as acceleration, deceleration, or maintaining a constant speed. LSTM not only
considers the speed of a single segment but also takes into account the speed changes in
adjacent segments, providing the model with more contextual information, which is very
valuable for analyzing vehicle behavior.

Each LSTM unit has a memory cell that is controlled by three gates: the input gate,
forget gate, and output gate, as shown in Figure 8.
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In Figure 8, xt represents the unit input at time t. ht−1 and ht denote the hidden layer
states at times t− 1 and t, respectively. ct−1 and ct represent the cell states at times t− 1
and t.

∼
c t stands for the intermediate quantity during the calculation. σ denotes the sigmoid

function, and tanh represents the tanh function. it indicates the input gate. ft designates
the forget gate. ot refers to the output gate. The process of LSTM extracting the changing
patterns of speed variables is as follows:

Step 1: LSTM selectively forgets the characteristic information of cell state ct−1 at
moment t:

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(18)

c′t = ft � ct−1 (19)

Step 2: LSTM selects important information from the input features to update the state
unit c′t:

∼
ct = tanh

(
W

x
∼
c
xt + W

h
∼
c
ht−1 + b∼

c

)
(20)

it = σ(Wxixt + Whiht−1 + bi) (21)

ct = c′t + it �
∼
ct (22)

Step 3: Determining the output of LSTM:

ot = σ(Wxoxt + Whoht−1 + bo) (23)

ht = ot � tanh(ct) (24)
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In the above formulas, Wxi, Wx f , Wxo ∈ Rm∗n represent the weight matrices of
the current unit input xt for the input gate, forget gate, and output gate, respectively.
Whi, Wh f , Who ∈ Rm∗m represent the weight matrices of the previous hidden layer state
ht−1 for the input gate, forget gate, and output gate, respectively.bi, b f , bo ∈ Rm respectively
represent the bias values for the input gate, forget gate, and output gate. We obtain the
speed variation features from the trained LSTM network, and use them as inputs for the
speed variation part of the MLP.

(3) Travel Time Estimation Using MLP

After processing the respective feature sets through the EENN and LSTM networks,
we integrated them with other features to form a comprehensive feature vector. This can
provide a more holistic information foundation for travel time estimation. We serve it as an
input, through a simple three-layer MLP to estimate the travel time, further completing
the time restoration of ETC missing transactions. Generally speaking, traditional methods
might employ a singular model, treating all features in the same manner. But we chose
the best processing method based on the properties of the features. This differentiated
processing strategy accentuates the latent information within the data, further increasing
the utilization rate of data.

4. Experiment
4.1. Experimental Conditions
4.1.1. Data Source

This experiment selected data collected by the ETC gantry system throughout Fujian
province on 1 May and 1 June 2021. The layout of the gantries is shown in Figure 9. After
data preprocessing, we used a total of 3,986,845 pieces of trajectory data, with 80% as the
training set and 20% as the test set.
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4.1.2. Equipment

The experiment was conducted on a computer equipped with an Intel Core i7-9900K
(8 cores, 3.6 GHz), supplemented with 2 NVIDIA GeForce RTX 3060 graphics cards and
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32GB DDR4 RAM. The primary programming language was Python 3.9, operating under
the Windows 11 OS. The deep learning models were constructed using the PyTorch (version
2.0.1, optimized for CUDA 11.8) framework. The data processing was implemented in SQL
on Clickhouse 21.11.4.14.

4.1.3. Baseline Model

For the time restoration issue of ETC missing transaction data, the model proposed
in this paper was compared with the following baseline methods commonly used for
structured data regression tasks:

(1) Tabular Data Networks (TabNet): A deep learning model specifically designed for
structured data. It incorporates attention mechanisms and some decision tree concepts
to offer better interpretability and higher performance.

(2) Residual Networks (ResNet): Adds “residual connections” to reduce gradient van-
ishing and explosion problems during deep network training. Utilizing residual
connections facilitates capturing long-term dependencies and complex patterns in
the data.

(3) Transformer: Initially used for natural language processing tasks, it utilizes self-
attention mechanisms to capture dependencies in sequential data, and can also be
applied to structured data, especially when there are complex interdependencies in
the data.

(4) Neural Decision Trees (NDT): A model that combines decision trees with neural
networks to achieve the interpretability of decision trees and the performance of
neural networks, very suitable for regression problems of structured data.

(5) Deep Feedforward Network (DFN): A fundamental deep neural network that can be
used for regression problems of structured data, provided that feature engineering is
handled properly.

(6) Random Forest (RF): An ensemble learning method composed of multiple decision
trees that performs predictions through voting or averaging, exhibiting excellent
performance in handling structured data, particularly when there are nonlinear rela-
tionships between features.

(7) K-Nearest Neighbor (KNN): An instance-based learning method, where predictions
are based on the nearest neighbors in the feature space of the input sample, suitable
for structured data but may degrade in performance with high-dimension data or
large datasets.

(8) Decision Tree (DT): A tree-shaped model used for classification and regression, which
is easy to interpret and highly applicable to structured data but tends to overfit.

(9) XGBoost: A high-performance gradient boosting tree model that excels in processing
structured data, a preferred choice in many Kaggle competitions and industrial
applications.

(10) LightGBM: A gradient boosting tree model that is lighter and more efficient, optimized
for large-scale structured data, offering high computational efficiency.

(11) CatBoost: Another gradient boosting tree model, notable for its performance with
structured data featuring categorical attributes.

(12) Linear Regression (LR): The simplest regression model, applying a linear equation
to the data, suitable for issues where the relationships are approximately linear in
structured data.

(13) Ridge Regression (RR): A regularized version of linear regression, used to handle
collinearity and prevent overfitting. A good choice when structured data have multi-
collinearity.

(14) Lasso Regression: Another regularized linear regression that performs feature selec-
tion through the addition of an L1 regularization term, offering both regularization
and feature selection functionalities, making it suitable for sparse feature selection in
structured data.
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4.1.4. Evaluation Indicators

To evaluate the restoration performance of the models, the differences between the
observed values yi and the estimated values ŷi were assessed using the root mean square
error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2).
The calculation formulas for the three evaluation metrics are as follows:

RRMSE(y, ŷ) =

√√√√ 1
T

T

∑
i=1

(yi − ŷi)
2 (25)

MMAE(y, ŷ) =
1
T

T

∑
i=1
|yi − ŷi| (26)

RR2(y, ŷ) = 1− ∑i(yi − ŷi)
2

∑i(yi − y)2 (27)

4.1.5. Model Parameters

The hyperparameters in the model were determined during the training process,
which means that we selected the model with the best performance on the test set through
MAE. Initially, hyperparameter ranges were manually set based on experience: initial
learning rate {0.01,0.005,0.001,0.0005}, batch {16,32,64,128,256}, epoch {20,50,100,200}. For
this model, the following settings were found to be the most effective: a learning rate set to
0.001, a batch size of 32, and epoch set to 100. These settings remained effective when using
the baseline model. All deep learning models were implemented through the PyTorch
framework and trained using the Adam optimizer. After multiple training sessions, the
final model framework parameters were confirmed as shown in Table 3, which lists the
model layers, node numbers, output sizes, and relevant hyperparameters.

Table 3. Model parameter.

Model Components Model Hyperparameter Parameter Value

EENN
Hidden layer size N × D

Vehicle Class: 3× 2
Time Zone: 96× 48

Number of Tunnels: 14× 7
RSA: 2× 1

Number of layers 4

LSTM Hidden layer size × Number of layers 3× 1

MLP Hidden layer size × Number of layers

128× 1
64× 1
32× 1
1× 1

Overall model

Batch size
Learning rate

Epoch
Optimization methods

32
0.001
100

Adam

4.2. Result Analysis
4.2.1. Restoration Effect Comparison Experiment

Under normal circumstances, the traffic flow on expressways in various sections does
not reached a saturated state. At the same time, under good road conditions, vehicles
can generally travel smoothly. Since such driving conditions account for the majority of
cases, our model needs to exhibit excellent performance when carrying out time restoration
on datasets generated under these driving conditions. During non-holidays, the traffic
flow on the expressways is less, and the datasets generated conform to this feature. We
chose the ETC trajectory dataset from June 1st to represent the non-holiday dataset. Due
to unforeseen circumstances such as traffic accidents and road maintenance, expressways
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often experience traffic congestion, especially during holidays when the demand for travel
increases, exacerbating the congestion phenomenon. Severe traffic congestion can affect
a long stretch of road, causing substantial fluctuations in section speed over two or even
more consecutive sections. We chose the trajectory dataset of May 1st to represent the
holiday dataset. As shown in Figure 10, the box width difference indicates that the range
of vehicle speeds in each section during the holidays is large, leading to a higher degree
of data dispersion. From the position of the median, it can be seen that, compared to
the similar speed distribution range between sections during non-holidays, the speed
distribution differences between sections during holidays were larger. There are also more
outliers in some sections, which still implies a higher possibility of traffic congestion during
the holidays.

The restoration effects of the various models in the non-holidays dataset are shown
in Table 4, where the bold part represents the optimal value. It should be noted that all
models used the same dataset and feature selection and were transformed into different
input forms as restored by the models.

Table 4. Time restoration effects of different models on non-holiday dataset.

Model Name MAE RMSE R2

TabNet 16.313 30.569 0.989
RstNet 18.259 34.932 0.986

Transformer 16.884 31.741 0.988
NDT 21.702 38.857 0.982
DFN 17.441 33.395 0.987
RF 17.666 35.444 0.985
DT 24.552 49.261 0.972

KNN 19.523 38.624 0.982
XGBoost 15.312 26.657 0.991

LightGBM 17.570 31.688 0.988
Catboost 17.618 31.206 0.988

LR 31.319 49.103 0.972
RR 31.369 49.255 0.971

Lasso Regression 31.361 49.268 0.972
Our Model 12.394 23.815 0.993

It can be seen that the R2 values of all the models are very close to 1, indicating that
these models performed very well in terms of data fitting. However, the task of time
restoration of missing transactions data in expressway ETC requires not only that the
model can perfectly interpret the data but also maintain low restoration errors, along
with small fluctuations in restoration errors when facing outliers. The linear models
represented by LR were far less effective in restoration compared to other baseline models,
with the best performance metrics being MAE, RMSE, and R2 values of 31.319, 49.103, and
0.972, respectively. Compared to the linear models, the traditional machine learning and
deep learning models performed better, owing to their ability to better capture non-linear
relationships in the data. Hence, current data mining research is gradually inclined towards
using these models. Overall, the models based on gradient boosting trees stand out, among
which Xgboost had the best performance with MAE, RMSE, and R2 values of 15.312, 26.657,
and 0.991, respectively. The model we proposed improved the restoration effect compared
to Xgboost, with an increase in MAE and RMSE by 19.06% and 10.66%, respectively, making
all the evaluation metrics the best.
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Figure 10. The vehicle section speed distribution box plot for 10 different sections in 24 h of a day, 
where (a) represents the non-holiday dataset, namely June 1st, and (b) represents the holiday da-
taset, namely May 1st. 
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Figure 10. The vehicle section speed distribution box plot for 10 different sections in 24 h of a day,
where (a) represents the non-holiday dataset, namely June 1st, and (b) represents the holiday dataset,
namely May 1st.

To more clearly demonstrate the restoration effect of the model, we constructed scatter
plots showing the error degree between the estimated and actual values. Given the vast size
of the test dataset, we carried out four random samplings of the test data, taking 10,000 data
points each time, as shown in Figure 11.
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As can be seen, the time restoration effect is generally better for sections with a travel
time of less than 500s. For sections with longer travel times, the fluctuations in time
restoration errors are more pronounced. When there is no congestion, the long travel
time for vehicles in the section implies a longer section distance. Compared with short
distance sections, the driving state of long-distance sections changes more complexly,
making the driving patterns harder to capture. Even so, our model still demonstrated
strong performance in restoration accuracy. Furthermore, since the proportion of sections
with longer travel times was lower in the dataset, the overall restoration effect of the model
was very good.

The holiday dataset had a larger volume of data, and its complexity was also higher.
Even though we pay more attention to the time restoration during periods when the traffic
flow is not in a saturated state, we still need to address the time restoration issue in the
holiday dataset. Therefore, we compared the restoration performance of all models on this
dataset, with the effects illustrated in Table 5.

It can be seen that the data fitting degree of the linear model was very low, with the
optimal R2 value being only 0.461, and the best MAE and RMSE values being 150.380 and
464.810, respectively, indicating the high difficulty in time restoration for the holiday dataset.
Generally speaking, the deep learning models had superior restoration effects compared
to the tree-based machine learning models. This is primarily due to the deep learning
model’s ability to capture complex data patterns more effectively, thereby displaying a
more pronounced advantage in terms of time restoration. Our proposed model not only
rivalled the Transformer model in MAE value, but also had the highest R2 value and the
lowest RMSE value, demonstrating the best overall restoration performance on the holiday
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dataset. This further reflects the stability and universal applicability of the model we
proposed in dealing with time restoration tasks.

Table 5. Time restoration effects of different models on holiday dataset.

Model Name MAE RMSE R2

TabNet 61.426 200.748 0.899
RstNet 68.052 216.758 0.882

Transformer 53.138 222.1 0.876
NDT 105.136 343.818 0.705
DFN 64.4394 206.152 0.893
RF 107.462 448.371 0.498
DT 127.509 617.78 0.47

KNN 105.135 457.158 0.478
XGBoost 109.408 433.242 0.532

LightGBM 111.952 433.526 0.531
Catboost 114.016 433.532 0.529

LR 150.380 470.223 0.455
RR 150.731 464.810 0.461

Lasso Regression 150.399 464.829 0.460
Our Model 56.81 189.778 0.91

4.2.2. Ablation Experiment

To analyze the role of various components of the model, further verify the efficacy of
algorithm improvements, and enhance the model’s interpretability, we conducted ablation
experiments. We successively removed the EENN modules and LSTM modules, and
replaced the EENN’s handling of discrete variables with one-hot encoding processing. The
effects of the ablation experiments are shown in Table 6.

Table 6. Ablation experiment.

Module Name MAE RMSE R2

MLP 14.739 26.949 0.991
MLP + EENN 13.620 25.689 0.992

MLP + One-Hot 15.890 28.955 0.990
MLP + EENN + LSTM 12.394 23.815 0.993

It can be seen that utilizing the EENN to handle discrete variables enhanced the
performance of the model, with the MAE and RMSE values improving by 7.60% and
4.68%, respectively, whereas using one-hot encoding to handle discrete variables conversely
increased the errors in time restoration. This might be because one-hot encoding, while
increasing the dimensionality of the dataset, does not offer much useful information
about the discrete variables, easily leading to a very sparse feature matrix that is not
conducive to model training and generalization. By using LSTM to extract the vehicle
speed variation features over several continuous sections, we likewise improved the effect
of time restoration, increasing the MAE and RMSE values by 9% and 7.29%, respectively.
From the foregoing analysis, it can be inferred that for regression problems in structured
data, it is essential to use appropriate methods or models to deal with different types of
feature inputs to enhance the performance of the model and better address practical issues.

4.2.3. Features Contribution Analysis

In this study, our model holistically considered four groups (comprising 11 individual
features) for time restoration. The selection of these features was based on their anticipated
significance and potential time restoration capacity, as well as preliminary data analysis.
We employed these features to grasp the multifaceted influences affecting the estimations of
vehicles’ section travel times. To evaluate the contribution of these features to the model’s
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estimation efficacy, we sequentially removed each group of features and monitored the
impact on the model’s performance. Table 7 presents the results of the experiment.

Table 7. Evaluation of feature contribution experimental results.

Feature Set
Non-Holiday Dataset Holiday Dataset

MAE RMSE MAE RMSE

(ε, η, θ) 20.256 41.145 93.769 285.899
(γ, η, θ) 14.809 26.301 57.262 185.287
(γ, ε, θ) 28.139 48.025 120.698 443.987
(γ, ε, η) 13.635 25.6967 66.733 189.343
(γ, ε, η, θ) 12.394 23.815 56.81 189.778

From Table 6, we can observe that in the two distinct datasets, both driving behavior
features and section geographical features made a notable contribution to the model.
During non-holiday periods, the traffic flow in most sections did not reach saturation.
Under such circumstances, the estimation of section travel times of vehicles relies more on
the differences in individual driving behaviors. Additionally, the geographical features of
the sections played a supplementary role. During holidays, the substantial traffic flow on
expressways means that individual vehicle driving behavior might exert a larger influence
on the overall traffic stream, making this feature still very important. Meanwhile, when
traffic overflow leads to congestion, the geographical attributes of the sections become
particularly crucial. For instance, amidst traffic congestion, more vehicles may opt to enter
service areas to wait, unquestionably augmenting the section travel times for vehicles.
Compared to the above two features, the contributions from traffic situation features and
the vehicle classes feature are relatively low. The contribution of traffic condition features
exhibits noticeable differences between the two datasets. This can be attributed to the
unsaturated traffic flow in most sections during non-holiday periods, rendering it unable to
affect the vehicles’ travel times significantly. However, during holidays, a higher number of
sections experienced oversaturated traffic flow, creating more congestion scenarios, hence
the traffic condition features reflect the transit status of vehicles in the sections to a certain
extent. Although the vehicle classes feature holds a lower stake in feature contribution,
being readily accessible information, it still has a positive effect on the model’s estimation
accuracy to some degree.

5. Conclusions

Due to malfunctions of ETC equipment or abnormalities in signal transmission, miss-
ing transactions occur in ETC vehicle trajectory data. ETC data are not only vast in volume,
but also complex in its composition. The existing methods cannot effectively address the
ETC data restoration issue. So we proposed a method for restoring ETC data. Specifically,
we first transformed the time restoration issue into a vehicle section travel time estimation
problem and extracted four kinds of features for the estimation of travel time, which are
section geographical features, the vehicle classes feature, driving behavior features, and
traffic situation features. Next, we employed an EENN to automatically learn the rep-
resentations of categorical features in multi-dimensional spaces, subsequently obtaining
embedded vectors from the trained EENN, which were used as an input for the categorical
features of the model. Following that, we used an LSTM to extract the changing patterns
of vehicle speeds over several consecutive sections and inputted it as speed variation
features. Lastly, combining the processed features with other features that do not require
processing, we employed a MLP to complete the estimation of the vehicle section travel
time, achieving the goal of time restoration. To verify the general applicability, stability, and
accuracy of the above method, we selected the real ETC transaction datasets collected by
the provincial ETC gantry system in Fujian on 1 May and 1 June 2021, as the experimental
datasets. Comparative experimental results show that the method we proposed outper-
formed the selected baseline models on both datasets. Compared to the best baseline model,
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the MAE and RMSE values of the non-holiday dataset increased by 19.06% and 10.66%,
respectively. This method is also fit for more complex ETC datasets, and it exhibited the
best overall recovery performance on the holiday dataset. Its R2 reached 0.91, and the MAE
and RMSE values were 56.81 and 189.778, respectively. The ablation test confirmed that
each module of our method plays a significant positive role in enhancing data restoration
accuracy. The EENN increased the MAE and RMSE values by 7.60% and 4.68%, while
LSTM improved the MAE and RMSE values by 9% and 7.29%. Our method takes into
account the multi-dimensional features that affect vehicle travel time. We not only used
manual feature extraction to provide the model with meaningful and strongly correlated
primary inputs, but also employed deep learning models to learn deeper representations
from these features, capturing more intricate non-linear relationships and patterns. This
method, which combines manual features with automatic feature learning, enhances the
interpretability of deep learning models and increases data utilization. In addition, it can
also reduce the model’s reliance on noise or irrelevant features, resulting in a more robust
model post-training. The experiment demonstrated that this method can effectively restore
ETC missing transaction data, improve the quality of expressway ETC transaction data,
and promote the intelligent management and operation of expressways. It is worth noting
that while the method is designed for restoring ETC data, its core ideas and strategies can
be applied to other large-scale structured datasets similar to ETC data. However, in real
life, road factors of different sections such as slope and curvature affect the driving speed
of vehicles in sections, further affecting the missing transaction time restoration. Therefore,
in future work, we will consider more features and influencing factors to further improve
restoration accuracy. Simultaneously, we will contemplate the issue of online restoration
of ETC missing transaction data. Overall, this study has achieved satisfactory results on
ETC data restoration, and we believe that the proposed method holds potential value in a
broader range of application scenarios, providing a new direction for future research.
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